Definition 2.6.6. Let NCM be a pair of algebras over a ficld K, and E:M —N a
faithful conditional expectation. An E-extension of M is a pair (L.f), where L is an
algebra containing M, f € L, and

(i) L is generated as an algebra by M and f.

(i) =1

(iii)  fyl = E(y){ = fE(y) for all y ¢ M.

(iv)  The morphism ﬁ X+ xf s infective.
F N—L

The model example of an E-extension is the fundamental construction Amﬂa_mﬁzv,mv_

when E is very faithful and M is projective of finite type as a right N-module.

Lemma 2.6.7. Let (L) be an E-extension of M.
n

(i) Any element of L has the form y + .Mmﬁﬁ. with y.yjy; €M. In
.u"
perticular MM is an idealof L.
(ii) There is a unique conditionsl ezpectation E:L— N ertending E and
satisfying E(x)f = fxf for x € L. Moreover E(x) = E(xf) = E{fx) forall x¢ L.
(iii) For x € L there ezist unique ,cu,ww eEM with xf= f.. and fx = ?w.

Proof. (i) is immediate from the definition 2.6.6.

(i) Let ¢ denote the isomorphism x«— xf from N to L, whose range is exactly
fLf. Then E:x+— sL:.xc has the desired properties.
(iil) If x =y, +M..%_.ﬁ, then by = yg +M<__.m5s satisfies xf=b,f. If beM
J 1
and bf =0, then for all y € M, 0 = fybf = E(yb)f = yoE(yb). Since E is faithful and
¥ injective, b= 0. This proves the existence and uniqueness of 5. Proceed similarly for

by #

Remarks 2.6.8. (1) If ZMZ, then E is never F::g since f#1 and

E{(1-f)x) = ¢ for all x € L.

(2) Let xeL. Onehas E{xy) =0 for all yeM if, and only if, fx =0. Similarly
E(yx) =0 forall y € M if, and only if, xf = 0.

Let us check the first agsertion. Suppose E{xy) =0 forall y € M. Then for all y,

0 = E{xy) = E(fxy) = Elfbyy) = E(byy) = E(b,y).

Since E is faithful, cm =0 and fx = Ew =0.

(3) f N,M and L are *-algebras, E=E"*, and f=1", then E is self adjoint,
because ¢ is a *-morphism.

(4) ¥ N and M are C*-algebras, L is a *-subalgebra of a C*-algebra, E=E"
and f="f" then E is positive. Indeed x — Ixf is positive and @L is positive.

Proposition 2.6.9. Assume that M is projective of finite type as a right N-module and
E is very faithful. Let (L) be an E-extension of M. Then

[ Endyg (M) — L

ey ;
J

defines a (non-unital) isomorphism of m-awm:sv onto the ideal MIM of L. Morcover
there is a morphism of algebras ¢: L — m_auuc(: such that L= MIM @ker ¢ (direct

sum of algebras).

Proof. Identify M with its image in Endy(M). Since by 2.6.3, Mﬁ ® ﬁIMﬁmﬁ

is an isomerphism of M@, M onto mua_fzv. the map o is well-defined, and it is an

algebra morphism with image MM, by definition 2.6.6. We set
L — Endy(M)

7
Yo +M. jEYE—Yo +M.<m$m .
J

We have to check that ¢ is well-defined. Let xn;+M_$£ and
J

wn<o+M _mf with wcﬁ. _umz. Thenforall y',y" €M
J

fy'xy"f = {E(y'ypy") +Mm@~%m5€.:ﬁ
j
while

Ey'ay’E = {E(y'ypy’) +M_mc.§m5<.:m.
J

If x=0, then Ey'ay’'E=0 for all y',y'¢M, so MEMaMEM =0; but
mu}u?: = MEM by 2.6.3, and since this algebra has a unit, a = 0.
It is clear that ¢ is a surjective algebra morphism (indeed ({MIM) = mv:awﬁz;

and that oo is the identity. Hence o is injective and L = MfM @ ker ¢ as vector




spaces. Since both MfM and ker ¢ are ideals in L, this is actually a direct sum of
algebras. #

2.7. Markov traces on pairs of multi-matrix algebras.

Let NCM be a pair of multi-matrix algebras and let A :M — L = End3(M) be the

pair obtained by the fundamental construction. If E: M — N is a faithful conditional
expectation, we know from Corollary 2.6.4 that L is generated as a vector space by
elements of the form A(x)EA(y) with x,y € M. Any trace Tr: L — K satisfies

Tr(Ax)}EA(y)) = Tr(Myx)E) = TH{EA(yx)E) = Tr(A(E(yx))E),

for all x,y € M, and hence Tr is determined by its values on elements of the form A(x)E
for x € N.

Let tr be a{aithful trace on M with faithful restriction to N andlet E:M — N be
the conditional expectation defined in Proposition 2.6.2. Let S¢K Define tr to be a

Markov trace of modulus 3 if there exists a trace Tr: L — K such that

Tr{A(x}) = tr(x)

_ for all x € M.
BT (A(x)E) = tr(x)

Observe that this relation implies 4 # 0, because tr is faithful. If such a Tr exists, it is
unique in the following strong sense.

Lemma 2.7.1. Let NcM be a pair of multi-mairiz oigebras and let S K*. Let tr
and E be as above. Then there erists al most one trace Tr on L such that

BTr(AMy)E} =tr(y) forall yeN.
Ifsuch a Tr ezists, then st is faithful and satisfies

BTH(Mx)E) = tr(x) foroll x e M.

If T is the vector describing Tr and % the vector describing jz. then To=1.

Proof. We use the notation of Corollary 2.6.4. If such a trace Tr exists, then for
each j,

By =ATHAEE)  (by 264.0

= :Am._v = n.ﬂ. ._ =1, ,50,

gothat T=*Y. Uniqueness and faithfulness of Tr follow. Finally
8 Tr(A(x)E) = f Te(EA(x)E) = 8 Tr(A(E(x))E) = tr(E(x)) = tr(x)
forall xe M. #
Propogition 2.7.2. Let fe K*, let NCM be ¢ multi-matriz algebra pair with

inclusion matriz A and let A:M— L be the pair oblained by the fundamental
construction. Let the decompositions into factors be

n
pM—— L= & p(q.)L
i =1 7%

—_

n.wz u Zpa:uﬁ_o EZ v 2353 R.&F o EE.JA.Q.

ﬂHA_\”—'...._\ﬂv Nuﬁtu-...,tav MHAHHQ....RHV

so that in perticular

2 -

Ab=3  AY=3

Let tr be o faithful trace on M with faithful restriction to N and associated conditional
ezpectation E: M —N. Let 5€K™ and U K" be the corresponding vectors, so that in
particular ¥ = SA. Finally, let B K",

Then the jollowing are equivalent.

(i) tr &8 @ Markov trace of modulus f.

(i) 5(AAY) = 85 and S(A'A) = 5%.

In particular, if char(K} =0 and if § is the modulus of some Markoy trace on M,
then B is a totally positive algebraic number; that is, B> 0 jor any imbedding of Q(B) in
<

Proof. (i) =3 (ii) Let Tr be asin the definition of & Markov trace, and let ¥ € K" be
the corresponding vector. Then § = FA'A because Tr extends tr,and t=gr by the

-

previous lemma, so that 8§ = TAYA. One has also § = TAY, 50 that
SAAL = FAAAY = AFAY = 55,
(ii)= (i) Set T=g'% andlet Tr:L—K be the corresponding trace. Then Tr

extends tr because
FAb = glEat = glsant = 5

|
|
L
|
i




Cars

~

Consider the linear map 7: N — K defined by 7(y) = 8 Tr(A(y)E); it is a trace, because

mmm2|==mwnmbaam§vopm=.:= m denotes some minimal idemotent in A:z. one has

(G = ATrOAME) = fryj =t j=1,n

by Corollary 2.6.4.c and the definition of T, 80 that F=1r N Thus Tr satisfies the .

Markov condition ATr(A(x)E) = tr(x) for all x€ M by the previous lemma.
Finally matrices of the form A'A  have totally positive eigenvalues, when
char(K) = 0. #

Remarks.

(1} Take A = m u and §=(3,1), sothat T=(44). Then TA'A =45, but
SAAY is not a scalar multiple of 5.  This shows that one cannot delete the first equality in
condition (ii). Although TAlA = ¥4 follows from 5AA' = 54 (because § = §A), we
prefer to state (ii) in a symmetric form.

(2) We stress that > 0 holds without any positivily assumption on tr, in cese
char(K) = 0.

Theorem 2.7.3. Let K be a field extension of R. Let NCM be a pair of muiti—matriz
algebras over K with inclusion matriz A, and with NZ n wz =K Let JeK'.

A necessory and sufficient condition Jor the eristence of a positive Markov trace of
modulus § an M s that §= [M:N] = __>__m. Any two positive Markov traces on M gre
proportional.

Proof. Since NZ n Nz =K, it follows that A is indecomposable and AAY s

irreducible (2.3.1f and 1.3.2b). Recall that {M:N] = |[A|? by Theorem 2.1.1.

If tr is & positive Markov trace of modulus 4 on M, then = =>>ﬁ= = [M:N] by
the previous proposition and Perron-Frobenius theory.

Conversely, set f=(M:N. Let § be a Perron-Frobenius vector such that
§AAY=f5. Let §=5A; it follows as in remark (1) above that TA'A = BY. Henceif tr
is the (positive) trace corresponding to the vector ‘F, then tr is a Markov trace of
modulus § by 2.7.2.

The final statement follows from the uniqueness of the Perron-Frobenius eigenvector

for AN #

A crycial property of a Markov trace tr on a pair N C M is that the trace Tr on L
= mE__mﬁZv entering the definition of the Markov property is again a Markov trace on

M c L. More precisely:

Propogition 2.7.4. Let tr be a Markov trace of modulus 3 on a multi-matriz pair N C
M, set L = Ei_u?: as usual, let Tr:L — K be the extension of tr to a trace on L as

in Lemma 2.7.1, and let D :L — A(M) be the conditional ezpectation defined by Tr and

tr. Then
(a) Tr is a Markov trace of modulus 8 (with respect to X : M — L);

{b) BD(E)=1;
{¢) BDXE)D = D, where X(-) means left multiplication on L;

(d) AX(E)DX(E) = X(E).

Proof {(a) Let 5 and ¥ be the vectors defining the trace tr on M and N
respectively. As tr is a Markov trace of modulus 8, one has

SAAY = g5, fAtA=gf%

. . 1
by Proposition 2.7.2. From the proof of 2.7.1, we know that Tr is described by T = §~ f.

Consequently . . ot .
TA'A = 8%, sAAt=p%

and (a) now follows from 2.7.2. N
(b) The bilinear form (u,v) » Tr(uv) is nondegenerate on L and its restriction to

A(M) is nondegenerate; thus L = A(M)® A(M)*, where orthogonality is meant with
respect to this bilinear form. For all x € M one has

Tr(8 EA(x)}-A{x)) = 8 Tr(A(x)E)}-Tr(A(x)) = tr(x)~tr(x) = 0
so that #E-1€ A(M)'. As D is the orthogonal projection of L onto A{M), this implies

D(E) = 1.
(¢c) By M-linearity of D one has DA(E)D = A(D(E))D, so (c) follows from (b).

(d) Choose x,y ¢ M and set u= A(x)EA(y) € L. The maps from M to M,

EA(x)EX(y) : z » E(xE(yz)}
EAME(x))A(y) : 2 E(E(x)yz)
A(E(x))EA(y) : z» E(x)E(yz)

are equal by (N,N)-linearity of E. By (M,M)-linearity of D one has
ME)DXE)u= ED(EMx)EA(y)} = ED(A(E(x))EA(y))

= EME(x))D(E)A(y)-

Consequently, using (a),



i

B8 NE)DXE = EAE(x))A(y) = Eu = X(E)u,
which proves (d). #
This completes the proof of Theorems 2.1.3 and 2.1.4.

We now analyze the role of Markov traces for towers. Changing our notation slightly,
we consider a multi-matrix pair Zc C Z_. the tower Agrvwwo it generates, and a trace
tr = tr; on ZH. which is a Markov trace of modulus £ on the pair z_o C ZH. We denote
by trg the extension of the trace to Zw denoted previously by Tr, and by

E =E:M, - M, E €M,
Eg=D:My,— M, E

2 €My

the associated conditional expectations. According to Proposition 2.7.4, the process of
extending a Markov trace on Zr to Zr +1 iterates; namely, if

m_m Zr — 3_1 is the conditional expectation associated to try and try g and
try 1y nz_. +1—K is the wunique extension of tn satisfying

Btry | (xBy) = tny (x) for all x €M, (see2.7.1),

then tre is also a Markov trace, and the process can continue. Note that Zw +1 is the
algebra generated by M, and E,, for short M= AZr_MrV. Denote by M the

inductive limit (union) of the nested sequence

Zong_n...nanZr+~n....

This is a K-algebra with unit which is the union of its finite dimensional semi-gimple
subalgebras, and which has a finite dimensional center isomorphic to NZ N Zy,. The union

of the tr) 's constitutes a trace tr: M_ — K which is nondegenerate (namely, tr(xy) =0
for all ye M implies x=0). If KoR and tr= tr) is positive, then tr is aiso
positive in the sense that tr(¢)> 0 for any non zerc idempotent ¢ in Zs. If this holds,
and if moreover NZ NZy 2K then tr is the unique positive trace on Ze, up to

normalization; see Remark (5) at the end of Section 2.5.

Proposition 2.7.5. Let Zonz_u be a pair of mulli—matriz algebras and let
tr: ZH — K be a8 Markov trace of modulus §. Wilh the notation above one has

(a) hmwm_.mm =E, fr ij21 with liH| = 1;

(b) EE; =B for ij21 with [i-j2%

(c) Atr(WE)) =tr(w) Jor all weM,. In particular, if tr is normalized by
tr(1) = 1, then Emﬁ = h._ Jorall k2 1.

Proof Statements (a) and (c) follow from (a), (¢} and (d) of Proposition 2.7.4. If

j2i+2, then E; e M and (b) follows because _w.m is Z..T_u::aﬁ.. #

i
Observe that this Proposition conteins Theorem 2.1.6.

2.7.6. The path model for M and the idempotents E.. Let Zc C ZH be a pair of

muiti-matrix algebras and let

zon}n...nzxnz_wtn.:

.

be the tower generated by iterating the fundamental construction. Let B be the
augmented Bratteli diagram of the tower and

>cn>Hn:.n>rn>r+Hn.:

the chain of path algebras associated to B as in 2.3.11. Having identified M,c M, with
>cn >H. we can obtain an explicit sequence of isomorphisms @y : ZrI;.r with

= for all k, by iterating the procedure of 2.4.6.
M
k

If tr is a Markov trace of modulus J on 21 then tr extends uniquely to a trace

M+l

os_ss.En_:mEﬂEEo:mwn:ZrEa iaar__vuﬁragﬁroqv_.owﬁ?:
L]
E M —M , s the conditional expectation determined by the trace, then

:_
Ar(E,x) = tr(x) for all xeMy. If ,M_; denotes the weights of the trace on the k

floor of B, then ...mrvumur.ﬁ_wnmv for all k and j. We also write tr for the

corresponding trace on >a = ﬂ>r.

Assuming (just for the sake of having definite formulae) that K is quadratically closed,
we can choose the isomorphisms {ay } so that e, = oy (E}) =



M H..?Xm_ﬂzﬁ?:q_r_v

£, neqt _”r 1 r“_ o:?:Aanl—_v H,Am.mrmv.APmrdv,

{-1]""[k-1)

where mr denotes reflection of an edge through the Kt floor of B. In fact we know that
this choice determines ?_L completely because of the decomposition 2.6.4.(a). Then
?HL is a sequence of idempotents (self-adjoint projections on %Bv in case K=C and

tr is positive) satisfying (a)-(c) of 2.7.5.
Iterating the decomposition (2.6.5.6), we can write any matrix unit T o8 in A asa

monomial in the matrix units of >H and the idempotents €'+ 8, ;. For example for

(a,8) € Ry G,n.u € Ay) one finds

.H.Phn Cla,f)T T

. T .
) 7 (L agh (A L (R

where & denotes the edge in B(MycM,) directly below the edge ¢, and 77P are
arbitrary edges in bc_ with the appropriate endpoints. The constant C(a,5) can be
evaluated by computing tr(T a m.ﬁm Qv. uging the fact that €y xe, = m_ﬂc%_ﬁ = mxwr?v
(x€Ay) and the Markov property of tr.

Let >:.&§an: be the subalgebra of M, generated by LE), -+ E,_;. Our next

goal is to understand the structure of these algebras. We shall see that, when the modulus
B of the Markov trace tr lies in a certain generic set, these algebras depend only on 5
and k, and not on any other data pertaining to the inclusion Zo CM; or the trace tr.

For A in this generic set, >..H &chgt is isomorphic to an abstractly defined algebra
xm k Whose structure we describe in detail in the next section. For non—generic  f§, new

phenomena can occur, and our knowledge is much less satisfactory in this case; see Section
2.9. The following two sections borrow heavily from [Jo 1),

2.8 - The algebras x.a i for generic g

For any integer k> 1 and for any number 44 0 in the basic field K, let ;_mr be
the algebra abstractly defined (as an associative algebra over K) by

e 7. S

the generators €€t * sy and the unit 1
the relations  ¢; = ¢

.mmmm.} =¢ if li-il =1

G = €4 m_T.:Nm
(Observe k indexes the algebra generated by idempotents up to k-1; this agrees with the
usual convention for Artin’s braid groups, but is not as in [Jol] or [Jo2].)

A monomial in \..m_r is a product a:mmu. ..mn where each nw ig one of € G i
the unit 1 of xmr is a monomial (the empty product}.

Proposition 2.8.1. Any monomial w € \.u k ™may be writien in one reduced form

mA?. m.|...?:on.n...?v...?o|:.n.v
iy 1 317 g7y 1 Jg _“U _v 1 _w

where r € N is an appropriate integer and where

HmJ:wa ...:vmrL
1gj)<iye ...;vm__l
mwwuu_mwwb&_...,mwwuv
0<pgk-l.

Moreover &E: Am.w < ﬂﬂHTmJ

Proof. Consider an integer m with 0¢ m< k-1, we prove the first part of the lemma

by induction on m for a monomial w in Tﬁ. . .RET Ag this is obvious for monomials

with m ¢ 1, we may assume that m 3 2 and that the claim holds for m-1.

Suppose w is a monomial in which €, Appears at least twice. Then w has one of

the forms
W= We a0, Wy

or
W =W € ac be

m-1"¢mW2r

where a,b are monomials in TT...;E;&. As €, commutes with these, w equals




either W1 €AWy

or s.H?m.HnEciw.

and the number of aa.

involves exactly one ‘n

8 has been reduced. Consequently we may assume that w

Let w=we wy with w, and W, monomials in TH_...RBIL. Using first the

induction hypothesis on wy and then the commutation ¢ ¢, = for j< m-2, wecan

m’j JAB

reduce to the case that w = wie reve, with W, & reduced monomial finishing,

m®m-1 n’

say, with €- If £2n onehas

“mm-1"" "0 = ‘e n~+n?~m~+Hn~vm~L Ty
= .QLQ«T_. Cfmfm ey

Consequently we may assume that ¢<¢ n, 80 that w is of the form

S."Qmm R A AR SN e ﬁ_ "B..m Il.n—v

1 hly )y Hv ._U p Y

with all desired relations for the i's and the j's. This ends the induction argument,

We now count the number of reduced monomials, following Chapter 11T in [Fel]. By a
path in the lattice ~m. we mean here an oriented connected polygonal line with vertices at
integral points and with edges being either horizontal and directed to the right or vertical
and directed upwards. A path starting at (a,b) and ending at (c,d) has c-a + d-b unit
edges, c-a horizontal ones and d-b vertical ones. The number of these paths is
consequently the binomial coefficient

i) (22

Assume first a> b and c¢> d. To each of these paths touching the main diagonal,
associate the following “reflected" path: if (j,j) is the diagonal point on the path with
smallest j, replace the subpath from (a,b) to (j,j) by the reflected path (with respect to
the diagonal) from (b,a) to (j,j) and leave the subpath from (jj) to (c,d) unchanged.
This defines a bijection between the set of paths from (a,b) to {c,d) which touch the
diagonal and the set of paths from (b,a) to (c,d). Thus the number of paths from (a,b)
to (c,d)} which do not touch the main diagonal is ZMHmW - ZMNHMW

Assumenow a="b and ¢ =d = a+n for some n> 0. Consider the paths from (a,a)
to (a+n,a+n) whose vertices are on or below the main diagonal. These are in bijection

il

Lot

with paths from (a+1,a) to (a+n+1l,a+n) which do not touch the main diagonal, and

their number is
2n 2n ] _ _1 [2n
ﬁ L - =+L Iaﬁ L.

Consider finally a sequence c?:.. . ._mv,_.vv corresponding to a reduced monomial in
Lm i We may associate to this sequence the following path from (0,0} to (kk), and any
path from (0,0) to (k,k) which remains on or below the diagonal can be obtained in this

way.

(k,0)
Gy
Iy
(gdp -
Gyaip |
(igo3y)

©.0) (3,0

it follows that the number of reduced monomials is &ﬁmw_ #

Remark. The Catalan numbers may be defined by

J0V = F 000 = A

n3l nl

With this notation, dim dg < Cy ;. Seee.g. n® 2.7.3 (page 111) of [GJ].

We shall also need the following computation. We agree that a binomial coefficient

ﬁﬂ mmnmam:—.om:amwm_.mvaw:m@_:coqvv?



Lemma 2.8.2. Let k2 1 be an integer and set m = (k/2), the greatest integer less than

or equal to k/2. Then
(0 (8] - el

Proof. By comparison of the coefficients of

LI

t“  on both sides of

(140)%146)® = (144)%*D, one has
c
-k o

for any integers a,b,c 0. (See for example Section I1.12 in [Fel).)
Assume first that k is even: k = 2m. Setting a =b=c =k in (x), one obtains

Setting a=b=bk and c=k + 1 in (), one obtains
S - T - )
S G -(5) - h

For k odd (k = 2m+1), one obtains similarly

SO 1301
S = -8 o
S - L)
-[4)- 8 f
et s

Define now a sequence :uw:sc of polynomials in 2[A] by
Po=1, Py =1, P, (A) =P (3)-AP,_(A) (k21)

so that in particular

1A Py(A) =134 + A% Pe(a) =1-54 + 637 - 33
124 Py(A) = 142 + 3% Py(3) = 1-6A + 1002 423,

Py()
Py

It

{Observe P, here is as in [Wenl], but as Py _, in [Jol].)

Proposition 2.8.3. Consider an integer k » 0 and set m = E Then
(i) The polynomial m.x is of degree m. [is leading coefficient is T:E

if k=2m

is even and (-1)™(m+1) if k = 2m+1 is odd.
(i) Py has m distinet roots which are given by [mﬂJ for j=1,2,-+.m.
4 cos
(iii) Assume k> 1. Let A be a real number with

»Smw—mmj& A pooamr.%_.

Then JCV 0, m.w?cvc_. . ..vrﬁ\sv o, w_ﬁiTcAP
(iv) Set Qu(X) = PL(AM+1)D). Then

4kt
A Tc _:\I:m.



Proof. Claims (i) and (iv) are easily checked by induction.

For (ii), we compute in the ring Q[A,yT4X] and proceed as in the proof of 1.2.2, The
difference equation for the vx. 8 has an indicial equation :u -4+ A =0 with roots

i = HIHTR) gy = J1-vTE)

50 that Py = CuX + DuX. By adjustment of the constants C,D to fit PoP, we find
P = ?_rtmvlu?_m+~|tw+_v for each k0. Consider now a real number 8 with

id -id

1 e e
0cdcxf2 andset A= ,uoﬂ:p..tn Ean .Ea:
Anonum Hmooae tnuocaw

in({k+1}#
P(3) = (k1))
K5 9K cosk(9) sin 8
which vanishes when ¢ = mm with j=1,2,---m.

Claim (iii) is obvious for k = 1, and we may assume k3 2. For l¢ {2,---,k}, the
: 1

smallest root of P, is =T ad PLA)>0 for 1 T T’ A As
4 cos”| 7y 4 co8 _rﬂ._

m?lam ;“on.a_.wmmi\svo.Hrmgomﬁw:g:doa& wrtﬁm
+

4 cos

A =—p Ay =—3
x x|
1o’ 7 d ool [

1
x

and P <0 on A A As
k+1 12
oot

< »m one has in particular 1w+HCV 0. #

Since the polynomials m.r have coefficients in I, it makes sense to evaluate them at

any number in our reference field K. Given an integer k » 1, we define fe¢ K* to be
k-generic if

P8y £ 0, By 40, 2 (8 £

Say that g is generic if it is k-generic for all k.

For example, any SeKk* is 1-generic, and f is 2-generic if and only if 8¢ 1.

If K is not algebraic over it prime field, transcendental numbers are obviously
generic. If K contains the reals, Proposition 2.8.3 (i} shows also that any B outside the
interval ]0,4] is generic.

For B¢ x.__ let ¢ be a number distinct from 0 and -1, in K or possibly in some
quadratic extension of K, such that g = ._LS+CN. Claim (iv) of Proposition 2.8.3 shows
n

that f is not generic if and only if Mn_. =0 for some integer m > 2. In particular, if K
j=0
is a finite field, no § is generic.
For generic J€K*, we shall define inductively a nested sequence (B Frvwﬁ of

associative K-algebras with unit, and a normalized trace on each of these.
Set w.mh =K and denote by try the tautological trace on B 81 Set

mu,m = RmH e-ATJv where ) is an idempotent, not zero. Define tr,: m.a,m —K by

1 . . R . .
trole)) = ul_ and try(l-e)) =1-4". Identify wuL with the multiples of the identity
in B 82 The Bratteli diagram of the pair B 51 ¢ B 52 is

1,57 1,1-g1
L ]

NS

(see the end of Section 2.5 for the notation).
In the next lemma, we set
kl _ (kK] _fk
i — i-1

Lemma 2.8.4. Consider an inleger n ) 2, and cssume f¢€ K is n-generic. Suppose
there is given @ nesled sequence Amm,wv_ k¢ of K-algebras, together with lraces
tr : B Ak~ K eztending one another, such that the following hold for k € {2,-- - ,n}:

(i) B Ak is generated by its unit, by elements e o (all in B A k-1 ) and by
e _1- Denote by w.u.w the two-sided ideal in B AX generated by €, -+ &) 4.

(ii) The generalors satisfy the relations

2_
& =e,

hmmm.mmwn g ;_E_HH_
ee. = e.e if |i-j| 22

for all i, je {1, - -k-1}..

(iii) B Bk is a direct sum of E + 1 factors Dw. with D_w isomorphic to the algebra
j : , Kk
of matrices of order *ﬂ, Jor huo,r....m . One has wm,ru.%ooh: Denote by ar



the (unique) nonzero idempotent in O_m.

(iv) The inclusion B Ak-1 € B 8.k 18 described by the Bratleli disgram:

-
NN
fifas) (7] = 1
?._M:N_ E _m_ _
o\/.../o\/o\/o\ (k odd).
{05 2] {5} k2 1

The indez j of the subfactors increases from right 1o lefl, so the white [resp. black]
vertez on the extreme right represents OwL [resp. ow_.

(v) The dimension of wmr is mﬁﬁnﬁ

(vi) The trace satisfies tn(1)=1 and EFASJV =tr(w) for al weB

1¢j¢ k-1.
vii) The value of try on a minimal idempotent of Ow is QFT&Q.J Jor

By

, 80 that in particular:

(viii) tr, i3 faithful

The ini ;
n one may define an algebra mm“=+_ conlaining wm,s and a trace 2=+_ on #t,

such that (i) to (vii) kold for k = n+1. Moreover, if 8 is (n+1)—generic, then (viii) holds
also for k=n + 1.

Suppose in addition that K =€, that each B Ak (k<n) hasa O;uan%ﬂa structure

making the idempolents & self-adjoint projections, that 3> 0, and that _urau J >0 Jfor

1<k<n+l. Then B * . ~adjo
B+l also has ¢ C -aigebra structure making e, @ self-adjoini

projection, and the trace LA is faithful and positive.

Lot g

Proof (see §5.1 in [Jol]). During the proof, we write By for whr.
Both tr, and it restriction tr, ; to B, are nondegenerate by (vii), since § is
n-generic. Let m; :Bp — B, ; be the conditional expectation associated to tr, asin

2.62. Set r=g7",
Then mnmnlu_wn = lw._. Indeed, for all ye mn and all z¢€ muL, one has, first by

2.6.2(i) and then by (vi)
try (E (e 1E ) - 7B (V)}2) = tr (e B (y2)) - rtr, _(E, (y2)) = 0.

Thus mq.?-_uHmn.gv = qng because tr is non-degenerate, and in particular

n-1
m:??t =rl.

Next we claim that
m=|Hm=Am=|Hxv =re, |x (*)

forall x¢ mn.

Obviously (+) holds for x = 1 because E (e, ;) = 71 by the previous claim.

n-1
Next we check that (*) holds if x = Yen 1 for some y € B, |- Fimst, if y= ¥i€n_o¥o

with ),y € B o, then e x=1ye v, =7e vy, and

_ _ .2 _
€1 En(eq1%) = 78 1Byl )y g = roe 1y 1¥e =7 4%,

by m:&é:ﬁ::% of m=. Ify mm__rw. then e _1X=¢e, and again

maLm:Amsva =re, X

Thus (*) holds when x = yep forany yeB o+ B oe oB o namely for all

yeB ;.

we see finally that (+) holds for all

Now using the B _,-linearity of E

:«
xeB, ,+B e B, namelyforall x€B .

n
Define to be the algebra obtained from the pair by the

.,_t _waL ¢ Wu
fundamental construction, and set

By =Bp 18K,



where d| +] 18 & central idempotent. By Corollary 2.6.4, the two-gided ideal By +1 i8

generated by w: and m:. From now on, we write e (an element in B rather

=+L
than E(a mapping from B, onto B, ). Then B, ;1 i8 a multi-matrix algebra by

2.4.1 in which €, ++,e, generate Bj +1° 80 that Le, e, generate m: 1 We have

checked (i) and (ii).

Define a map .Tw:lm. o Kd

n+1 n+l
Id) = (d,.d, +~v. (This is of course an abuse of notation: the first component of J(d,)

by J(x)=(x,0) if x€B; and

is the element of B = mennHAmuw which is left (or right) multiplication by d;

Then J is obviously an injective morphism, so that we may (and we shall) identify B,

with a subalgebra of B Now the shape of the diagram in (iv) follows from the

n+1°
induction hypothesis and Proposition 2.4.1b, and the dimensions from the relations

r?ﬂw& = ?_tw_\iw (n odd),
d
i T%J = ﬁ._ + TML (all n and j).

This shows (iv), and consequently also (iii). Now (v} follows from Lemma 2.8.2.

Define the trace 41 P Bpyy — K by assigning the weight Lv=+Tw.?v to the

factor Dwi, as desired for (vii). Let Jﬁ denote a minimal idempotent in D.m. When n

is even and j = n/2 we have

) = 5D = PP 1

while

:.u:.:-.\wv = _b\m_uo?v =2
In all other cases we have

_ n+1 +1
g () =ty g (07 + e (65T))

Py g41(7) + 7Py gy (1)
Lvulmﬁ.v.

I

by the three term recursion for the P's. Consequently tr +1 extends try, and in
particular tr, +_A: = 1. (This point shows precisely why the factor Dmi =Kd | had
to be introduced in B, +Hc Incidentally, this gives the relation

;
()rPean =1
=0

which could also be checked directly.
We next verify the relation

§-.=+~?m=v = =.=+HT<v (x#)
forall weB,.
We check this first for weB ;. We may then as well assume that w is some
minimal idempotent J.l of DM.L. where j is an integer with 0¢ j¢ =|J. But then
we know from Corollary 2.6.4c that mlmn is a minimal idempotent in D_.._.HW

Consequently

L+:u=+$:.+:3
(7P i} = mtry ()

-1
s.=+_c.d_.H msv

and (+*) follows because try +1 extends teo -

We now set w=xe vy forsome x,y€B _,. Then e we =xee ,ey=rxey

n-1 n

by (ii) and, using the case of (»+) already checked

2
g 0eg) = iy (y3e,) = irg (7).

On the other hand, by the induction hypothesis

by 4y (%) = try(yxey ) = rrg(yx).

Thus (++) holds for w =xe  _,y.

Consequently (*+) holds for all w in B+ wuLmuLw_Tﬁ namely for all we mu.
This proves (vi) and (vii). If 5 is (n+1)-generic, then (viii) follows from (vii).

Finally, if K=(, and the B, are C*-algebrasfor k <n, then B[, alsomay be

given a C*structure making the idempotent e self-adjoint; see the discussion in

*
Appendix Ila, or the remark under 2.6.5. Clearly m: 41 also has a C -structure.

Moreover the weights of the trace on w: 4] e strictly positive by (vii). #



Theorem 2.8.5. Consider an integer k> 1 gnd a number mmx* such that

1 .
w.?al Y#0 for j< k-1, where Q..}Z are the pelynomials of Proposition 2.8.5.
(a) xu,r s o multi-mairiz algebra of dimension &ﬁﬁ. isomorphic to

Gy s o -] 1]

J
(b) There ezists ¢ unigue normalized trace try Lu k — K such that

.E.nr?my = tr, (w)

whenever 1<j<k-1 and w is in the subalgebra generated by Leg,-oooe Moreover

try, is fuithful if P,(07) # 0,
(c) The natural map A k-1 I....F_ﬁ is injective and try estends tr) .

i

(d) 17 wu,x is as in Lemma 2.8.4, the assignment G e (15 jsk-1) extends to an

isomorphism from A Kk onto wm K
) b

(e) The trace tr, on Lm.r also satisfies
m.._._%ai = :r?:
whenever 1< j<k-2 and w is a word in T.T_,. . ._A_TL. More generally we have
try (uv) = try ()t (v)

whenever u is ¢ word in T_.....mw and w is ¢ word in TTT::JTZ.
(f) The map ¢ e j extends o a frace preserving aulomorphism o, of 4 K

Furthermore 0 s inner in case K contains a solution q of the equation QLE.ZVM =4

Proof, Claims (i) and (ii) of the previous lemma show that the map of (d) is a
morphism onto. Claim (v) of the lemma and Proposition 2.8.1 show that this morphism is
injective. Consequently, assertions (a) and (c) and the existence of tr. in (b) follow from

the lemma. But the relation in (b) together with the normalization tr{1) =1 and the
trace property :.w?.i = .;xci suffice to compute the trace on any word in the
generators {e} of A |+ 80 the trace is unique.

)

We prove by induction on m (j+1<m < k-1) that the formula of (e) holds for
u € alg i,:‘. . ..J.v and w€alg :,Ji_. . ._AB*. The case m = j+1 is clear from (b).

B o L el o

Suppose that m> j+1 and that the result is verified for elements of
alg .H—.J.+_.. . ..anTZ. It suffices then to deal with a reduced word w = xe\y where x
and y are words in Th.+p.....an7_—. Then tr (w) = _mu_s.r?i. and tr (uw) =
try (yuxe ) = g m..n__n?xb = 2._%5 g _..Hrcao. where the last step follows from the

induction hypothesis.
Let q be an element of K, or of a quadratic extension of K, satisfying aLC+£N =
3. Define elements

% =(at+l)g-1 and

G = A.\wqm. . .Q.THV. : A:DQMV\J

in ;mr & K(a) for 1<i<k-1. These are invertible, with ,.% = EL +1)¢ -1, and one
»
. o a1 _ -1
verifies by induction that n_.qmnh. = dL and nh.mnh. =€
oy X nrxam_ is the automorphism of part (f). This automorphism is trace preserving,

for i<j1. In particular,

because the trace tr) extends uniquely to Lu._n ey K(q). #

Corollary 2.8.6. Consider an integer k> 1 and an grbifrery number € K*. Let @
be the homomorphism ku,r - xu‘w +1 which, for j ¢ k-1, maps 4 viewed as a generator
of A 1k to g (sic) viewed as a generator of \_m._ﬁi.

(a) Lu,r i8 of dimension &T&

(b) ¢ is an injection and any elemeni x¢€ xm_.r.l can be written as x =
¥(u) + Mﬁzmvmrﬁi? where u, v;, and w; are elements of x.m.r.

(c) There is a sequence of iraces tr,: xu ¢— K (1 €L2K) such that

1
() =1, and try ,{(@(u) + Mﬁ:u¢ Ww;)) = tr, (u) + § M‘:.u?ms.mv for all u,
_.._.m4 ‘—m € Lhuﬁ

Proof. It is enough to prove the corollary for any extension of the field K, so that we
may assume K to contain infinitely many generic numbers.
Assume first that f is generic. Then Ay, has a basis over K made of the &.Tﬂ
b}

reduced monomials (see 2.8.1 and 2.8.5a), say (e,) ges: The structure constants are

defined by
= H
Catr = aq,ﬂat. (+)

JE

Iy . . hn .
Proposition 2.8.1 shows that, for any given pair (o,7), all but one of the ¢ o.r vanigh and



the one non—zero nn r is a power of 1 depending on ¢ and 7. In particular there are
monomials aﬂ t) € K[t] such that ow ; 88 above is just aw L.mnuv for any eo,ru€S8.
1 b 1

Ummumnos..._.m..mmnozn._p_mmc_,p me_.. k over the polynomial ring K[t] as the free
Klt]-module over S, with canonical basis denoted again by (e doeg ond with

multiplication defined by

= 1
€€ = oq.a?vat a,7€S.
UE

The relations which express that this multiplication is associative are polynomial, and they

hold when t is specialized at 4~ 1 for any generic § €K', by Theorem 2.8.5. Hence they

hold identically, and meu k is a well-defined associative algebra. Indeed, it is the algebra
¥

with unit over K[t] abstractly defined by generators € e and relations

if li-j] =1
€ if |i-j] 22
Consider finally an arbitrary fe¢ K*. Then A k is isomorphic to .\_mm?w oxE K,

where K is made a K[t]-module by ¢(t)A = na._v» for c(t) eKt] and A €K This

shows claim (a): That ¢ is an injection follows similarly. As observed in the proof of (a),

there exist bases of Lur and A k41 Consisting of the reduced monomials of 2.8.1, and
¥ y

claim (b) follows from this. We leave the details of part (c) to the reader; compare,
however, 2.9.6. #

Remark: In general the traces tr, of claim {c) are not faithful; see Theorem 2.9.6.d.

Consider now the situation at the end of Section 2.7: One has a multi-matrix pair
Zo C ZH and a Markov trace tr: ZH — K of modulus §; these generate a tower, and the
conditional expectations m.ﬂ : Eb. — 3..1 for j=1,--- k-1 generate (together with 1) a
subalgebra >pu.rﬁz_on§t of Zr.

Proposition 2.8.7, Suppose that e K* satisfies J.ELV #0 for i<jsk.
() Suppose that x: ;,mr — C {3 a surjective homomorphism of K-algebras and that
C has a trace tr satisfying uiiim: =tr(w) for i<j<k-1 and we x?_.ﬁv. Then

X is an isomorphism and tr is non-degenerate,

- 8 T

(b) In particuior, with the notation above, the map x: JIMH extends o an
isomorphism of xu.r onto >:.&Zon§~v. and the restriction lo >2,wcscn§_v of the
Markov irace tr: z_r — K i3 non-degenerate.

Proof, (a) It follows from 2.8.5(b) that tro x = try. Henceif x¢€ ker(x), then for
all y€dg, onehas :.r?.é = tr{x(x)x(y)) = 0, so that x = 0, by the non—degeneracy
of 5% .H.r.—.m x is an isomorphism and tr is non-degenerate.

{(b) By 2.7.5, the map x extends to an homomorphism of x_a_r onto >:..__nﬂ2=nz€,
and 2.7.5 together with 2.8.5(b) imply that tr o y = tr,. Thus (b) follows from (a). #

Suppose A€ K s generic. The following picture sums up the structure of the traced
algebras introduced in this section (with 7= ulv.

/ N/ /\N s \V ) 3
xn 6 m.ww o.ﬂmlﬂu 5, 3187 1,1-51+61"—1
’
Ag 5 5, 7% 4,7-21%  1,1-4r+3r°
]
2,7 3,712 1,1-3r+72

LS
=
-9

4,3 \N:/\C.?
Lm 9 _,._./\_Ll.
Lﬁuﬂ _.L.



2.9. An approach to the non—generic case.

If BeK* is non—generic, then
(1) The algebra .._.m  defined by generators and relations as in Section 2.8 need not be
k)
semi-simple.
(2) Given a multi-matrix pair Mg CM, and a Markov trace tr of modulus § on

M,, the restriction of tr to Ay (MoCM,), the aigebra generated by {LE;,: - E )
in Ew. need not be faithful.

(3) Given a second such pair Zc ¢ 7.\: and a Markov trace tr of modulus 4 on

M), thealgebras A, | (MycM,) end >?_,Ec%z need not be isomorphic.

All this contrasts with the generic case described in 2.8.5 and 2.8.6. The modulus
£ =1 illustrates these phenomena. )

Example 2.9.1. The algebra L_ 4 8 not semi-simple. (This is a particular case of
Theorem I1.10 in Appendix IL.c.}

=
Proof. Let T = :m ...: be the algebra of 2-by-2 upper triangular matrices over K.

As T is not semi-simple, it suffices to show that T is a quotient of .& 3 But the

10 10 11
1» oL :x?& mw:?&

extends to a homomorphism from AH 3 onto T. #

assignment,

Example 2.9.2. Consider the pair My = (& C imbedded in M, = _swpu?u 9 Zwﬂwﬁe

with inclusion matrix A = W &, together with the trace tr on M, with weight vector

{1-1). Then tr is a Markov trace of modulus 1 on M,. Consider also a pair _,wc =M,

with any faithful trace tr on Z_w then Tr is evidently a Markov trace of medulus 1 on
M,. We have
(2) The restriction of tr to >s :ZQQ\_L is not faithful.

(3) Ay (MgcM,) and >~q.rA§cn§t are non—isemorphic for all k ; 2.

45
eigenvalues 1 and 9 respectively. The Perron-Frobenius eigenvalue 9 is also the index
Emz_c_. But the other eigenvector (1,-1) also defines a Markov trace tr on M, with

Proof. The matrix AAb= A2 = ﬁm J has eigenvectors (1,-1) and (1,1) with

modulus f=1.

Let MycM; cM,: - be the tower generated by M, C M,. Since M, is generated
as an algebra by M; and >..P_%Zon§b. if for some n, the algebras >:._=c and

A were equal, then Z:o =M | 88 well, and therefore Zr =M/ for all

ot 0
wr. by Proposition 2.4.2. Hence

:.._,_c+~
. k
k> ng But &Ba M, increases as _Z_”Z& =

C
A k(MtM)) 5 Ay g (MgCM))

- -

for all k. On the other hand M, =M, for all k and >~.ﬁ&§on7.\:v o€ for ali k.

This proves (3). .
The algebra A, mQ&aan is spanned by 1 and E,, and is of dimension 2, since
¥

5 . s given b
>:.,m 3 >ﬁ.— ~ (. The trace tr on _Sw restricted to >:..u is given by
tr@a+bE|) =a+b (abe)

It is not faithful because

tr((1-E;)(a+bE ) = a tr(1-E|) = 0

forall a,beC. #

We do not intend to make a detailed study of the algebras >F&Zonzz when f§ is
not generic. But we want t0 describe the structure of the unique quotient of gu,w on
which the usual rules tr(f) =1 and ftr(we) = tr(w) for wealg {Lege e 4}
defines a faithful normalized trace. (Here e; denotes the image of ¢; in the quoatient.)

H:%EFT For the rest of this section we fix a S€K* which is n-generic
but not (n+l)-generic for some n3: 1. That is waﬁJ #0 for kgn, but
P .IQQ. : = 0. We again define a nested sequence (B _a.rurw_ of multi-matrix algebras
over K, and a consistent family of normalized faithful traces tr, on these algebras.
For k¢ n, define mm,r and tn exactly as in Lemma 2.8.4; since [ is n-generic there
is no problem in doing so. For k3 n define wuvrt to be the algebra obtained by
applying the fundamental construction to the pair B Bk-1 cB Bk Observe that B B+l

is the same as m_w_ in 2.8.4. For k¢ n+l, define tr, 88 in Lemma 2.8.4; then

n+l1
| is also faithful because P does not appear in the computation of the weights of

S.=+ n+l1




the trace on Also since the trace on

B = o QU1
dn+1 0 j

mu n+l = m.w n+1 extends that on w.m o it thus follows from 2.8.4(vi) (with k = n+1)

Ppp(d =0,

that tr, is a Markov trace of modulus 8 on mu a1 € wh n- For k2 n+l, we define
1) »

s._. a8 in Proposition 2.7.4. Thus .._.__n is & Markov trace on B Bk-1 C mhr for kpm,

but not for k < n. Note that B Bk is & multi-matrix algebra generated by the identity

and idempotents ?__...,m_?i satisfying the relations 2.8.4(ii); in fact these relations

hold for *m_-. . .,mb* by 2.8.4 and for ?:h:.lt -+} by 2.7.5. For k3 n+1 the identity

is contained in the algebra generated by {e),-- “,_1}, in contrast to the case of generic

A this follows from 2.6.4.
Note that if K=C and 8= »Smm:\?+u:. then the algebras wm K Can be given a

C*-structure such that the generators ?L are self-adjoint projections, and the trace is

faithful and positive. This is shown in 2.8.4 for k < n. The assertion for k 2 n+1 follows,
because the tower construction for a pair of finite dimensional O*nammv;m with a positive
Markov trace produces a chain of 0;»&%9.2 with a positive trace, and self-adjoint
projections e;; see the discussion in Appendix IIa.

Example 2.9.3. Let S=1, so that n= 1. The definitions above (cum greno salis)
give wu._. = w.m,_ =K forall k1.

Example 2.9.4. Assume that the characteristic of K js not 2 and let §=2, so that
n = 2. The structure of the algebras B Ak and of the traces tr, is shown in figure 2.9.4
¥
below.

Example 2.9.5. Assume that K contains 9v/5) and choose Be

{4 oomw?\mvk Smwﬁa\u; 80 that n=3. The picture (with 7= QL satisfying
Py(r)= P-3r41= 0) is given below in figure 2.9.5.

|

<

1
WN,M 1 )
1 1
- %/\u.Mh
1
W—_w 2 .M
Byo o) )
wN_ 11
Figure 2.9.4.

5,7%87-1  3,7-2r%=2-57

=
)
o

2,7%37-1  3,r-r’=1-2r

o=
=
.

mhw 2,r 1,1-27
) >\
mhw 1,r 1,1-r
b
mmﬁ 1,1
1
Figure 2.9.5.

In general, the picture for the B 3 r. 8 is obtained from that of the .\.Fr_ 8 at the end
of Section 2.8 by deleting the factor oui (represented as the extreme right point in the

(n+1)st row) as well as all factors above and to the right.



Theorem 2.8.5 gives a complete description of x.qr when [ is (k-1)-generic. The

following theorem indicates how part of the picture changes when f is not generic. Recall
that we may (and do) always identify \.b. k With a subalgebra of Lm k+1 (see Corollary

2.8.6) and that wu k 18 also a subalgebra of m.m K+l

Theorem 2.9.6. Consider an integer ny 2. Let S€K* be such that JA.Q-J $0 for

. 1
jsn and v=+~€| ) =0, where Cu.}.ﬁ are the polynomials of Proposition 2.8.5. Then
one has forall kX 1,

(2) B Ak i3 ¢ mulli-matriz algebra, and there erists o homomorphism m of L‘qw
onto wu.r mapping each generator ¢ onte & (1¢jsk-1)

(b) There exists a normalized trace try : w_m.r — K such that, for any je {1, - k-1}

E:ﬂ?a.mu = tr (w)

whenever w is in the subaigebra mE of mmr‘ Moreover tr, s faithful and the

restriction of tr) to wE is f Jorijck

(c) For k2 the following diagram commaules.
Ag 1 = g
k-1 "k
Bai1Bsk

(d) There is a unique family of normalized traces try xu g — K such that

(*) tn (%) = tr,_,(x)
k k-1 AX [ .\A_\m'—ﬁlu—v.

Biry(xep )= try_ (%)
If1 Bk denotes the two sided ideal in xu._, consisting of those x such that :.wcc; =0
Jorall y€ L_a.r‘ then {,r = xm_.?rv. so that w_q_x N \.Fr\gr.
{(e) Suppese AO_L_AZ i8 an increasing sequence of K-algebras and $r : ‘Amw — Or
are surjective homomorphisms such that &w_ = sr 1 Jor all k. Suppose further that
4 -
B.k-1

each Or has a faithful normalized trace tr : Or — K satisfying

tr = tr and
r_ k1"
Ci1

Bnrnier?rL N = S.rlu?i

for we O_TH. Then Or o w.m,r o L_u._ﬁ\{.r.
{) Thetrace try on A i ako salisfies
'

B Sw?h.s; = tr{w)

whenever 1< j<k-2 and w 5 an element of alg f.m.._i,. . .,m_TL. More generally, we
have

tr {uw) = :.w?v :._.%iv

whenever u € alg {Le,, - ..J.u and w € alg :.J..I,. ey

(g) The map ¢ g eztends to a troce preserving avtomorphism o) of xm K’ and

¢, m_T.w exlends to a lrace prescrving aulomorphism %) of wb k These aulomorphisms
]

]
are inner in case K contains an element q salisfying nLS.T:m =4

Proof. Claims (a} to (c) follow from the construction of the mu i above. The traces

:r__wur 0¥, on xm,r satisfy (). The uniqueness statements in (b) and (d) are proved

asin 2.8.5(h). We have tr) (xy) = tr () (x)7, ()}, so thatif x e ker(x,), then x € _m K
“onversely if x € _u | then a_ﬁcc =0 by faithfulness of tr, on wm k- This proves (d),

and (e) follows similarly. Statement (f) is proved as 2.8.5(e), and statement (g) as

285(1). #

Coarollary 2.9.7. Suppose that K2R, that Zo C Z_ i a pair of multi-malriz aigebras
over K, and that tr is a positive Markov irace on M, of modulus §=[M;:Mg]. Then
>_._xrﬁ2cn_$_v is isomorphic lo wm‘r Jorall k2 1.

Proof. This follows from 2.8.5 and 2.8.7 when f# is generic, so we suppose that f is

non-generic. Let (M be the tower of algebras generated by M, ¢ M,, and tr the
k’kz1 0 1

M
extension of the trace to UMy, as described in Section 2.7. Both f= | >ZM__~
k

weights of the trace are real and positive; see 2.7.3. Using the path model (2.4.6 and 2.6.5),
we see that it is possible to choose a system of matrix units T £ for the algebra M so

and the



that the idempotents E; (1¢is k-1)} are positive linear combinations of certain minimal
idempotents .H.m.mu see especially 2.6.5.2 and 2.6.5.4. Let Zﬂ be the R-linear span of the
matrix units generating M,. Thus Zﬂ is & multi-matrix algebra over R, and
M =MyepK Let AX bethe R-subaigebra of M} generated by {LE, -~ _}.
The trace tr restricts to a positive R-valued trace on Z“ Note that >ﬂ is closed under
the R-linear involution = of z—m defined by amsuﬁqh. Positivity of the trace implies
that tr(x*x)> 0 for all non—zero x € M,, and as this holds in particular for x ¢ >s. we

conclude that :._>= is faithful. It foliows by linear algebra that tr is also faithful on
k
>ﬁ.rﬁzcn§_v = >ﬂ @ K, and therefore 2.9.6(e) implies the conclusion. #
The proofof Theorem 2.1.8 is now complete.

Theorem 2.9.8. ([Jo2]). Let n> 2 be an integer and suppose that S eK* is n-generic
but not (n+1)-generic. Then the generating function f,(x) for {dimy(B Ak +H:¢o is

@™

P ()
o) = 3, dmBy, )o* = p2rs
k=0

where the v.m are the polynomials of Proposition 2.8.5.

B
Proof. Set >= = >mh.=
Q.HIH
dimensions of the multi-matrix algebra B

and b = dimy(Bg,). Also let &) be the vector of

Ak Note that the Bratteli diagram for
B 401 cB 4n is the Coxeter graph >a +1' with a particular bicoloration and labelling of
the vertices. (See 2.8.4(iv) for the picture, substituting n for k.) Thus for n odd A is
the P.u_'l_ ~by- :IwIH Jordan block

while for n even A, isthe Am+ :é«lw matrix

In order to accomodate vectors and matrices of different sizes, we adopt the convention

that B9 imbeds in RAFL via

t
Amu.. M -m&wn H th_u.. ' ..maw -
With this convention we have for n odd

(2) A>=>wv?|:\mu for k odd
¢ - >H...A>=>Uw\w|~m for k even,

where £ = (0,0, -+0,1)%. Hence

(298.1) o = 1M = (A ADF 10 (n oda).

The corresponding formulae jor n even are

(k) (ata ) (K2 for k odd
¢ - >=H>H._.>=vr\ml_m for k even.

Hence

by = Q>w>=urn_m_0 (n even).

(2.9.8.2) k

One can visualize these results quite easily by adding to the Bratteli diagram of the
chain (B 3 rvr | some “phantom” vertices with zero dimension. The picture for n =5,
KK

for example, is



w NN
N Y
_w.q,» 2 ,/u-\ /H.\
NN

Recall also that our labelling of 26 vertices on each floor increases from right to left.
Since A né§=¢(n odd} and Al a6 = £ (n even), (2.9.8.1) and (2.9.8.2) give

(2.9.8.3) by = {(
(2.9.8.4)

A EI®) (0 odd), and
= (A A1) (n even).

Finally one verifies that

t
(2.9.8.5) >=+_>=+H —Apph,=E (n odd), and

i

t
(2.9.8.6) > >=+H |>=>= E (n even),
where E is the orthogonal projection onto R¢, in the Euclidean space of the appropriate
dimengsion.

We claim that the functions (f,(2)) satisfy the first order difference equation

ny2
».=+_Fv - _i.:?i: = o | (2)[=f (2)+1).

First consider the case that n is odd. Then ad (z) +1=

[>-]
o+
bht1? M.uV z2+1

k k
((ALA K€ 6)2 + (€1€)

zMs

I
e £

=
(]
—

Ma

(ata e o,

=
1}
=)

using 2.9.8.3. Setting B = > A, wehave

o (2) + 1 = {(1-B2) V€| &)

n

Similarly using 2.9.8.2 and setting A = >=+H at1 Ve have

[+ 4]

_ n+1 k _
= M.Fi
k=0

f

w1 Maz_ ar) S ELO

((1-Az)Te] 0.

The difference _.=+_§ - [2f,(2)+1] is computed using 2.9.8.5, and the resolvent identity:

((-Az) " (1-B2) e[ &
-Agla(AL AL A (B2 )

£ .(2)- _\._ ?v+:

n+1

NA:->&-_E.-§-; | £
2((1-A2) €[ £)((1-Bz) € €)
o, 2k (2)+1].

Il

The case n even is entirely similar. 2
zZ
:IH

Next we observe that the functions 3 (z) = P @ satisfy the same difference
1 n+l

cquation. First note that

e FoettPagy P
A ) = —u =P ]
n+1 n+l

n

by the second-order difference equation for the P i Hence



Py Py
o) = gt
P - 2P’
PotaPpyr o+l 042 TP 0P T
using the defining relation for the m.._ again. But this last expression is 28, +L§=+:.

Since ﬁnvuﬁ and ?.LBH satisfy the same first order difference equation, it suffices
@
now to check that ﬁu = 8. But vm 41= mr for all k, so _.NE = M wxnw = Wmm_
k=0

while 8,(z) = jq.u 7= .mum #

2.10. A digression on Hecke algebras.

As a general reference for this section, we use [BLie], especially exercises » 22 in
§1V.2. See also [CR], §11D. For the origin of the term "Hecke algebra", see p. xi in [Lus].

2.10.a - The complex Hecke algebra defined by GL () and its Bore] subgroup,

If G is a finite group and Qo is & subgroup, the complex Hecke algebra Eobcw of

the pair Qc CG is the commutant of the natural representation of G on the complex
vector space aho\oc_ of functions from G/G, to C.

We denote by ([G] the algebra of complex functions on G, with the convolution
product. We identify ([G /Ggl with the subspace of this algebra consisting of functions v

with  o{gh) = p(g) for geG and he Gy and we denote by a_Qo/o\Qc_ the
subalgebra of ([G] of Gg-bi-invariant functions.

Proposition 2.10.1. The algebras H{(G,G) and Qoo/m\mo_ are isomorphic.

Proof. More generally, consider first an associative algebra A with unit, an

idempotent e€ A, and the left A-module Ae. It is easy to check that the map
x — p(x) = right multiplication by x is an anti-isomorphism from eAe to End >A>£.

Now let A = ([G]; for each g€ G, denote by mm the characteristic function of {g}.

Set @uﬁwﬂm b Then Ae=([G/Gg| and eAe = C[G\G/Gyl, 5o that H(G,Gy)
€
0

X s < v
and a_Oc/O\ch are anti-ismorphic. But ([G] has a canonical anti-isomorphism @~ ¢,
defined by {(g) = ..xm:; which restricts to a_OQ/O\OcH. s0 the proposition follows. #

Corollary 2.10.2. Let e be the central idempotent in A_OQ_ corresponding to the
trivial representation Ool.mf:u. and denote by py,-+-\p,, the minimal central

idempotents in ([G]. Then
H(G,G) = @ ep,C[G]p;e
where the direct sum is over the i's with ep; #0. The Bratteli diagram for the pair

Cc E0.0ov is that part of the Bralieli diagram for the pair Qmo_ C C[G] which lies above

the vertez corresponding to e.

Proof. This follows from Section 2.3. (See Corollary 11.26 of [CR] for a

generalization.) #

As a first example, consider the permutation groups @u nmuw the diagram for

([&,) ¢ €[&,) is

1

A

Then € ¢ E@%va is described by

w/o\.

In particular Emub»v sCoC It is easy to check that there are two double cosets in
@m/@u\@m. One shows similarly that E@r +_.®_L s (@ for any integer k2 1.

But the case of main interest here is when q is a prime power, G = Ornfv for some
ny 2, and Gy is the (Borel) subgroup B of upper triangular matrices. (The letter q

will no longer denote an idempotent below.) Identifying the double cosets is a special case
of the "Bruhat decomposition"



Qr:?: = BwB
WE
where W is the "Wey] group”, namely here the symmetric group m: embedded in
Qr;?: as permutation matrices (see §IV.2in [BLie]). Thus to each permutation w ¢ =
there is associated an element a, of the Hecke algebra H(G.Gy), which is the

characteristic function of BwB divided by the order of B. For i=1,2,-- -,n-1, let 8

be the element of W given by the matrix

where the first diagonal 0 is the (i,i)th entry, and set g =a,.

Proposition 2.10.3. With the notation above, one has

) £ = (g, + o
(®) 88418 = &i1188i41 i=1,n2
(€) gg; = g;g; if 1] 22 ij=1,++n1

Furthermore the elements g, (1< i< n-1) generate the Hecke algebra H(GL (q),B).

Proof. (see [BLie] as well as Propositions 11.30 and 11.34 in [CR]). For each
permutation w € &, set C(w) = BwB. Let a,, € ([B\G/B] be the quotient by |B]| of

the characteristic function of C(w}; then (a

s.vs.m@s is a C-basis of the Hecke algebra.

For w,w',w" ¢ S, and for ge C(w"), one has

-1
(3,42, )(8) = Mms:%sé g)
het
= H%E ngcw )l ()
If C(w)ngC(w' VL_ is not empty, there exist by ._f €B with c_s&m = mvui_lpf.
so that g € C(w)C(w').

For 8 in the set S= ?H....,_W—TZ of generators of @:. we need to compute
|C(s)]. Observe more generally that, for any h € G, the map

B/(B nuBh!) -+ (BhB)/B

class of b w»class ofbh

is well defined (if b,b’ are in the same class modulo BN :wrtﬁ there exists b” € B
with b’ = E.v.ruf and b'hB = bhB) and bijective. Then the number of left classes
modulo B in BhB is theindex [B: BN hBh™]. It follows that

[C(s)| = |B| [B: B nsBs] = |Biq.
Let us compute (2, *a,.)(g) when w=w' =35 As C(s)C(s) = BU C(s) this is

zero unless g € BUC(s). For g€ B one has by (x)

(ag+a,)(g) = ﬂm_oa_ = a3, (g).

As a, is a convolution unit in ([B\G/B], this implies
a %a = »mm +q

for some A€ (. Introduce the restriction s to C[B\G/B] of the augmentation
homomorphism €{G] — €, mapping ¢ to Mﬁmv. Then
gE

pages) = _Hl_m_oa 2= ¢

Hragta) = MgrIC) +a= (1)

and consequently A =q -1. This shows (a).
Introduce the length function ?@: —{0,1,2,-«-} with respect to the generators S.

Then

ag*a, =a if Hsw)> fw) (%%)

Indeed, if fsw)> fw), then C(3)C(w) = C(sw) by n° IV.2.4 in [BLie], so that ag*a,
is a scalar multiple of a_ by (). Let ghe C(s) and uve C(w) with gu=hv; then
vl = :Lm € C(s)C(s) = BU C(s); but wle C(s) would imply veC(8)C(w) =




C(sw), which is incompatible with v ¢ C(w); hence gehB, and thus any element in
C(sw) can be written in exactly |B| ways as a product of one element in C{s) by onein
C(w). This shows that a_xa, = a,.. [Iifollows in particular that ?L generates

W
H(GL(q),B).

Consider finally s,t € S with ?Su = 1. Then f8) =1, fst) =2, #ats) =3 and thus
B * 2 *a =&, by (+). Similarly & *a, *a =4, and (b) holds. Claim (¢)
follows in the same way. #

Now remember that the symmetric group in n letters has a presentation with
generators the transpositions 8 = {i,ji+1) for 1 ¢i¢ n-1 and relations

B L R TS LT LR LU N L (R

There is an easy proof of this which shows at the same time that the abstract algebra
generated by n-1 generators subjected to the relations of 2.10.3 is of dimension at most
nl. (See the beginning of § in [HKW].) For q a prime power, it follows then that the
relations of 2.10.3 give a presentation of the Hecke algebra H(GL_(q),B). But we shall see

that it is important to consider a more general family of algebras, defined for all q#0.

2101 - The Hecke algebras H_ .
9,0
Let K again be an arbitrary field. Consider an integer n2 1 and a parameter qek.
We define :; n Yo be the associative K-algebra with-unit presented by
generators: 8189 8p-1
relations: asin 2.10.3.

Proposition 2.10.4. One has &Ba mn n= n! forall qeK and forall n) 1.

Proof. We take for granted the presentation of @u in terms of the transpositions

?L. Each of the n! elements x of &/, can be written uniquely as a reduced word w in
the {s;} with

(i) minimum length among all words representing «,

(i) the largest 8 in w appearing only once, and moved 8s far to the right as
possible, and

(iii) all subwords of w reduced according to criteria (i) and (ii).

The corresponding n! words in the generators FL of H _ span mn n linearly, because
i)

q,n
the Hecke algebra relations 2.10.3(a)-(c) can be used

(i) to reduce the length of a word in the ;L (i.e., to write it as a linear combination

of shorter words), and .
(ii) to reduce the number of occurences of the largest g; ina word, and to move it to

the right, . .
whenever the corresponding operation can be performed on the corresponding word in the
{s;}. 1t follows that dimy H a0 is at most n!. On the other hand, we will exhibit below a

sufficient family of inequivalent irreducible representation of m?: to obtain the other

inequality. See [HKW,§4] for a more explicit proof. #

For convenience we take K= ( in the following discussion. For q a prime power,

H is the same as Eoruﬁrwv ENS,?gnm:cvﬁzn:_ﬁmm:méav_a.mi.sa
q.n

have no reason @ priori to believe that there is any relationship between these algebras for
different values of ¢. Also, the decomposition of any ma.n a9 a direct sum of matrix

algebras is not obvious, each summand corresponding to some irreducible representation of
Qrz?_v.

Observe however that, if we put q = 1, we recognize mru as the algebra Q@L of
the symmetric group, so mru is semi-simple. A necessary and sufficient condition for
semi-gimplicity of H an is the non—degeneracy of the Killing trace x — tr{A(x)), where
tr denotes the trace on Endg(H a,uv. (For a finite dimensional (-algebra A, the radical

rad(A) coincides with A*:= {x € A: tr(A(xy)) =0 forally € A}. Infact, both rad(A}
and A are ideals which contain every nil ideal, and to show equality one shows that each
is a nil ideal.) From the proof of Proposition 2.10.4 one obtains a basis {g o € @nw of

‘ ut .:
:n.: Eavo_uuoa.w_m.._.cngaoo:mgss vn. L& mcgzﬁamama Mv Q_L.c mt

follows that degeneracy is determined by a polynomial equation in g, so for all but a finite

set of q€C (n fixed), mf: is semi-simple of dimension nl. Also ma,nL embeds in

H an via the obvious identification of the generators g, for 1¢1i¢ n-2.
v

We now argue intuitively, though extremely plausibly. For the values of q for which

i- 8i i i i letely described
:PH.L and ma.a are semi- simple, the inclusion :n.uu_ c :a.n is completely

by a vector of integers (for the dimensions of the factors in H Psv and an integer valued
matrix (the inclusion matrix). As these should vary continuously with q, they should be
independent of q for these values. In particular they can be determined by examining the
case q=1. But then they are determined entirely by the dimensions of the &:QQW..
representations of & _; and &) and the restriction rule from & to @=|H. For this

reason we shall now describe this structure. In 2.10d we will identify a certain singular set



