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It follows at once by induction that all the algebras z_w in the tower generated by

M
N ¢ M are also multi-matrix, and furthermore the inclusion matrix >_<_”+H is >K for

k even and ;ﬂ_vn for k odd. Thus in the infinite Bratteli diagram for the tower, the

?+:£. story (for My , , € Zr+mu is the reflection of the KB story (for M € Zriv.

We illustrate this with N = ([S,] and M = ([&,], asin Example 2.3.8. We have

M_
A=Ay~=

OO~ —
O D
—_—_—_o oo
(="
=l
1
—ao

These data determine the Bratteli diagram of the tower:

160 wmw 160 M,
NN
Avo \wo 120 4o Zw
NN,
NN
Ho\wo \uo 3o 1o M, =M
/o—/o o Zc =N

In particular M, = End (M) ¥ Mat,(C) @ Matg(€) & Mat, (C).

An accidental feature of this example is that ¥ is an eigenvector of APA  with

eigenvalue 4. Consequently the vector of dimensions on the r+w=a floor is always 4 times
the vector on the K floor. To get & better idea of the general situation let us also
consider the example with the same inclusion matrix A but with N=(aCa(, ie
# = (1,1,1)". Then the Bratelli diagram is
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30 Ao /mo \mo 3o _Sw
\w | \u /WA "
_o./mo lo 20 1o EH
OH/OH\OH\ z_o

The reader might wish to continue the diagram for a few more levels and observe the
convergence of the ratio of dimensions on the even floors to [1:2:1] and on the odd floors tc
[1:3:2:3:1], eigenvectors for AYA and AAY respectively. This observation is the key tc
the next proposition.

Propogition 2.4.2. Let NCM be a pair of multi—matriz algebras with inclusion matri:
A, andlet ﬁgrv_co be the associated tower. Then

im {dimy M, }/% = )2

ko

Proof. It suffices to prove this in the case that NZ n NZ = K. Then since >ﬂ> ang

AAY are irreducible and aperiodic (2.3.1.f and 1.3.2) and also positive semi-definite, i
follows from Perron-Frobenius theory that

Lim [(AYAYEI% = 1im antyket/x = 1ag?,

k- k-

for any non—zero £ € K" with non-negative coordinates. (Set A equal to AtA or Aat
Then A= __>___w= + M E;, where E, is the rank one orthogonal projection onto the

span of the Perron-Frobenius eigenvector, E, are the remaining spectral projections of A

and p. satisfy 0 # < l|All. Hence

>rm wn M “__mn m
“ + .m,
Ak~ 0T Ayagk

which converges to _wom. If 2z is the unique positive normalized

{ll=ll = 1

Perron-Frobenius eigenvector, then Eyé = AMJNLN. which is non-zero because ¢ » (
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£.> 0 for some j- 1t follows that
}

and 2> 0 for all i, and

K py1/k e
tim 18 = tim [EGeN /¥ = 1)

1k
i A
s (APAYK, and that for Mo C Mgy i@ (AAY

i j trix for Mg C M
The inclusion ™ma 0 © Max ) __A>>Jr>u=m. Yol

t 5k 2 .
Thus dimy Mgy = A AYSH)® and dimy Mgy 11

o Y2+ _ Al #
_P_.aa._fz%:s,n___haa_axznx ) Al

a1l c € p i H..ﬁ 1 .} e
Lemma 2.4 3. Let N .?R be a pair o nite d u—ﬂ&u@huﬁu—nh hﬁﬂmv_a over a G~& x hin&

e ——

i . Then
let Az_r:awc be the associated tower.

(M:N] = lim sup {dimy w3 x.

k- o

ite di i K-algebras, one has
and M, are finite dimensional g

Proof. As M,
dimg (M, ) .
amxxlawm (M M)  dimg(My),
and therefore
1/k
ko dimg M MR #
[M:N]= w_ﬂmq: sup Tw:sr_zox __M.H sup {dimy My
=00
Let 1eNCM bea pair of finite dimensional algebras over & field

K let E be any extension field of K and set

ME = M @ E and NE = NeE

Then
E
(a) Endyg(M) e E2 m_awmz_ ).

(b) M : N} = ME: NE}.

vchange of Tings in Hom"; see for

heorem On
to the special case at hand.

is i le of &t
Proof. (a) This 18 an examp .
example [R}], p.24. We give a simple proof appropriate

Define
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a: Endy (M) @ E — muamﬁzmv

by
a{p8a)(x%h) = p(x) ®ba (peE m:n:c(c, abek, xeM)

Define also

a: m_amEJ — Endy (M) 8y E

as follows. Let {a;] be a basisof E over K. Foreach ®¢€ mE_m:sJ and each i, there

is a unique @, € m_azﬁzc such that

o(xe1) = Y pi(x) @, (x€M).

Only finitely many ﬁwC& are non—zero for any particular x, and since M is finite
dimensional over K, only finitely many @, are non—zero altogether. Then 2 can be

defined by
a(e) = M v ea.

It is easy to check that o and f are isomorphisms of E-algebras which are inverse to
cach other.
Next observe that

(2.4.4.1) o A(m)®a) = A(m®a)}, and

ofp(n)8a) = p(n®a) (meM,neN,ack)
It follows from this that
o(End%,(M)eE) = End " o(ME).
N Zm

(b) Let (M), be the tower of extensions generated by NCM and let (Ao

mn Zm. We produce a sequence of isomorphisms

= for all k. Take g,y to be the

be the tower generated by N
o M E— A, such that o
ko My o E— Ay w+__
Mok
identity and @, to be the isomorphism defined in part (a); we have al =o by
M

{2.4.4.1). Suppose @y, -,y have been defined. Let



62

be the isomorphism de

be induced b

B
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(M,) @ — End Fe (ME)

.M, ., ®E=End y
b1 Micad M, ME |

fined as in part (a), and let
=End} (AY
Ay k

. r E
(End" g (M}) = Ay

N1 ME

y the pair of isomorphisms

. I . £
Set oy 4y = Tk+1 o b 1 this extends o4 because & .y extends the identity on M,

and 749 extends oy

Consequently, we have di

equality [M: N} = Em : zJ follows fr
he definition of

%FEEE:ENEP. Because of 2.4.4 and ¢
>z_ for arbitrary semi-simple algebras (given in the chapter introduction), it suffices to
so M and N are multi-matrix algebras.

N
consider the case that K is algebraically closed,

But then

(M,) = dim (ME) = dimg(A,) for all ki and the
g My £k £k

om this and Lemma 243 #

[M:N] = _wa {dimy zi:x = =>ﬂ=m.

by 2.4.2 and 9.4.3. The corollary follows from Kronecker's Theorem 1.1 #

ot, in general, the product of their

roduct of two matrices is 0y
¢ M of semi-simple algebras,

ested sequence B E LcP

Remark. The norm ofap

norms. 1t follows that, given a n
the inequality
_Z"Emﬂsnﬂ:ﬁ"r_

is in general atrict. However, even this inequality fails to hold for algebras with radicals, as

we now show.
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Example 2.4.5. Consi

2 ider two inte, [a—
the fac gers m',m® » 1 and - .
tor Mat_(C), let P be its "parabolic” subalgebra set m=m'+m’. Let M b

P “ ¥
Q
."g m Aﬂv. w € m' EnA v; B-A vw

Aﬂ L) i
and let L be the "Levi" subalgebra * A mﬁ of P. Then L and M
. an are semi-gimple

and M:L)=
[ ) = 2 as above, but P is of course not semi-simple

We claim that . pl =
at [M:P]=1. Indeed, from left multiplication ﬁx J . T w_ X J

one has the inclusion ZT 0CllZT

P - Endg(M) »M e MOPP

o

_:—A:@ \'> 18 —m=. mH.-:—:U—_ﬂb:O-n b ﬁ h> g v
Y A E:u g—Oi 181 —uﬂ u.hu_.—:—ﬁrgn_c—u . >m _.:_

commutant Qm v i i
ﬁ X X in M is H&GO@Q to ﬂ—-m center AU Om M 9—.—
v — m v e commutant Oﬂ \fAmuv i
H p M moreover —.70 natur. b.— gHU—w.um:— »-—.OE M
Endo(M 8 1somor h c to M v L

C .
E (A(P)) is an i ;
nd(M) )) is an isomorphism. Consequently the tower generated by PCM i

i

1n”\_<n M+ and the index is 1.
e also claim that (L=
[P:L]=1. From left multiplication —w S & ﬁ» J Tﬁ
0 BJl0 &

one has the inclusion

L -+ End(P)

A 00
A

(A,B)w 10 X, 0
0 0 A

Th i
us om:&EFV is the subalgebra
. "\\.N pg 0
“,c A T U aty ., (€) and <mZRE.A3_‘

of MSQ Amvv EC_:C:;—: to (_b._ .-_Q ® 1|
H
3 ' g”ﬂ
m N:“vv Z.Wna-Aﬁv. >m T W—; EC;—@_—GPR—QH

T< X Y]|[A B

0z 0 N_ T C is represented in maﬁﬁuv by the matrix
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pg Pc O
0 0 g

the canonical morphism P — N i8 given by

P -~ N ={(Mat,, Eezp..wEVoZ»..E.E
5 &~ (52 d

[M:P] =1 shows also that the canonical construction

The argument used to show
the tower generated by

applied to P CN gives an algebra isomorphic to N. Finally,
LcPis LCPCNCNC:--- and the index is also 1.

9.4.6. A reprise of Proposition 2.4.1. Let 1eNcM be a pair of multi-matrix

algebras with inclusion matrix A. Write ?w :1¢jsn} and {pj:lg¢ig m} for the

minimal central idempotents of N and M respectively. Let B be the two-story Bratteli

diagram whose os. story is B(NcM) and whose 18 story is the reflection of Eznz_y

that is >§ = A and >E — A% Let B be the augmented diagram, as in 2.3.11. For

example for emwnmmé B is

VAN
jo 36 20 30 1o
20

[+]

NN
N

1

o

We identify the pair NCM with the pair Aj C >_. of path algebras associated with B.

(See 2.3.11.) Write ﬁm.._ :1¢j¢n} for the minimal central idempotents of the path
algebra >m. According to 2.4.1 and 2.3.9, there is an isomorphism of mawﬁzc onto >&

which takes A(M) onto M. Our purpose hete is to use the path model to provide an
explicit isomorphism. Except as noted above, our notation is as in 2.3.11.
An edge on B is specified by the data n= (k;i,j,f), where k i8 the story on which 7

lies, <w and <_w+w are the two vertices of 7, and the index ! distinguishes among the
k C s . .
»E edges joining <M and <w+~, Define an involution * of z_o,:cb_rw_ by
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Thus * i3 the reflection throu
gh the first floor. (Neverthel i
an upward oriented edge to be upward oriented.) Fisn o regard the reflction
Let V. =Ko i

n
@V, i
hM~<._. Define a linear map U from M to V by

requiring
U(Tg ) = (bpbpm)@ny  ((Em}eRy).

U is a linear isomorphism, its inverse F being determined by

m‘ ! p—d
(€®m0) = Teer 1) (ngr3)

reql .
(€ mbm_ and acmbm_z:m._mnv.

N N -1
O.:u :—Wa c .U—GN.—Am m‘—ua _.-—;Q—Qm _:.—m ﬂOBH—Q ﬂ:v —uppuw on ET—.—G F &C—;m and joi (]
: A ) u 4 n m. 3’ ﬁ— ns th

4] -] o °

/NN /NN
NN e NGNS

] o o o o &

LN N

V carri . .
rries both a right action of N and a left action of >w. arising from the right action

of N on _52 and the left action of >m on _Sm_"

p(n)(¢8n) = €@ p(n)y
x(é8n) =xéey

It i i8 i
| 13 easy to check that >u is in fact the commutant of p(N) in ME&S, and that U
Intertwines the right actionsof N on M and V. Hence

a: g UopoF

is an isomorphism from m:;wﬁzv = omna&zvizz to omi&ﬁiz: = Ay

Let (&,79) € and (o,7)€R
R, (e.r) €Ry (s0 T, ,€A, and T, _€M). One checks that
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A1 _ .
a A,Hm,aXHPL - Raqodﬂvﬂﬁo.m—??c.mmu.

It follows that o X(x) = A(x) for x € M C A,. Also
gy -l _
@) = oY, T =Aa),
mmsw_

as required by Proposition 2.4.1.

Remark. Later we will want to modify the definition of U somewhat. If

c: :E.: —K* is any function and we instead define U by

C.A.Hﬁ,dv = OHQHXﬁc,mH.awv ® Ny

then @n UogoU™} is another isomorphism of Endy(M) onto A,

2.5. Traces.

A K-inear map v from K-algebra M to a K-vector space V is said to be faithful if

the corresponding bilinear map
(xy) » olxy)

is non-degenerate; that is for each non-zero x € M thereisa y € M such that ¢(xy) # 0.
This is a one-gided notion, but if M is finite dimensional and : M — K is linear, then
¢ is faithful on one side if and only if it is faithful on the other. Furthermore, in this case,
for each linear ¥: M — K, thereis an a € M such that ¥{x) = w(xa) forall xe M.

Atraceon M is alinear map tr : M — K such that tr{xy) = tr(yx) for all x,y € M.
On a factor, any non-zero trace is faithful, and any two traces are proportional. ‘In fact a
trace on Mat 4(K} satisfies tr(e h.w = vm tr(e; ), where {e;;} are the standard matrix

units.
m
Let M be a multi-matrix algebra over K, written as beforeas M= @ EZ. with
i=1

EZ ~ Mat ?3. We agsociate to a trace tr on M the row-vector
1 .

§2.5. Traces
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.ml = AFHAG—V‘. : ..9105: € ’5.

where € i8 & minimal idempotent in Mp,. For example, the trace q@ defined by

(e (3)
) =1 = i

A .v and o _wr_s =0 for k#i corresponds to the mz. vector of the canonical
- m

basis of K. Any row vector § ¢ K™ determines a unique trace

tr, = Mm.qen M=K

with associated vector §.

A trace tr on M is faithful if and only if the associated vector 5 has no zero entries.
When the characteristic of K is zero, we say that tr is positive if s, > 0 for alli. (There
. el el . . = - ) .
is an ambiguity here; if K is given as an extension of the reals, the meaning of 8, > 0 is
clear. Otherwise we take s. > 0 isani i N

; 2 0 to mean that there is an imbedding of o?ﬁ. s8] in €

such that 8, >0 forall i.) A positive trace is faithful if 8> 0 forall L

Proposition 2.5.1. Let 1€ Nc M be a pair of multi-matriz algebras with

n
N = @ q,
j=1 i

and with inclusion matriz >K.

{a) h@.h o be atrace on M corresponding lo 5 € K™ and let 7 be a trace on N
corresponding to ¥ € K'. Then o extends t ifand onlyif ¥ = .m.>ﬂ.

. _MS 1f char(K) = 0, then there ezists g faithful trace on M with Jaith ful restriction to
..S“ NMEM_C =p> B, then o sufficient condition for the ezistence of a faithful trace on M
with fai - . . .
ful restriction to N is that for all j, the sum .M»f. is not divisible by p.
i

Proof. (a) If »._. is a minimal idempotent in ﬁz. then mwm is the sum of A, .
minimal i i icti o
mal idempotents in v_z. Hence the restriction of o to N is described by the vector

[

t ' with components

n
ﬁ = q@ = MQSEV = .M_m}a. = Am>ﬂr.
1=

i=1
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1 for all i. The restriction to N has

¢, or if the column sums of >ﬂ_ are

(b) Define the trace on M with weights 8§
weights .@HM»S (mod char(K)). If char(K) =
i

not divisible by characteristic, then the weights t j are non—zero, and the restricted trace is

faithful. #
Remarks
{1) With the notation of the proposition, one has, when ¢ extends T,
m
(5.7) = Yo = o) =70 = 9

By Propositions 9.3.1.b and 2.5.1.a, this implies

A.mu« >ﬂ m.\u = AM>Z.M\.V_

which is, of course, obvious!
(2) A faithful trace on M may have zero restriction 0 N. Consider for example
N= Qm& CM= Q@u_ v Ce Z&Q eC

d the traceon M associated to the vector (1-1,1) € ﬁu . Or consider

as in Example 2.3.7, an
) (with inclusion matrix [2]); any trace

the two element field mm and the pair Fy C Zm..m?w
on Zﬁm:"wv has zero restriction to the center Fo! One may thus say about traces on
multi-matrix algebras, that positivity is hereditary, but faithfulness is not.

(3) The assignment of a vector 5 € K™ toatrace tr: M —K has been defined above

via the values of tr on (classes of) minimal idempotents of M. In Chapter 3, we shall
congider a new situation, where M is a finite direct sum of continuous (type :L von

potents are present in this situation, we shall

Neumann factors; since no minimal idem
) of values of tr on minimal

describe a trace tr by the vector 5= (tr(py)se tr(pp,)

inciple, the deseription of tr via § is also possible for

central projections of M. In pri
ons which would be out of place in the

multi-matrix algebras, but this causes complicati

present chapter.

(4) Given a Bratieli diagram representin
algebras, >r o >r+d and a trace on ﬂ >r, it is sometimes
y marking each vertex with the weight of the
potent in the factor,

g a sequence of inclusions of multi-matrix
convenient, to record all the

trace on the

data on the diagram b

corresponding factor, that i3 the value of the trace on a minimal idem

§ 2.6. Conditional expectations
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as well as with 9—-5 Q—B@ﬂu—Q——m. Hw-.—@ n n—um situation -1 H—c—iwmnﬂ_c—u 2.5.1 E.—Q mO— A =
] ?

2 1|, the dia, i
01 gram is

E.m_o/:mumw otw.mw

7R\

ity v.m...w

Note that ©d o
anmg o pronwp.& Bratteli diagram it is actually superfluous to record the dimensi
the weight mm irst floor. Similarly on a finite Bratteli diagram it is superfluous to BA.H—N

80 8 T
(in general) mcw@ m_m_ma“a,nmup on gzzw_ top floor, but on an infinite Bratteli diagram it is not
) o record the traces, since th i
determined by those on the floors below.) ’ e traces on the higher floors are not
(5) Suppose KR, and N i
’ CM is a pair of multi-matri

_ . . -matrix algeb: .
ZyNZy =K and with inclusion matrix A. Let (M) be % s over z with
k'k»0 the tower obtained by

iterating th i
g the fundamental construction. Then it follows from Perron-Frobenius theory that

there is a unique positive normalized (tz(1} = 1) traceon M_ = UM
o k'
k

In *gn —mp m g ﬂ?@ ); erron-F —O—um_::m G_Mm__<mﬁﬂ°— Or nor :5——§ ~u!
A v 1 ﬂ >~.>4
M 9h h._ L UG——”@ t v _?—__ 4 m._un_ w m A cn H ~v. H—umu._

(k)

k
— € & consistent ».b.“_ :-— of traces on zuﬂ al Q_: f:1.] M N since

ctk+1), MEF]
¥ >H<mﬂ = 5K) for an k.
An argument gimj iven i
gument similar to one given in the proof of 2.4.2. shows that n A>ﬂ>vai=v
+

consists of Perron-Frobenius ei t 20
genvectors for A'A. Su . .
trace (k) . . ppose tr is any positive i
on Za and mA ) is the vector determining tr on Zr Then for all k aMMHBw__N&
. r,

§(FH20) A bAY = 5(2K0),

whence mﬁ_c is & Perr
on-Frobenius ej L .
we have mBE _ =>__amr mAS nius eigenvector for A'A. Since mﬁ_&;;vr _ .mlﬁs

2.6. Conditional expectations.

We N .
are primarily interested in the following situation:

A% N M is a pair of multi-matrix algebras.
(2) M has a faithful trace with faithful restriction to N.
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(3) E:M—=Nis the orthogonal projection of M onto N with respect to the inner

product determined by the trace.
However, to clarify somewhat the roles played by semi- simplicity, the pair of faithful
traces, and the conditional expectation E, we begin in a more general setting.

A conditjonal expectation from a K-algebra M onto a subalgebra N
(N,N)-linear map whose restriction to N is the identity. Recall that such amap E is
faithful if for each non-zero x € M thereis a y € M such that E(xy) £ 0. For example, if
M is a factor, M = Mat tcc. where K has charactersitic 0 or g is relatively prime to

}=1 isa faithful conditional

is an

char(K), then the trace on M normalized by trace(l
expectation of M onto K.
Consider moarﬁg,zv. the set of right N-linear maps from M to N, with its left

N-module structure defined by (x@)(y) = xply) (xeN,yeM, p€ moawﬁz_z:. We

associate to a conditional expectation E:M-— N  the left  N-linear map

EP : M — Hom(M,N) defined by EP(x)(y) = E(xy) for xy € M. Then E is faithful if
faithful if EY is an isomorphism.

and only if EP is injective. We say that E is very

Lemma 2.6.1. Let NC M be a pair of finile dimengional K-algebras. Suppose N has
a faithful K-linear functional. Then any Jaithful ezpectation E fom M to N is very

Jaithful.

Proof. Choose a faithful functional 7: N —K andset o=7oE. If x€ M is such

that o(xx') =0 forall x" €M, then ofxyz) = 7(E(xy)z) = 0 for all y €M and for all
zeN, sothat E(xy}=0 by faithfulness of 7 and x =0 by that of B. Thus o is
faithful. Tt follows that any K-linear map M — K is of the form x»~ o(ax) for some
a€M, since M is finite dimensional.

Consider a right N-linear map ¢: M — N. There exists a € M with r(x) = ofax)
for all x€M. Define p:M—N by ¥= EP(a); ie., ¥(x) = E(ax). We claim that
¥=¢. It is enough to check that Ay = Ay for any K-linear A:N—K Butas 7 i8
faithful, such a A is given by y» 7(yb) for some b € N. Now one has for all x€ M

Ap(x) = r(E(ax)b) = rE{axb}, and

Ap(x) = T(¢{x)b) = (¢(xb)) = ofaxb) = rE(axb). #

Rematks. (1) 1 N is a multi-matrix algebra, then N has a faithful K-linear

functional.

(2) Let V bea K-vector space and define & multiplication on A=KeV by
AA V') = (AA,Av +A’v). The result is a K-algebra for which any subspace of
0@V is an ideal. Suppose dimV3:2 If p:A—FK isany K-linear functional, then
ker(y) NV is a non-zero ideal in ker(y). So A hasno faithful linear functional.
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But if V is one-dimensional, s
, spanned b .
faithful on A. p y v, then the functicnal (a,bv)wa+b is

Th - .
e next proposition concerns the existence of faithful conditional expectations

Proposition 2.6.2. Let Nc M be ¢ pair of K—algebras with N finite dimensional, and

fet tr :M—K &Qﬁ.\.ﬁms&tnﬂaﬁns. .
ith faithful restricti : ;
K-linear map E: M — N_such that ction to N. Then there ezists a unigue

(i) tr(E(x)) =tr(x) xeM
(i) E(y) =y YEN
(iii) E(xy})=E(x)y x€M, yeN.
Moreover E is o faithful conditional expectation from M to N ]
(iv) E(yx) =yE(x) x€M, yeN P
(v) E(xy)=10 forall y implies x = 0.
If M is .mﬂ:n dimensional, then E s very faithful; that is
(vi) B : M — moamﬁz.zv defined by av (xn(E(ax)) is an isomorphism.

. W i i
o NVNMB.MAEm Szmam.a M together with the nondegenerate symmetric K-bilinear form
X ) and with the associated orthogonality relation. As tr and s._ are
N

faithful one has M = N @ N*.

W. . : .

- o.w begin by n—._.onx_:m uniqueness. Let E:M — N satisfy (i) to (iii). As E is
ined on N by (ii), it is enough to check that E=0 on N*. Let teN*

¥y € N one has by (iii) and (i) . ¢ Forew

tr(E(t)y) = er(E(ty)) = tr(ty) = 0

50 :M.: E(t) L N. But E(t) isalsoin N, sothat E{t)=0.
0 prove existence, define E to be the projection of M onto N along Nt It s

moc.m vrpﬂ Qmw w—O—Qm For x ¥
Oby. § N € zu =,
A-V , . one r”m Hwav X OHﬁIONOSN_— to N 92& #._w—ug to 1, so0

Note that N* ig ari
ght N-module because of th :
¥y’ €N and z€N'. Then the trace property of tr. Namely i

tr(y'{zy)) = tr((yy')z) = 0,

80 zy € N*. Now xy -
y - E(xy) and x-E 5 1
The difference {xy) x-E(x) arein N*, and hence also xy - E(x)y € N*.

(xy-E{xy)) - (xy-E(x)y) = E(x)y-E(xy)

—m - L — » er
in N NN = (0), which proves (iii). One obtains (iv) similarly.
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Since ir = tro E, the faithfulness of E follows from that of tr. Finally, if M is
finite dimensional, then E is very faithful by Lemma 2.6.1. # N
Remark. Conditions (1)-(iii) are equivalent to the single condition

tr{B(x)y) = tr(xy) for x € M and y€N,

as the reader may verify.

The relevance of conditional expectations for the fundamental construction comes from
the following fact.

r

Proposition 2.6.3. Let M, N be K-algebras with 1€ N C M; set L= muazAz: and
let A M — L denote the inclusion. Assume moreover that

(i) the right N-module M s projective of finite type, and

(ii) there exisis @ very Jaithful conditional expectation E from M lo N.
M and E (viewed as a map from M to M) _Sa...m
K-vector space by elemenis of the form Mx)EMy)} with
ey M to Endf(M) is an

Then L is generated by

precisely, L is generated 6s @
x,y € M. Furthermore, the map X @ywn A(X)EA(y) from M

isomorphism.
*= ¥ is an i hism. As
Proof. Hypothesis (ii) says that EP: M —M* = moEzcs.zw is an isomorphi

projective modules of finite type are flat (see [BAC 1], page 28), the K-linear map

*
EZemv”z_ezzi.zezz

is an isomorphism. Let
L]
% *zez M - L .
x® x* » (zrxx (2)

be the canonical homomorphism. By (i}, it is an isomorphism (see, e.g., [BA 2], page 111).

Consequently, the composition

o = Kidy, ®E*) : Moy M~ L

is an isomorphism. Routine computations show that

®(xey) = A(X)EAY) xy €M

(xOy)P(28t) = O(xE(yz)®t) x.yzt€M.
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The proposition follows from the first of these. #

Remarks.

(1) It could be that M is projective of finite type as a right N-module but not as a
left N-module, as observed in [BA 8], page 53.

(2) In the situation of the previous proposition can we conclude that L is projective
of finite type over M (as a right A(M)-module)?

For pairs of multi-matrix algebras, the situation regarding pairs of faithful traces and
conditional expectations is the following:

(1) If charK=10, then for any pair of multi-matrix algebras Nc M over K, there
cxist faithful traces on M with faithful restriction to N (2.5.1), hence faithful conditional
expectations E: M — N (2.6.2).

(2) Whenever E:M — N is a faithful conditional expectation, it is very faithful,
since N always has a faithful functional (2.6.1).

(3) I charK> 0, M need not have a faithful trace with faithful restriction to N.
For example there is no pair of faithful traces for F,C Zw..u:"wv. Note that nevertheless

Tp w +a + b + ¢ defines a faithful conditional expectation anmﬁnv —F,.
Corollary 2.6.4. Consider e pair of multi—matriz algebras

n m
1eN = gNc M=o wwg
1=

=17 !

as well as

n
L= @ p(g)L = EndS(M).
=1 1 N

Suppose there is a Joith ful conditional ezpectation E: M — N. Then

(a) L is generated as a K-vecior space by elements A(x)EA(y) for x,y € M;

(b) The K-lkinear map ¢ N ~— ELE defined by o(x) = Mx)E is an isomorphism of
algebras.

(¢) If m. is a minimal idempotent in the factor n_.z_ then \:m.vm is a minimal

idempolent in the factor Rah.vr.

Proof. (a) Condition (i) of Proposition 2.6.3 is fulfilled because any module over a
semi-simple algebra is projective, and condition (i) is fulfilled by Lemma 2.6.1.

To prove (b), first note that ¢ is a morphism because E is an idempotent which
commutes with A(x) for all xe N. f x€ N and ¢(x) =0, then also x = @(x){(1) =0,
80 o is injective. Finally ¢ is surjective by part (a).
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For j€ {1,---,n}, the idempotent m?.mvm = \znwm. is not zero and lies in the factor
ln_.vr. The resulting reduced factor is \.Ewmrmukpwﬁzvm. As ¢ is an

isomorphism, its restriction ﬁm to .:z is also an isomorphism onto .sﬁn_vmrm. It

follows that the idempotent s_.Q.ﬂv = \E.va is minimal in the factor mﬁnuvmwm. Butif e
¢ L is an non—zero idempotent in L dominated by »3:.“. and thus also by
»Swmnwﬁuvm. then muin.wvm.win.zm. € Rn:.vmrm_ and therefore mu\zm_.:w. In
other words, Z@m is also minimal in L. #

Remark: The following instructive proof of 2.6.4.a was given by Wenzl {Wen3]. First
note that the map ¢ of 96.4.b is an injective homomorphism. Now consider the
gubalgebra A of L generated by A(M) and E, and note that

A={Ayp+ M.mevm»@._v g A M}, and
i
EAE = g(N)¥ N

If ¥ is a non—zero element of rad(A), then there exist x, ¥ € M such that E(y¥(x)) # 0
(using the faithfulness of E). But then EXy)}$AMx)E = AE(y¥(x))E = W(E(y¥(x))) isa
non—zero element of rad{A)NEAE = rad(EAE), a contradiction since EAE s
isomorphic to the semi-gimple algebra N. Thus A is semi-simple. Note that A’ =
AMY n{E} = p(N), s0 A* = p(N)* = L, where primes denote centralizers in
m.axﬂz:. Gince A is semi-simple, A = A® = L. Finally observe that AMEAM) =

*M»?mvmﬁmu D Xp ¥ € M} is an ideal in L, and if ¢ is a central projection in L
i

orthogonal to this ideal, then for all x,y € M,

0 = (EA(Y)¥)(x) = E(y¥(x))-
Hence =0 by faithfulness of E, so L = AM)EMM). #

2.6.5 Reprige of 2.6.4 using the path model. Let N, M, and L be asin 2.6.4.

Suppose tr i8 a faithful trace on M with fpithful restriction to N, and let E:M—N
be the conditonal expectation determined by tr, asin 2.6.2. Let B be the Bratteli
diagram for Nc M c L, and let i be the sugmented diagram, as in 2.3.11 and 2.4.6. We
identify N CM with the pair of path algebras AgcC >_. but we distinguish between

-

L = Endg(M) and the ;somorphic path algebra A, Let & and § be the vectors

determing the trace tr on M and N. We also regard % and © as functions of vertices
on the o'B and 1% floors respectively: ..?wv = J and m?wu =8 Recall the *-operation
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which reflects edges through the first fioor. We define the reflection on vertices as well:

ke _ 2k
(Vi) =v{" (05 k2 1¢igm(k))
We first give a for I
. mula for Ee€ waazﬁzv. Recall that E is determined by the
requirement tr(E(z)x) = tr(zx), for z€ M and xeN. If (,n)eR, and (a8 € Ry
y H 1 '

th
o0 that Hm.q €M and Ha_um N, then one verifies that

plﬁ%.dﬂ?% =& :cqch_xmc.bcv&mu.e_vmﬁm_:v_

while
p—.ﬁ&mm.auvﬂﬁc.acﬂa_mv = &:c.ﬁcvmﬁnc:%ov&mp_amvim_gw.
Hence
2.6.5.1 _
(265.1) B(Tg ) = io_w Hepm)Ty g (61 € Ry)

(Remark that = = i
m_: q_: and ﬁ_g = a_o_ if mﬁ.m,av #0, 80 the expression is not so
asymmetric as it may first appear.)
Let

Cﬁ—..m,:v = nnsunmo.mﬁaﬂv ® aﬁ Qm.av € —va.

and F =yl i
: U~, asin 2.4.6. Next we compute e = UoEoF, the imageof E in A,. For
@ n,, an elementary tensor in <_. for some j, i

2

1 a(§ 1 ) .
= L
atep oy "2 gy

Aﬁc.nHv_Qo,mmV:

BEELGT
Qﬂﬁwﬁ?@i M. ex.__:.s%:_

A0)7¢10]
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_ ?r.@%ﬂw M. m»wmo}; ™

Ao1=¢ (o]

It follows that

8(£py1)
(2.6.5.2) e= M mwﬁsé?nzﬂ.v.
m.»mbh@.z —c:
{101=410)

Remark. 1f K=C, and the trace tr is positive, we prefer to use the inner product

{ny) = s.ca.J on M, where *
rather than the bilinear form (x,y) » tr(xy).
unaffected by the change.) We give V the inner product for which

is the natural * operation on the path algebra M,

(The orthogonal projection E: Z —N is
] bh _ is an
i

orthonormal basis. Then the choice
(2.6.5.3)

CAHm,:v = ¢wﬁm—zu nao,n—.av 7,

makes U into a unitary operator from M onto V. In this case e is given by

(2.6.5.4) e?\&.:.m.v.

{[0)7 (0]

Then e is a seli-adjoint projection in the C*-algebra >N This formula for e is due to

Sunder [Sun] and Ocneanu {Ocn]. The formulae (2.6.5. 3) and (2.6.5.4) are also sensible if
K is any quadratically closed field.

We know from 2.6.4 that any ﬁmm—_awﬂzv has a decomposition

|M.>

such a decomposition. Since the isomorphism @ : @ UogoF of m_awmﬁz: onto Ay

m »G ) where Xy, € M, but so far we have not considered how to compute

takes A(x) to x (x € M), it suffices to decompose z € A, into asum z qummﬁ with
i

x,.¥; € M. For (a7) and (60 €R; (0 T, and amum M) one computes from

(2.6.5.2) that
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o) sty
T eT; o= {10 0)=rs
a*T6,8= Lrob)a )t c_ Tagey 1)Bg8,-6):

Hence for (a,8) € Ry,

nﬁhuvag—m_ T
c(ap)(dyy)

(2.6.5.5) Top=

. € T
AQO.QZ,AQQ.QNV ch.hmu.ﬁuc._muv.

where 17, is an arbitrary edge in Dc_ with No)= end(g)* = a.Bimmv. In particular if
we use the convention (2.6.5.3), and formula (2.6.5.4) we get

W)
gﬂn_:rm@_”—_u AQQ.QH ch.awv AQQ.QJ Qmo_muv

(2.6.5.6) Tq u

Another way to write this is
T, 5= tlend(5)")F(a'® 1) e (5 7p)".

.Ew an exercise in using (2.6.5.6) we compute a decomposition for the minimal central
idempotent nSL in m:awe(:. We have

Y, T

)
mmbw_

M. _..ﬁl_uqe w7

Mmﬂw_ Amc._mu.vk.wo_ﬁmu

aplay) = m_

(7:€ahl€gsty)’

for any % € bo_ Taking the average over the Y elements of b o) we arrive at

play) = 1 AT, )EXT, ,).
23 R, ) & EXTn)

- c
KU

In the remainder of this section we discuss, following [Wen3] and [BW], the notion of

an extension of an algebra with respect to a conditi i
onal expectation. This type of
appears frequently in Chapter 4. e ot smere



