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Q1 K and construct for q £ 2 a complete family of irreducible representations of mp o

thig will demonstrate that H_ K|S | forall n and for q ¢ Q.

qn =

The conjugacy classes of the group m: are naturally indexed by partitions of n, two

permutations being conjugate if and only if they have the same cycle structure. Thus there
are as many irreducible representations of &, (over €) as there are partitions. Although

one cannot expect a natural correspondence between representations and partitions on the
above grounds, it has long been known how to construct an irreducible representation from
a partition. It is convenient to represent partitions by "Young diagrams", as amply
illustrated by the {ollowing example.

Example 2.10.5. To the partition »u_»p_»w:’u.f,»u_n (53,2,2,1] of 13, one

associates the Young diagram

aneal

The most important rule is the restriction rule: if one restricts the representation of
8, corresponding to a Young diagram Y to & _,,itis isomorphic to the direct sum of

all representations corresponding to all Young diagrams Y' obtained by removing one

box from Y, all occuring with multiplicity one.
Thus the irreducible representations of &) (and hence the Bratteli diagram for

6, c omm C .”Qu € -++) are conveniently pictured by the following important diagram:
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figure 2.10.6

The dimensions of the corresponding representations are given by the number of agcending
paths on 2.10.6 beginning with o and ending at the Young diagram in question. The
above facts will actually follow from the construction of irreducible representations for the

Hecke algebras H to which we now return.

q,n’

2.10.d - Irreducible representations of H n for qf Q.

The material that follows is taken from Wenzl's thesis [Wen2]. The K-algebra H
q,n

i3 that defined at the beginning of 2.10.b; in particular, the field K is arbitrary.
By our intuitive argument, we expect that figure 2.10.6 should also represent the
structure of m for all but a countable number of values of g. While this could be

proved in an m_mmE:. manner due to Tits (sce exercise 26 in §IV.2 of [BLie], or Lerama 85 in
[Ste2]), two important pieces of information would be missing: there would be no
indication of which values of q are "bad" (and that would be particularly frustrating for
K Countable!), and there would be no construction of concrete representations of :

We shall now show how to construct an irreducible representation of H an *.E each
Partition of n, provided q is not in the set § defined below. It is first convenient to

dispose of another presentation of Ho ; than that of 2.10.b.

Proposition 2.10.7. Consider a number qeX* and an integer n > 1. Assume q # -1
and set
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These generate H q and constitute with the relations

n
AUV mwumm m"Hu..J:I”_.
-2 2 .
(c) ee;y e -ala+l) e =e e, -alat]) ey, i=1002
(d) eje; = e when [i-j| 2 2 Lj=1,-+n-1

a preseniation of mn_s.

Proof. A straightforward computation. #

Naturally this demands comparison with the definition of 4, in Section 2.3,

However we shall postpone further comments on this until the next section.
Define the subset € of K to be the union of {0} with those q for which there exists

n
an integer n 1 with M& =0. Thus 02\ {0} is the set of non-trivial roots of 1 in
j=0
characteristic 0 and the set of all roots of 1 in finite characteristic. (As already noticed in
section 2.8, if qgQ then A= n|_?+:m is generic.) For each del\ {0} and
qeK\ Q1 define

1_qd+1
|L|||m| if q#1
(1+q) (1—q")
paﬁnv =
d+1 ifq=1
—2d
1+q+- - +qd
q 9 Note also that

(Remark: When d> 0, then a,(q)= -
7 g (Lrar e+

a4(q) = Qy(q) where Q is as in Proposition 2.8.3.iv.) Suppose given a partition

I¢dek
of n, say A= ;_.. . :»L. where we allow some of the lagt A.'s to be zero. We think of

)
A 33 a Young diagram. Let V, be the free K-vector space on the set of ascending paths
p from o to A on figure 2.10.6, and denote by ?vw its canonical basis. We define now
endomorphisms m,. . ...._TH of V Y

Let i€ {1,---,n-1}. For each ascending path
p=(=0 % A" =)

we have to define fv. The partition A*1 g obtained from AL in one of three ways
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(a) By adding two boxes to the same column of AL 0 this case m<v =y
(b) By adding two boxes to the same row of >T—. In this case m<v =0.

(c) By adding boxes in different rows and columns of »THW more precisely there is
pair of integers (r,8) with r#s and »“.L # »mL such that >m = »”.L +1 and

i+l _ il
g = A

s TL In this case there is precisely one ascending path from o to A which

differs from p in its ma_ vertex only; we call this path p’. For example:

Set
d= () - (A Lg) = (o) + (A

E,a observe that d#0. Define d' in the same way for the path p' and note that
d' = d. Finally, define

m<v = pa??u + Cl&@?b<t:

Observe that f, leaves invariant the subspace _9@ ® x<v. of V, as well as its canonical

omplement; on _?c @ x<v. , it is described by the matrix

a4(a)  a4(q)

4 y(a) 1) (2.10.8).

We .
have taken advantage of the equality ay(q) + a4(a) =1, which follows from the

_ ™
“efinition of a4 andfrom d +d' =0.
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The verification that __..Z... satisfy the relations (b} and (d) of Propositis,

n-1
2.10.7 is trivial. They also satigfy (c), but this is more tedious to check and we refer

[Wen2]. We conclude that, for each partition A of n thereis a representation r i

mn =m=<y %ma&g a»?t H m. >85252«835%9:6Ewcsma.m__os.m::._
the = ». 8 are irreducible and mutually inequivalent when A runs over the set v.. of al
partitions of n (for g€ K\ ). Indeed, these representations are absolutely irreducihln,
because the same argument applies to any extension of K. By theorems of Burnside ang
Frobenius-Schur, this implies that H has a quotient isomorphic to the multi-matrix

q,n
algebra »o.w m:£< yv. of dimension n!. But we have already reported thal the
€
n
dimension of H is no more than n'. (See the end of 2.10.a above, and 84 in [HKW]

q.n
Consequently the dimension is precisely n!, we have a complete set of irreducibl

representations of ma,u for qeK\ ©, and :n.u i isomorphic to »Mﬁ m:ax?.»v, (In
n

particular, setting q =1, this gives for K={ the usual complete set of irreducibic
representations of the symmetric group & .)

Another trivial consequence of the construction is that the restriction uof a

representation L5 of :P: to :a.zu— is a direct sum e;: where A’ runs over all
partitions of n-1 obtained from the partition of A of n by removing one box from the

Young diagram. We reformulate this as follows.

Theorem 2.10.9. Let K be o field and let @ CK be the union of {0}, of the non {rimal

roots of 1, and of 1 in case char(K) # 0. Consider g€ K\ Q, an integer ny 1, and ih
Hecke algebra mn n generated by [ STRRRE S with the relations of 2.10.b, or equivalrniiy

by e ey and the relations of Proposition 2.10.7. Then
(a) :9: is of dimension nl.
(b) H gn is a multi—matriz algebra.

(¢) The natural mapping mnb — m9=+u i3 an imbedding.

{d) The structure of the chain :n._ c ma_w C-C mn.u C -+ ig given by fipi"
2.10.6.

We make one further comment on Wenzl's paper, and for this we assume K= ¢ s
exposition does not involve the matrix 2.10.8, but rather the related one

fag ag(T-ay
—gmaﬁ.&am ng
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with a4 written for ma?:. It follows that :a has a C™-algebra structure for qeR

n
and 9> 0, for which e is an orthogonal projection: In fact, the main interest of [Wen2]

27 .
g in the values q=e i/ € Q, for which Wenzl has constructed C*-algebras which are

quotients of the corresponding Hecke algebras.

and Hecke algcbras.

9.11. The rclationship between L_u n

It was first pointed out to V. Jones by R. Steinberg that the defining relations of \.u:

(see section 2.8) actually imply the Hecke relations. This is obvious from the definition of
L\w.: and Proposition 2.10.7, but we would rather state this in terms of the generators g

again.

Proposition 2.11.1, Consider q €K\ {-1,0) and f=24q+ nL €K*, on integer

ny 1, and the algebra Lu " Set

7;+1
.:HE+:J|H so that §= 3T i=1,--n-1.
These gencrate xm n and conslitule with
2
Y HEIC#+Q i=1,+,n-1
W% = e =102
%= %% when Ji-j| 2 2 ij=1,---n-1

Wit W it R g H1=0 i=Leen2
4 presentation of A 0
Proof. A straightforward computation. #
Ooqo__m:m 2.11.2. There is a surjective algebra morphism

Yoy n—4gn

defined .
ed by Vnlgy) = Y for i=1.--n-1. If n=1 or n=2 itis an isomorphism. If
Ny 3 .
23 its kernel I, is the two-sided ideal of =a n generated by
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81898) + 818y + £58) +8) +Ep + 1.
Moreover the diagram

,n q,n+1
ﬁ: &=+~

;_a.s xu.u+_

commutes.

Proof. The existence of @: follows from the definition of H an and Proposition
2.11.1. It is clear that s_ and ew are isomorphisms, and that for n3 3 the kernel of

¥, is generated by

X = 8818t BBy B8 T B 8 ]

for i=1,---n-2. As q#0, each g i invertible with inverse al:wm.i..:. By
relations (b) and (c) in Proposition 2.10.3 on has

1,1

-1
(818 -8y )88y "85 By k=1,-n-2

= Bk+1

and consequently

~1]

-1 .
AMum&...mnluwxmﬁmﬂlw...S Nm i=1,--+n-3

Thus mu is generated by X The last claim i3 obvious.  #

Thus, if q is a value for which H is semi-gimple, it must be possible to identify

q,n
given by some subset of the set of partitions of n. W¢

this

xu.: with a certain ideal of :n.u,

shall show that this subset is precisely the set of all partitions with at most two rows:
was also explained to us by R. Steinberg. ,
We recall that §2 has been defined in 2.10.d, and that the relations which constit

with 8 Bpy B presentation of ma,z Emi_.m:m:mawavoascum._e.uh%m m_.e

2.10.b).
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Lemma 2.11.3. Let qe K\ Q, let n> 3 be on integer, let A be Young diagram with

n bozes and with at most two rows, and let

T :a.: — End(V,)

be as in 2.10.d. If x;=gg .8+ Bifip) T &1 T8 T B T L then m(x)=0
for i=1,- 02

Proof. Weset first n=3. As there are two partitions of 3 with at most two rows, we

split the proof in two steps.

First A=[3], pictured as om. Here, according to the definition of
;Amt = ayﬁmwv = -1 and ;ﬁxuv =0.

Second A = [2,1], pictured as g Here, instead of using ), we may argue with any

2-dimensional irreducible representation of :a 3 for example that defined by

g = (3 5] e =3 ]

(which is irreducible if q is neither 0, nor -1, nor a nontrivial cube root of 1). A routine
calculation shows that x{x) = 0.

Assume now n > 4, and that the lemma holds for n-1. By the proof of 2.11.2, it is
enough to check that Qﬁx_w =0

We recall from 2.10.4 that

where X' has one less box than A. In particular A’ has at most two rows, and
7){X;)} =0 by the induction hypothesis. Consequently n(x)=0 #

Consider q €K\ Q0 and an integer n 3. Let 7, be the set of partitions of n. We

know from section 2.10.d that ma p 18 adirect sum  © I, of simple two sided ideals,
’ AEP
n

the notation being such that, for each Ag € P, the representation 7, of Hy, restricts
G L]

10 an isomorphism 1 Xy — End(V »cv and maps I, to {0} when A# Ag- We denote by

2

n the subset of su of partitions with at most two rows.
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Proposition 2.114. Let q €K\ Q, let n» 3 be an integer, and let
I, =Ker(yy :H  — Ay )= (8188, &8y BB +E H8o 1)

be as in Corollary 2.11.2. Then

I = ] I,.
n A
>ma=/su=
Proof. By the previous lemma for >mﬂw_. one has ayﬁuvuc, so that

I, NI ={0). Consequently I ¢ & ,I,.
Al m n »mﬁ:/ﬁm A

Let A=[r8]€ ﬁw_ From the definition of V, (see 2.10.d) one has

dim <——..w_ = dim <T..m|: if =3,

dim <Fm_ = dim V 1) + dim <_Trm_ if r>821,

[ry8-
dim <T..O_ =1.

By induction on r and s, ones deduces from this
. _[n] _[n
am vy, g =[3] - [&4]

Thus 9
. 2_ 1 (2n
Y, @mvyT= ml L.
AP

by Lemma 2.8.2.
Suppose that ;a ¢ _z for some >o € ,‘z \ ﬂw:. so that _z C r&?»or we shall arrive

at a contradiction. For A€ ‘ww U {Ag} the representation 7, of :ab defines a
representation w» of ;m: in V,. As the 7,'s are pairwise inequivalent, so are the
)

w\,_m, and
. 1 (2n . 2
dim x_m.a 2o T ﬁ L + (dim <>cv .

But this contradicts Proposition 2.8.1. #
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Observe that the proof above shows again the equality
dimd, =-L_[2) for g generi
an = 53T| n generic

of Theorem 2.8.5.
To sum up, we have shown that, for generic J and corresponding g, the algebra xu
n
i)

is isomorphic to the quotient of :ns
¥

21898 + BBy + oy + &) + 8o+ 1. This ideal corresponds precisely to the direct

by the two-sided ideal generated by

summands I, of mn.u given by all Young diagrams A € ﬂu having at least 3 rows.




CHAPTER 3
Finite von Neumann Algebras with Finite Dimensional Centera

3.1. Introduction.

In this chapter we study pairs of finite von Neumann algebras with finite dimensional
centers, and the index of such pairs.

Sections 2 to 4 are purely expository, and may be taken as an encouragement to the
reader having essentially no previous experience with von Neumann algebras. Sections 5 to
7 present a generalization to the present setting of some of the ideas of {Jol] for pairs of
factors. Though this chapter cannot be so self—contained as the previous ones, we have
tried to minimize the technical background in operator algebras assumed from the reader.

Let us first describe Sections 2 to 4. Let M be a von Neumann algebra which is a
factor of type I1;. (The definition is given in Section 3.2.) We denote by tr: M —C the

normalized trace on M. For every Hilbert space H on which M acts, Murray and von
Neumann have defined a positive number (possibly «} called the coupling constant
between M and its commutant; we denote this pumber by &BZAE. Two

representations of M by operators on two separable Hilbert spaces H and H' are
equivalent if and only if &BZAE = &BZE.V. Section 3.2 is an exposition of the
definition and the basic properties of these coupling constants. Except for the
presentation, all this material comes from the original papers by Murray and von
Neumann.

In Section 3.3, we present some geomeliric exampies of coupling constants arising in the
theory of discrete series representations of Lie groups, they are borrowed from

Atiyah-Schmid [AS]. In particular, we show:

Theorem 3.1.1. Let G bee connected real semi—simple, non—compact Lie group
without center. Let T be o lattice in G, and let M be the von Neumann algebra of the
discrete group T. Then M ise I Jactor. If x:G— U(H) is an irreducible discrete

series representation of G, then a_ ertends to a representation of M on H, and

r
&BZEV = covol(T) d,
where d is the formal dimension of .

In Section 3.4, we consider a pair NCM of finite factors and we recall some aspects of
the original work {Jo1] on this subject. First the index of N in M is now defined to be
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[M:N] = dimy(LE(M))

2 . N
where L“(M) is the Hilbert space obtained by completion of M for the scalar product

- * .
{x|y) = tr(x"y). It was shown in [Jo4] that this definition of index agrees with the purely
ring-theoretic definition of Chapter 2.

If [M:N] < w, the pair NC M generates a tower of 11, {factors
—chHZnZ_Hgn...anlu_ngrn

by a fundamental construction which is defined as follows.
expectation from Zr onto

The natural conditional
. . M, can be seen a8 an orthogonal projection
e, LYM) = L%(M, ), and M, +1 18 the von Neumann algebra of operators on
L%(M,) generated by M, and e,. Thi is agal

K y My €. This M,  , isagaina Il factor. It is a particular

8..3 of Proposition 3.1.4 below that this way to define the fundamental construction agrees
with that of Chapter 2. Moreover the Markov relation holds:
[M:Njtry +:xmrv = try (x) for all x € M},

where tr and tr denote the normalized traces on M, and M +1 respectively.
The sequence Aowvwﬁ of projections in U M satisfy the relations

k20
[M:N] Gee = ¢ if |i-j] =1
€e; = &¢; if |i-j] 22

and provide consequently a representation of the algebras \_u o with g=[M:N]. (See

Section 2.8 and Theorem I1.16.) From this follows

Theorem 3.1.2. If Nc M s a pair of II, —factors, either [M:N] =4 Smm?\av Jor
some integer g2 3 or[M:N] € [4,«].

There is substantial overlap between Sections 3.2 to 3.5 and Sections I to 1II of
Connes’ report [Con].

Let us now describe Sections 5 to 7, where we consider a pair Nc M of finite von
Neumann algebras with finite dimensional centers. There are projections Py 4Py, Which
) 2 m

are central in M and projections Q4 which are central in N such that
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P, e+, P M, gy Nye ey q N are finite factors, and
m

n
N= o amznZH ®

53.
=1

i=1

If &Bn:,\: < w, this is the situation of Chapter 2. At this stage, let us assume that each
of the factors p;M, n_.z is of type 1I; (see the comment after 3.5.4).
As in Section 2.3, we define an index matrix >ﬂ_ = ;r.w € ZE.B_:E+ U {=}) by

(M, N, ]2 ifnot

L L

. l .m
where zf. = umn:z _mwmcz.w?oao::m?ns_. 35 ! vm.n.._Zwma.m. Emmmz.&w..z_mc
finite index in M if >7z\_ does not have any infinite entry.

For an analysis of traces on M and N (see Section 2.4 when &Ee:(: is finite), we

define also the trace matrix HK = ?Sv € ZRE.:Qt by
G i = ﬁnv_?_?mn.wy

where Sv M denotes the normalized trace on the factor p;M. A trace on M is described
i

by the vector § € E+V5 with s, = Ev? and its restriction to N by the vector

mﬂﬂ_ € %L:. Traces are always assumed to be positive in this chapter, so that s, > 0 for

i=1,,m |
If &EAAZV < o the matrices >K and Hﬂ_ are simply related by &= 3._. 2
with tw = a::angv and t.w = &Bmﬁa_.zu. This relation has no analogue when the

EZJ and the n.mz.m are factors of type 11}:

Proposition 3.1.3, Consider two irredundant matrices

)
A=(} )€ Zﬁa.::m Sm?\n:nwu U2w]) and T = Anr.v € ZE.S.:Et

salisfying.
A.=0 Auvn._LHo and M nEH_. for i€ {1, -+,m}.

i,j -
) I<j¢n
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Then there exists a pair NCM as above with A = >_“ and T = ‘HR_. Moreover, M and

N may be chosen hyperfinile.

The Skolem-Noether theorem does not hold for H__Lwﬁo; and Proposition 2.3.3 does

not carry over to the present setting: the matrices >ﬁ_ and HK aouoﬂorﬁsmznmz

as a subalgebra of M.

Once & faithful trace is given on M, the fundamental construction gives a new algebra
(M,ey), just as described above in the case of factors.
N

Proposition 3.1.4. Let N be of finite inder in M.

(a) The algebras (Mey) ond miv:ﬁ are isomorphic.
(b) The algebra AZ_mzv is again a finite sum of 11, factors. There is a natural

bijection between the minimal central idempotenis of N aend those of AZ,mzv.

A convenient isomorphism is described in Corollary 3.6.5, and the bijection of (b)
appears in Proposition 3.6.1.iv.
The partial description of NcM by AM and T is useful because, if N is of

finite index in M and if L= AZ,mzv_ one may compute >7_\L_ and ﬁw_ from >K and

Hﬂ_. Indeed

L _ Mt oL _ oMM
A=A Ty =FNTN

is defined by

5 _ M
where T = Ty € ZE:.EEt

. 0 if P4 =0

T = ]
B 2 1 .
»E.ni if not,
and where l_m is a diagonal matrix ensuring that M Aﬁw_:,m =1 for j=1,--+,n.
Igi¢m

See Propositions 3.6.6 and 3.6.8 for the details.

As in Chapter 2, a trace on M is said to be a Markov trace of modulus # for the pair
N CM if it extends to a trace tr on (Mey) for which

Ptr(xey) = tr(x) xeM.
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There exists at most one such extension. As traces are positive in this chapter, 5 has to
be a positive number. The analogues of Theorem 2.1.3 and 2.1.4 hold as follows. Recall
that a pair N ¢ M is connected if the intersection Z(M) n Z(N) of the centers is reduced
to {1

n
pM and N= @ awz be finite direct sums of =H
1 j=1

Jactors, let N be o subalgebra of M of finite index, and write T, T for Hﬁ. .H.K

m
Theorem 3.1.5. Let M= @
i=

(8) Let tr: M — € beatrace, let § € KD be defined by s, = tr(p;), and ket fe .
Then tr is o Markov trace of modulus 8 for the pair N CM ifand only if
§TT =28

(b) If the conditions of (a) hold, then the Markov extension (Mep) — € of tr isa
Markov trace of modulus § Jor the pair M € (M,ey).

(c) If NCM is connected, there ezists a unique normalized Markov trace on NCM,
and its modulus B is the speciral radius of TT.

Comparing Theorems 2.1.4 and 3.1.5, we may define the index of N in M as

[M:N] = p(TT)
where p denotes spectral radius.

Corollary 3.1.6. Theorem 8.1.2 holds Jor finile direct sums of I factors.

We note that the definition of [M:N] given above is not the same as that of Chapter
9. However, P. Jollissaint has shown, in unpublished work, that the two definitions of
index coincide.

If NcM is a connected pair of finite dimensional multi-matrix algebras with
[M:N] ¢ 4, we have shown in Theorems 2.1.1 and 1.1.2 that the corresponding graph is a
Coxeter graph of one of the types A,D,E. The chief result of Section 3.7 is that connected
pairs N CM of finite direct sums of II,—factors with [M:N] < 4 give rise to all possible

Coxeter graphs associated with finite and affine groups.

Theorem 3.1.7. Let NCM be a connected pair of finite direct sums of :_l.ﬁnaea.

Assume that N is of finite indez in M andlet A = >K be the inclusion mairiz.

(8) If [M:N) < 4, then A is the matriz associated (in Theorem 1.1.8) to a bicoloration
of one of the following Cozeter graphs:
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Ap(£22),By(£22),D, (L24),Ep (£ =678),
ﬁh‘ QN¢ mk AN = w.hv. HMCUV AU =5 orp: .3.

Moreover [M:N] = ||A 2.4 aSuAa\S_ where h is the Cozeter number. (See tables
1.4.50nd 1.4.7.)

(b) If [M:N] =4, then >K corresponds Lo one of the graphs:

A (o, 2 1), B{Y (22 2), ¢fV (12 3),
pj e2 ), E{Y) (¢ = 6,7.8), F{Y), G{V).

s0 that [M:N] = __>__N (See tables 1.4.6 and 1.4.7.).

The index range described by Theorem 3.1.2 appears also in the remarkable family of
Hecke groups, which are discrete subgroups of PSL(2R) generated by two parabolic
transformations. We have included an Appendix III on these groups. Its purpose is to
expose the spectacular comparison with Theorem 3.1.2 as well as to illustrate Section 3.3.

3.2. The coupling constant: definition.

Let H be a (complex) Hilbert space. We denote by B(H) the *-algebra of all
bounded operators on H, with x* the adjoint of the operator x € B(H). Besides the
Lopology associated to the norm

Il = Sup{llx¢ll : § € H and |I¢]l 5 1}

the algebra has also the ultraweak topology er w-topology which is defined by the
semi-norms

o
€y € H with Y g% <o

®
x| Y, (x| s
P
J Nt € H with M.__ j L
=

Whenever necessary , we assume H to be separable.

A von Neumann algebra acting on H, or a yon Neymann gubalgebra of B(H), is a
w—closed *—subalgebra of B{H) which contains the identity. If Z.ﬂ is a von Neumann

Subalgebra of Em.z for j=12 andif ¢: M, — M, isa *—igomorphism, it is known
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that ( is continuous with respect to the w-topology on both M, and Zw (corollary

5.13 in [SZ] or section 1.4.3 in [DvN]). A yon Neumapn algebra is a *-algebra M which is
*_jgomorphic to a von Neumann subalgebra of B(H) for some H; by the result just
recalled, such ar algebra has a well-defined w-topology.

A {actor is a von Neumann algebra M with center NZ reduced to the scalar

multiples of the identity. Von Neumann algebras are known to be principal in the sense
that any w—closed two-sided ideal is generated by a central projection (see section 1.3.4 in
[DvN]). Thus a von Neumann algebra M is a factor if and only if any two-sided ideal
J40 in M is w-dense. There is not any continuity problem for representations of &
factor M in the following sense: any *_homomorphism M — B(H) is w-continuous.
(See theorem V.5.1 in [Tak]; the separability of H is crucial here.)

A EH factor is an infinite dimensional factor M which admits a normalized finite

trace tr: M — C such that

(i) tr(1) =1

(i) tr(xy) = tr(yx) x,y €M

(iii) tr(x*x}20  x€M.
It is known that, on a :—Lmbpo: such a trace is unique in two senses. First, in the usual
sense for operator algebras: tr is the unique linear form satisfying (i), (ii) and (iii); see
[DvN], u% 1.6.4 and 111.2.7; moreoever one has tr(x*x) > 0 for x #0. But also secondly,
in the naive sense: tr is the unique linear form satisfying (i) and (ii}, by [FH]. The
existence of H:L.wﬁ.onm which may act on separable Hilbert spaces is one of the basic

discoveries in the first paper by Murray and von Neumann [MwN I).
A fipite factor is a von Neumann algebra which is either a :1@8_.. or isomorphic to

B(H) for some H of finite dimension. Such a factor is simple a8 a complex algebra by
[DvN], 111.5.2. Hereis & characterization of finite factors; for more on this, see [KvN].

Proposition 3.2.1. Let M beas c* —algebra with uni! and with center reduced to the
scalar multipiies of 1. Let tr:M —C bea Jaith ful normaiized trace {namely o linear form
satisfying (i), (ii), (iii) above and :..?_..xu > 0 for x#0). Assume thot the unit ball of M
is complete with respect fo the metric d(x.y) = fix-yllp where lixlly = :..Ax...x:: 2 Then

M is a finite foctor.

Proof, Let H= rucs_..: be the Hilbert space obtained by completion of M with
respect to the scalar product defined by <x|y>= S?_._E for xyeM. Let
7:M — B(H) be the *-representation of M on H, with x(x) being the extension to H
of the left multiplication by x on M. Then # is injective because tr is faithful. Let
#{M)* denote the double commutant of M in B(H), which is, by von Neumann’#
bicommutant theorem, the w—closure of (M) in B(H).

To show that M is a von Neumann algebra, it is enough to show that the inclusion of
M in x(M)" is surjective. Let a€ (M) with fla]l =1. By Kaplansky’s density

o
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theorem, there i i i
ereisanet (x ) in M with |x | <1 forall & such that n(x,) converges
strongly to a; that is, ixnvn converges t0 af for all £ € H. Taking £ =1, this means
that (a(x,)) is a Cauchy net for the || ll~distance, so converges with respect to this
di
istance to some element ixov by the assumed completeness of the ball of M. One can

check that the strong topology and the || __.Nu..ovo_omw coincide on the unit ball of x(M)*,
S0 a= Axov ex(M). #

r.ﬁ M be a finite factor acting on some Hilbert space H. We are going to define the
coupling constant &BZAE which is a measure of the size of H as an M-module, the

definition being made so that the standard M-module LZ(M) = L%(M¢r) has size 1
Before comparing other M-modules to that one, we recall the following facts.

2
Lemma 3.2.2. (a) Let J:L*(M)— rw?: be the conjugate linear isometry which
ertends M—M

X — X

,- Then JMJ is the commutant Endy(L¥(M)) of M in B(L?(M)).

(b) Let K be a Hilbert space and let M act on bmcsv ® K by the diagonal action
x(786) = (xn) ® 6. Then IMJ ® B(K) is the commulant of M in B(L2(M) @ K).
(c) Assume that the space K of (b) is infinite dimensional. For any M-modusle H

there exists an isomelry
u:H—L¥M) ek
which s M —linear, nemely which interiwines the actions of M.
Proof. (a} Let x,y,z € M. By definition of J
Jxly = TQJ* = %x* = ylx.

Applying this twice we get

JxJyz = yzJx = yJxJz,
and setting z = 1,

(Jxd)y = y(IxJ).

Th ' " 2
us JMJcM' where M’ = Endy,(L"(M)).

Let moreover a € M’. By definition of the adjoint

(y*x*|a) = (x*|ya) =(x*|ay) = (a"x*|y) = (x"a%|y) = (a*|xy).
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Now one has (Jp|6) = (n|J6) forall nbe rwc(c, and consequently

(xy|Ja) = (y"x*|a) = (xyla®)

so that Ja =a*. Thus the first computation shows also that JM'Jc M* and, taking
adjoints, M' c JM"J.

By von Neumann's bicommutant theorem, one has M' = JMJ.

(b) Let xeB(LM)@K). Choose an orthonormal basis (¢} of K, end

represent X by a matrix (x; _.V._ jel Over m?nac:v. If x commutes to the action of M,
this matrix must have entries in m_az_?nas:, and thus x € m_aZ?wﬁZ: @ B(K).
Conversely any bounded matrix (x; .ﬂv with entries in mE.—ZFwAZ: commutes with the

diagonal action of M.

(c) Consider H® :lnc(: eK) a3 an M-module for the diagonal action
x(¢@(nef)) =x(®(xn®¥). Then 0@1 isan infinite projection in the commutant of
M. By the Murray- ven Neumann comparison theory for projections, there exists a partial
isometry U in the commutant m‘:azﬁeﬁrwﬁzvexvv from 180 to a subprojection of

0@ 1. Onemay view U as an isometry
u:H—LYM)eK
which intertwines the actions, #

As there will be many traces with various normalizations in the sequel, we introduce
the following convention. If M is a finite factor, try will denote its pormalized trace.

Soif Tr is any other trace on M, then Tr= .H.A:_:E, a formula which we will use

often. Occasionally, we will have to consider a trace Tr ona factor P which is not finite
{for example B(H) or Me@B(H), with H of infinite dimension). Let P + denote the

positive cone of P, consisting of those element of the form z'z with z € P. Then a trace
Tr isamap P + [0,) such that

(i) Tr(x+y) = Tr(x) + Tr(y) xy€P_
(i} Tr(Ax) = ATr(x) AeR ,x€ P, (with 0+ = 0)
(iii) Tr(uxu®) = Tr(x) x€P ,ua unitary in P.

Given 2 finite factor M acting in & Hilbert space H as in Lemma 3.2.2, we define
now the patural trace HHZ. on its commutant. It is crucial for what follows that ,H,:s_

is not necessarily normalized.
First, if H= rw?& a8 in (a), we define Try,. (IxJ) = :,ch for all x € M; in this

case, Try,. is normalized. Secondly, if H= rmcéex as in (b), consider an
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orthonormal basis ?}m_ of K; then any element x in the commutant

2
End, (L i i i
ndy,(L°(M) @ K) is represented by a matrix er..:rhma when x is moreover positive,

esousro&pmosp_m_mamim X; ; are also positive, and we define

.H._.Z. (x) = . :.Z?m.mv € [0,].
1€
For example, :
Trpge (JxJ8p) = try (x) dim¢(pK})

if xe€ Z+ and if p € B(K) is a projection.

Let F(K) denote the finite-rank operators on K. If xeJMI®@FK) ¢
Endyg(LE(M) @ K), that is if all but finitely many of the matrix entri
y y e matrix entries % j are zero, but
x is not necessarily positive, then .H._.z_.?v is well-defined by the same formula.
Furthermore, x — Trpye (x) is a positive trace on the *-algebra JMJ @ F(K).

Third, for H arbitrary and for u as in (¢) of Lemma 3.2.2, we define

H_.Z. (x) = H:S. T:EJ

T * 2
or xmmigAEt and thus uxu € End /(L :5@5+. If u;ug are two possible

. * * N
choices for u, then Uy =gl = a: and =~x=m chs?wx:m for xeM; as ,H.HZ.

is a trace,
* *
Tryy (ugxug) = Tryy ??:w:wcv = .H_.Z.?Hx:v

and Try,,(x} does not depend on the choice of u.

, The word “natural" is justified by the following property (which again shows the
independence just observed). |

Lemma 3.2.3. Let mT:m be twe M—modules; let a: m_ — =m and b: =u — mH be
two M-linear bounded operators. Denole by T, the natural trace defined on ME_ZE.V
J

]
as above, for j = 1,2. Then

Ty(ab) =T (ba).
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Proof. Let uj m.m — rmazc oxgp:Zl::wE;moanQ..;m:

T,(ab) = Try. ?wwccmu = q._.z_.?mm:?_gmv
=Try. ?Hgmzmgv = eu?wv. #

Definition. Tet M be a finite factor and let H be a M-module. The goupling

constant  dimy(H) s defined to be e_.Z_ca:Y where the natural trace
Tr : Endyy(H) | — [0,0] is defined as above. If u is as in 3.2.2.c, one has also
dimy,(H) = Try;, (w*) by 3.2.3.

Proposition 3.2.4. Let M be o finite foctor and let H.H',H,H,,- - be M-modules

which are separable as Hilbert spaces. Then
(a) &EZ:.: = &EZE,V ifand only if H and H' are isomorphic as M-modules,

(b) &azmom._v nM.&szEu.

1

(c) dimyy(L2(M))
(d) dimpg(H) < o ifand only if the factor Endy,(H) is finite.

Proof. Claim (a) follows from the comparison theorem for projections in the factor
maz_?wcsvoxv. claim (b) from the o-additivity of the trace Try;. on the same

factor, and (c) is obvious.
In all cases, HE_ZAE is a semi-finite factor, and thus admits a non—zero trace which

is unique up to a multiplicative constant. Claim (d) holds because Endy,(H) is finite if

and only if it has a finite trace.  #

In the next proposition, we continue with properties of &BZ. The deep result is (f).

We now describe the main step, the proof of which is in [MvN ] and [MvN IV] (sec
Theorem X in both papers). Again, let M be a finite factor and let H bea M-module;
let tr be the normalized trace on M and let Tr' be the natural trace on m_azﬁmv

Choose £eH with ¢#0. Denote by mm the orthogonal projection of H onto the
closure of the cyclic module _w:aZEK, and by mm that onto MYE; observe that e € M
and a.m € Endy,(H). The basic {and difficult) fact is that the ratio

&y = immv\ﬂq. Am_mv
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is independent of £ (When M and H are finite dimensional, this basic fact reduces to
PProposition 2.2.7.) Murray and von Neumann define the coupling constant of M and

Yindy,(H) to be
e = :.?mv\:.. ?mv =(Tr ::mg € x.ﬂ

i m:&sﬁc is finite, with tr’ the normalized trace on mE_ZAE and Tr’ the natural
trace. In case End),(H) is infinite, they define ey =+

The M-module H gives rise to other modules as follows. Let eec B(H) be a
projection (e # 0), with range denoted by ell. If e€ m.aZ:: then eH is naturally a

M-module (a submodule of H); if moreover ME_ZEV is finite, the value D(e) of the
normalized trace of miZEV on e is called the dimengion of €. On the other hand, if

c€M, then eH is a eMe-module; the algebra eMe is a finite factor (because it is
simple, a fact easy to check) which is called the reduction of M by e. Following common
practice, we also write Zm for eMe.

Proposition 3.2.5. Let M be a finite factor and it H be ¢ M—module. Assume that

the factor m_azﬁ:u is finile (namely that %BZQ.: <w). Then
(e) dimy (eH) = D(e) dimy,(H) for any non—zero projection e € End)(H).
(f) &EZAE = cp\p the coupling constant of Murray and von Neumann.
(g) &BZAE &EngZAEEV =1,

. 1 .
(h) dim,,, (eH) HE&EBZEV Jor any non-zero projection e€M, where

D(e) = tr(e).
(iy If L is a finite dimensional Hilbert space, then EBZEOS
= dim,;(H) dimg(L).

Proof. For (e), one may view e as an M-linear isometry from eH to H. Then if
. 2 . . .
u:H—LM)®K is an M-linear isometry, we have by definition of dimy () and by

Lemma 3.2.3

dimy,(eH) = Tr (ueu®)

End, (L¥(M)eK)

= Trgng, , (1)(©)
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= Trpaq, )ty (¢
= dimp(H)D(e),

where each Tr, denotes a natural trace.

Next we show how (f) reduces to the result of Murray and von Neumann recalled
above. Replacing H by an isomophic submodule of rmcﬁ @K, we can assume
Hc ruAZv ®K. Let pe msaz_?wﬁz_v @®K) denote the orthogonal projection from

r»:ﬁ @ K onto H. Then by definition

(3.2.5.1) T (p) = dimy,(H)

I

2
End,(L*(M)eK)
Let £€H with £40 andlet 5eL%(M)®K with n#0. As earlier, denote by e €M
and m.mm m:aZEV the projections of H onto mH_mEEH and M. Likewise denote by
feM ad fe Endy(L¥(M) 8K)  the projections of LE(M)@K onto

3 - .
End,,(L°(M)eK)y and M=n. With respect to the orthogonal decomposition rm;:ex =
HeH", the algebra M acts by operators of the form —m &, the algebra

2 Endy, (H) * e
Endy,(L“(M) ®K) is of the form N . | and the space End) (L°(M) @ K)¢ is
[ End,  (H)¢"
of the form y M _ It follows that Emummw. or in matrix form that
*
mm 0 2
nnu 0 % % s0 that it is the same element in M which acts as mm on L“(M)@K and

a8 mm on H. Consequently

(3.2.5.2) (1 mv = :._s?mv
Observe also that, more simply

(3.2.5.3) E..,mv = .wv = m.m

because MZ ¢ H.

To compute &, = ..:sa.av +Tr Qﬁ, we may choose n=1®x with

Endyy(LE(M)eK)
16McL%(M) and 5#0 in K. Then f, is the identity on LXM)® K and f, is the

A &
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projection onto rwcc: @ Cx. Consequently

f)=1= .
ity =1 Ema_zFuEveE@

and &y =1. But &, can also be computed using £ € H, s0 one has

3.2.54 £)= ,
(3:254) tmlly ,_,qmazﬁmﬁéesam .

The coupling constant of Murray and von Neumann for M and mHa_SAE is
o = .._.Z?mv\:.mazﬁmv?,my

since we are assuming that Endy,(H) is finite. By uniqueness of the normalized trace on
Endy,(H), one has

(x)+ Tr

(3.2.5.5} on_w:azﬁmv?xvv =Tr )

Endy,(LE(M)®K) HE_ZFMAE@EG

for any x¢€ m_aEFmAZvoﬁ. Putting together (3.2.5.1) to (3.2.5.5) one obtaing

ey = :K?mv\:m:nzﬁmv?wv

= ?ngﬁamv\ﬂ.n vﬁw: Tr (p)

Endyy(L2(M)eK Endy,((LE(M)®K)

= {try(f)/Tr (fe)} dimy,(H)

End, (L2 (M)eK)
= dimy, (H),

and claim (f) is proved.
Claim (g} now follows trivially from (f). As for (h), using (e) and (g) as well as
End,,.(eH) = e(End),(H))e, we have

{dim g () = dimgng. . (eH)(6lT) = D(e) aam.azavav
= D(e){dimy,(H)) .
Point (i) follows easily from the definition of dimy(-).
This ends the proof of Proposition 3.2.5.  #
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i M= pr:?v for some integer g1, then &BZEV = tlm &Bnﬁmv is of the

form m with d an integer as in Proposition 2.2.7. This follows for example from claims

(b) and (c) of Proposition 3.2.4. The object -of the next section is to describe examples
involving factors of type 1I;

3.3. The coupling constant: examples.

The situation for which the coupling constant is computed in this section is of the
following kind: G is a non-compact semi-simple connected real Lie group which has the
same rank as its maximal compact subgroups, 7:G—U(H) i3 an irreducible
representation of G in the discrete series, and M = W*(T) is the von Neumann algebra
of an appropriate discrete subgroup T' of G. Then H is naturally an M-module.
Theorem 3.3.2 below is a computation of dimy(H), due to Atiyah-Schmidt [AS,(3.3)).

First we discuss some background; the knowledgeable reader should jump to Theorem
3.3.2.

Let G be a locally compact group. We assume that G _m unimodular, we choose a
Haar measure dg on G, and we denote by Ag: G— cF (G,dg)) the left regular

representation of G.
For an irreducible unitary representation 7:G—U(H) of G, the following

propertics are equivalent:
(i) 7 is a subrepresentation of »on more precisely, there exists a projection p in

the commutant of »QAQ such that the restriction of »O to the range of p is equivalent

to m;
(ii) There exist &5 € H- {0} such that g— <(g) V€| > _m in rwa dg);
(iii)  Forall §nel thefunction g— <a(g}e|n> isin L AO dg).

If these hold, = is said to belong to the (unitary) discrete series. On may then attach to
7 a real number aav 0, called its formal dimengion, such that Schur’s orthogonality

relations formally hold. In particular, for any 7: G — U(H) in the discrete series

J e Ixte)e e = &y (el 1

for &€, €H.

§ 3.3. Coupling constant: examples 143

The formal dimension A_,. depends on x and on the choice of the Haar measure for

G; if d'g = kdg for some constant k> 0, the two corresponding formal dimensions of =

' -1 .
are related by aa =k aa. If G is compact and if _‘Qam =1, then A_a is the dimension

of H in the naive sense. For all this, see section 16 in [Rbt] or Chapter 14 in [DC¥].

Given an arbitrary {(unimodular) group G, its discrete series may be empty. This
happens for G infinite abelian, or infinite discrete, or G = SL(2,(), or G = SL(nR)
with n» 3, to quote but a few examples. When G is a semi-simple connected real Lie
group with maximal compact subgroup K, then G has discrete series representations if
and only if G and K have the same rank. In uw:.mnc_wa SL(2,R) has a discrete series, as
well as SO(n,1)? for n even.

On a discrete group T, we consider always the counting measure; the space of square
.ﬁ_mdawzm functions from T to € is denoted by }3. The von Neumann algebra
W'(T) of T is the (ultra)weak closure of the linear span of Ap(T}) in Enw?; by von
Neumann's theorem, it is also the bicommutant of Ap(T) in wﬁmﬁ,:, and W*(T) is

thus also denoted by >13.
2 . .
Let &, € €%(T') be the function which takes the value 1 at the identity e of T and 0
clsewhere. It is easy to check that x — x(4,) is a linear injection of W¥I) in %AE_
and that the map tr(x) = <x(é,)|4,> is a normalized finite faithful trace on W*(I); see

the end of 4.2 in ﬁmp_m. It follows that the von Neumann algebra W*(T') is finite, and that
:.Mm Hilbert space LS(W™(T"),tr) defined before Lemma 3.2.2 is canonically isomorphic to
e4(r).

Moreover W*(T') is a factor (and thus a factor of type I1,) ifand only if T isan

infinite conjugacy class group, or for short an icg group (Lemma 4.2.18 in [Sak]). The
following lemma exhibits a rich class of icc groups. Before this, we recall that the quotient
G/T of a unimodular locally compact group G by a discrete subgroup I' has always a
G-invariant measure, which is unique up to a scalar factor; by definition, T is a ]attice in
G if the meaure of G/T is finite.

Lemma 3.3.1. A lattice T' in e connecled semi—simple real Lie group G without

center and without a compact factor 8 an icc group, and E*AE is consequently a
11, - factor.
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Proof. The main point is Borel’s density theorem, which we quote without proof (see

[Bor] or [Zim]): T is Zariski-dense in G.

r— Or
Consider h € I' and its conjugacy class C, in I'. The map 1 extends by
y— by
G—Ty
continuity to the Zariski closure - If Gy is finite, then T =C; and
g ghg z

{g € Glgh = bg} is a closed subgroup of finite index in G. But the algebraic group
corresponding to G is Zariski- connected, and it follows that {g € Glgh = hg} =G.
Thus h is centralin G, sothat h =e. Thisshows that [' is an icc group. #

A final remark about this: let T, C G, and ﬂmn G, be two examples of the
situation in the previous lemma. Assume moreover that G, and ow have real rank at

least two. It is a conjecture, due to A. Connes and "beyond Mostow and Margulis", that
E*ﬁ,_v is isomorphic to E*Q.mv ifand only if ['; and T, are isomorphic.

Let G be a unimodular Lie group with Haar measure dg and let T' be a discrete
subgroup of G. In the present context, it is convenient to define a fundamental domain for
T in G tobeasubset D of G which is measurable and satisfies

AL ch has null measure for 7.7, € T with 7, # 7 and

G\ U 9D has null measure.
I

Such a D always exists. Indeed, as G —T\G is a topological covering, it has a Borel
section, and the image of such a Borel section ig a convenient D. The measure of D does
not depend on D itself and is called the govolume of T. (If dg is defined via a
differential form 0 of maximal degree on G, there is a unique form w on T'\G which

pulls back te £, and the covolume of T is _' w.)
T\G

Of course, covol(Il') does depend on the choice of the Haar measure on G I
d'g = kdg for some constant k> 0, the iwo corresponding covolumes of T are related by
covol’ {T') = k covol(T").

Given TCG and D as above, there is an isomorphism from ronhmv onto
awﬁ,verm:uhmv which maps ¢ to M.ﬁ.s P where mqm pwﬁ,u is the characteristic

, el
function of {7} in T, and where 64@ = ¢(yg) for 7€T, geD. It follows from the

definitions of Ay and Ap that the restriction  Aglp to T of the left regular

representation of G is the tensor product of »—, with the trivial representation of ' on
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rwﬁuhmv. Hence the von Neumann algebra Ag(T)" s isomorphic to wHryeC v
wH(I).

More generally, let pe Ermahm: be a projection which commutes with A (T).
Denote by :v the range of p, by T [— S:vv the corresponding subrepresentation

of Aglp, and by 7 (T)* the von Neumann algebra generated by __.vﬁg in Emuv.

v » . L]
ey — ()

* :
Then the W —morphism * X —px is obviously surjective. If ' is moreover

an icc group, then >QC._V. u E*AE is a factor of type 1, and is in particular & simple
ring, 80 that the map »OAE. — avﬁ.v. i an isomorphism.

We shall particularize below to the case in which the projection p commutes with all
of »QAQV_ and defines an irreducible representation of G in the diserete series.

3.3.d The formula dimy,(H) = covol(I')d .

Now the relevant background has been established, and we demonstrate the main
result of this section.

Theorem 3.3.2. Let G be a connected semi—simple rea! Lie group with Haar measure

dg, let T be a discrete subgroup in T, let M denote W*(T) and let +: G — U(H) be
an irreducible representation in the discrete series. Assume that T is an icc group. Then
dimy,(H) = covol(I')d, .

Observations. (1) Lemma 3.3.1 says that T' is automatically an ice group in case it is

a lattice in a connected simple noncompact Lie group without center.
(2) Both covol{I") and d, depend on dg, but these dependences cancel out in the

product.

Proof. From the discussion in 3.3.c, we may assume that H is included as an

12 o -
M-module in L°(G,dg). This inclusion, say u, satisfies =_._=NE= and wu* = p, where

p is the orthogonal projection from rwa,mmv onto H. Also, rmahmv may be identified
with L(M)®K, where LZ(M) i i

oK, where L“(M) is the canonical M-module, and where K is the trivial
_7_\_158:_@ L°(D,dg) associated to some fundamental domain D of T in G. Thus we
ave

dimyy(H) = Tryy. (p);

in this proof, M’ denotes the commutant of M in L%G,dg) or in L%(M)@K, and
Tryy i8 the natural trace on M'.
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By Lemma 3.2.2.b, this commutant M’ is generated by finite sums of the form
2
X = Mffq. For cach y€T, the symbol p_ stands for JAR(7)J € Endyy(L“(M))
el

and ay is a finite rank operator in B{K). Let ?svsmz vmw:c::o:on:_tgamonx.

Let nE®A=

qu M & mn €n® €y where the wsB,n are complex numbers. By definition of
m,neN

H:S. one has

Py

denote the operator nI?E_mvmn on K. One may write

0 if v4
, @ = = .
Tryp:(py®a,) LVIER) YN _excﬁ if 7=
melN
where try, s the normalized trace on M and where ,H,x is the trace on B(K)

normalized by Hxﬁﬂeaav =1 forall meN. With x as above, one has consequently
Try (x) = q.x?.mv.

Let q: rmahmv — K be the orthogonal projection given by restricting functions from
G to D, andlet T denote the trace on wﬁrwa.am: taking value 1 on projections of
rank one. Then Ty(y) = T(qyq) for ye EE+ or y € F(K). In particular, for x of

the form x = an@f we have
yel’

(3.3.2.1) Tryy (x) = Hx?mv HHS»@&H T(qxq)-

Finally any x¢€ E.m. is the strong limit of an increasing net of operators of the form

Muqswqw as the traces are normal, the formula (3.3.2.1) holds for all xe M, and in
1€l
particular

dimyy(H) = Try. (p) = T(apq)-

The right-hand term is explicitly given by

T(qpq) = M_SB;_;V = M.___:::m.

neN nelN

Recall that f denotes the characteristic function of {7} in T, and that ¢ , which

is a function on D, is also naturally a function on G (vanishing outside D). Thus the
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orthonormal basis Tf‘eazv +€T' neN of ~mﬁ,vsm is more conveniently viewed as the
. 2

basis ;ng:fmﬂ.umz of L“(G,dg). Let n be a unit vector in rua.amw assume that

n € H, namely that pp= 1. Forany g€ G one has (writing A instead of »Ov

L=xgni? =Y, Y K@l M %
vel nel

Consequently, as p commutes with A(G):

_.c._m -2 2 F_C:Lmvg_;:wﬁ_m

neN yel

P RESTUISIE™

neN

M. F_Emiuﬁ_f@

neN

covol(T)

By Schur’s relations

covol(r) = 3" -l eyl = - dimy (3)
neN " T

and the proof is complete.  #

Corollary 3.3.3. In the situation of the previous theorem, T is a lattice if and only if
the commutant of M in B(H) is a finile factor.

Proof. The last condition holds if and only if covol(T) is finite.  #

We now particularize G to the group PSL(2R). For each integer k» 2, let =r be

the space of holomorphic functions on the Poincaré half-plane 7  which are
square-summable for the measure z_Tmeaw. (The open unit disc A in the complex plane
with the corresponding measure is equally good). As G actson P by fractional linear
transformations, there is a natural unitary representation i of G in ::. It is a

standard result that mr is an infinite dimensional Hilbert space and that m I8 an
irreducible discrete series representation. (These 7. consitute the holomorphic discrete

series, and the full discrete series contains a second "half", the anti-holomorphic part.)}
Define the Haar measure dg on G as follows: let T= SQ(2)/{#1} be the maximal

compact subgroup of G, such that “m _ MS induces a diffeomorphism G/T~ % then
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dp(z) = u.lw&am is a G-invariant measureon P; if ¢ is a continuous function G —(
with compact support, set

[ #9e = [ guta)] dvote) 2= 500

where dt is the Haar measure on T of total measure 1. )
Then the virtual dimension of ™ is known to be given by dy == see theorem

P —A
17.8 in [Rbt]. (Warning: under the Cayley transform ] £—i _ the
z=Xx+1y +— zh = u+iv
measure a.#m& corresponds to |§.ms|._mﬂ which is 4 times that in [Rbt]! The measure
y (1-u“-v

chosen in the present section is that which is defined by the Riemannian structure for
which 7 bas constant curvature -1; the computation may be found, for example, in
Section 5.10 of [Car].)

Now consider an integer q» 3, set A = 2cos(x/q) andlet I'y be the Hecke subgroup

of PSL(2R) generated by the classes modulo +1 of the matrices

1 A 01
T 1 _ and |_J g-

Then covol(T »v = x(l rmu by the Gauss-Bonet formula, because T, has a triangular
fundamental domain with angles P.nm.m (see Appendix III).

Altogether, we have shown:

Example 3.3.4. Given integers g3 and k22, consider the =~|?22
M=WYT )) defined by the Hecke group 'y with A= 2c08(x/q) and the Hilbert space
Hy of the holomorphic discrete series of PSL(2R). Then H) isa M-module of coupling

constant

dimyy(1y) = K701 - 3.

We particulatize further, and set q=3 in example 3.3.4. That is, we consider
I' = PSL(2,T) as a discrete subgroup of PSL(2R).

Given an integer p2 1, recall that a cusp form of weight p is (in this situation) a
holomorphic function f: ?-+ C on the Poincaré half-plane satisfying two conditions. The
firat one is an invariance:
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i(z) uEt_@Ammﬂ. 267, W ﬂ € SLZT).

The second one is a growth condition: observe that f(z) = f(z+1), so that T can be

defined on the punctured unit disc A* by zmmzav = {(z); the second defining condition

is that the Laurent expansion of T in A" is of the form f(w) = Mpziu for wea®
1

It is a result of Hecke that a cusp form f of weight p satisfies [f(x+iy)| ¢ mwuu\ ? for

all x + iy € 7 and for some constant B; see page 1.24 in [Ogg|.

Let M =W*T). Consider an integer k2 and the M-module H, of example

3.3.4. Given a cusp form f of weight p, the growth condition implies that f induces a
multiplication operator >H“ mrl.mf.v. defined by ;_.sxnv = f(z)p{z), which is

bounded (in fact {|Ad| < B with B as above). The invariance condition implies that Ag

is M-linear. Consequently, given two cusp forms fg of weight p, the operator
>ﬂ>m :B — H, isin the commutant m_a_sﬁ:rv. Let Ty denote the natural trace on

Endy(H,). Then the space of cusp forms of weight p has a natural hermitian form
A:mvr = HrA>m>mv.

A computation in the same gpirit as that presented in the proof of Theorem 3.3.2 shows
that

ey =42 TETg(a)y” Paxdy

with D a fundamental domain for T in ?. Up to a constant factor rlm_.. this is known

as the Peterson scalar product for cusp forms.

This suggests a natural project, which could be interesting for the study of cusp forms:
evaluate I.%norms defined by

kg = {TR(ATA)Y R

*
The equality Hr?fs.mv = Hw+vﬁ>m>U should be useful.
3.4. Index for subfactors of I factors.

There were two main motivations for the introduction in [Jol] of the concept of index
for subfactors. The first was that, if ﬁu ¢ H‘m are two icc discrete groups, the :H factor



150 Chapter 3: Finite von Neumann algebras

N=AT,)" acts in an obvious way on mwﬁ.mv and amazgmquzqu"—,:.
Furthermore anuy is the same as rmesv where M is A(Ty)". This suggested the

following definition:

Definition 3.4.1, The index of a subfactor N of a finite factor M is

[M:N] = dimyy(L%(M)).

This was the original definition of index; it was shown in [Jod] that this definition agrees
with the ring—theoretic one which we have given in Chapter 2, when M and N are finite

factors. The index can also be computed as [M:N] = a_BZEVE_EZEV_ where H is
any M-module of finite dimension over M; see Proposition 3.4.6.

The second motivation was a result of M. Goldman [Gol], who showed that, if NCM
are II, factors (always with the same identity 1) then, if n_SZFMAZ: =72, thereisa
crossed product decomposition M = N » Z/2]. Consequently if one defines [M:N} as
above, Goldman's result is seen to be a beautiful analogue of the fact that a subgroup of

index 2 of a group is normal.

It would also have been nice to have been able to call a subfactor N CM, normal
when its (unitary) normalizer generates M. But unfortunately standard terminology
reserves "normal" for subfactors N such that (N'nM)" nM =N, and the term regular is
used for subfactors with the normalizer property described above. We take this
opportunity to introduce some more terminology.

Definition 3.4.2. i N ¢ M are factors we say that N is irzeducible if N' n M =C

It is not hard to see that a regular irreducible subfactor has integer index (or » which
we shall treat as an integer) — see [Jo7]. A more refined analysis based on [Jo6] shows that
all regular subfactors have integer index. On the other hand dimy,(H) can be any

positive real number so the question naturally arose:

(a) What are the possible values of [M:N]?
(b) What are the possible values of [M:N] for an irreducible pair Nc M ?

Question (a) was settled completely in [Jol] for M =R, the hyperfinite II; factor.
Question (b) remains open even for M =R, and question (a) is open for arbitrary II;

factors M. We summarize the most important known results as follows:
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Theorem 3.4.3. Let N be a subfactor o.?:~ Jactor M.
(i) FEither [M:N] = nncmwa\a Jor some integer q > 3, or [M:N] 2 4.
{f [M:N] < 4, then N is automaticelly irreducible in M.
(ii1) There ezist subfactors of the hyperfinite :H Jactor R with any of the indez values

allowed by (i).

(iv) There are examples of jactors M for which the set of all possible values [M:N]
countable.

Remarks: Statements (i) to (iii) are from [Jol]. We prove (i) below. A generalization
to finite direct sums of I1, factors is shown in Corollary 3.7.6. A second proof of (i) occurs

in Corollary 4.6.6, as a byproduct of the analysis of "derived towers".

Statement (ii) is proved as Corollary 3.6.2(c).

We will verify (iii) by giving several constructions of subfactors of R. The first
construction, in this section, s.o_.rm for all allowed index values. Another construction,
valid for the index values 4cos® 7/q is given in Theorem 4. » 2. A third construction, in
Section 4.5, produces irreducible pairs; the index values 4cos a\n are obtained once more,
as well as sporadic values greater than 4. In Section 4.7.d, we give examples of
non-conjugate irreducible subfactors of R of index 4. We would also like to mention the
work of Wenzl [Wen2], in which a family of irreducible subfactors of R of index greater

than 4 js produced by a construction involving the Hecke algebras H (q) for q a
w

primitive root of unity.
Statement (iv) is from [PP2], and will not be proved here.
For arbitrary II; factors, the question of existence of subfactors of index 4 oonma\n

remains open, more precisely we know of no example of a full I, factor M having a
subfactor of index 4 Smma\n_ q#34,6. (A :_ factor is called "full" if the group of inner

automorphisms is closed in the topology of pointwise strong convergence in the whole
automorphism group — an example of such a factor is A(PSL(2,1))".)

Proof of 3.4.3 (i). As for finite dimensional algebras (2.6.2) there is always a (unique)
faithful Swn?ummmm_.ssm conditional expectation from M onto N, which, viewed as an
operator on  L°(M) is the orthogonal projection ey onto ruﬁzv The fundamental

construction again yields a 11, ~factor
I 2
Endy(L(Mtr)) = End (M) = (Myey)-

(See Theorem 3.4.6 below for the first equality.)
We claim that the normalized trace of <M, en> has the Markov property
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[M:NJtr(epx) = tr(x) ~ forall xe M.

il

Indeed, the linear form defined on N by x— :.?zuc is a trace (3.6.1.i1li). As 1

tr(ey) (M:N] by Proposition 3.2.5.e applied to the N-module rmAzc. the property is
valid for x € N, by uniqueness of the normalized trace on N. But then for x € M, we
have [M:Njtr(eyx) = [M:N]tr(eyxey) = Enz_:.ﬁmzmzﬁx: = tr(Ey(x)) = tr(x), using

3.6.14.
Now the tower construction of Chapter 2 works and yields an Increasing sequence of

11 _ups..ca

M HZnZ—HZn...anan+pn....

0

and a sequence of self-adjoint projections Ammvi satisfying

(3.4.3.1) Bee, & =¢
e = &8 if |i-j] 2 2,

with = [M:N]. Claim (i) now follows from Theorem 11.16.
An alternative proof using the trace goes as follows: The trace tr on ﬂz_n has the

Markov property

(3.4.3.2) i) ._H?a_.w =tr{w) for j21 and we¢alg T,m_.. . .,o.TL.

where = [M:N]. Now suppose that f<4 but B¢ {4 o@wa\a :q 2 3}. Using 2.8.5 and
2.8.7 (note that the number J is generic) as well as the relations 3.4.3.1 and 3.4.3.2, we
obtain for each k > 1 a trace preserving isomorphism of the algebra B 8k of Section 2.8

onto the algebra C, = ﬁ_.m_..:,mrL“... By 2.8.4(vii), for each k the trace of the
minimal central projection ow (necessarily a self-adjoint projection in Orv is 1x€. |J.
But by 2.8.3(ii), if 4 cos2(x/k) < A< 4 cos?(x/k+1), then Py (87})<0, contradicting
the positivity of the trace. Tt follows that if §< 4, then Bel4 8%35 1q23). #

Proof of 3.4.3(iii). Fix #eR with = Aoo%a\p for some integer q2 3, or 324.
Consider a sequence of self-adjoint projections Ao}x on a Hilbert space, together with a

faithful normal tracial state tr on R = :.m_.mw.. -+}* satisfying the relations 3.4.3.1 as

well as the Markov property 3.4.3.2.
First we must recall how such a sequence of projections and such a trace can be
constructed. In 2.8.4 (in case > 4) and in Section 2.9 (in case f= »o%wa\a for some
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q) we have constructed an increasing sequence of finite dimensional O*lm_mmcwvm
(B Frvrwf with B 4k generated by its identity and self-adjoint projections e, ey

satisfying the relations 3.4.3.1, and a positive faithful normalized trace tr on B 8k

satisfying the relation 3.4.3.2 for 1<j<k. Since tr is faithful, the trace representation

. 8 faithful as well, and we can take R to be a:.ﬁ:_w u.wu..

A simpler procedure is available when § is the square of the norm of a non-negative
integer valued matrix (i.e. {f € {N)). In this case there is a connected pair of finite
dimensional C*-algebras B C A with [A:B] = §, and the tower construction for this pair

yields & sequence of projections ?me satisfying 3.4.3.1, and a positive faithful trace on

alg ;m__. ++} satisfying 3.4.3.2. Cf. 2.7.5 and the discussion at the end of Appendix Ila.
Lemma 3.4.4. [Jol] With the notation above, R is the hyperfinite 11, factor.

Proof. It is clear that R is a finite, hyperfinite von Neumann algebra. We claim that
if z is in the center of R, then

tr(zx) = tr(z)tr(x) for all x € R.

It will follow from this and the faithfulness of tr that z = tr(z)1, so R is a factor.
For each k, let Cy = alg {le),---¢, ;}. By 2.9.6(e) (in case f< 4) or by 2.8.7(a)

J
trace preserving isomorphism of wm.r onto C,. It then follows from 2.9.6(g) (for f< 4)

and 2.8.5(b) (in case (2 4), the map ¢, — & (on the generators T.m of Lm i) induces a

or from 2.8.5(f) (for 3> 4) that e extends to an inner automorphism of C,, and
hence to an inner automorphism o of R.

Note that tr has the multiplicative property :Q_Ev = EE:..Q& whenever
vy €C, and y,€alg{l, 9 €ym)- (One can verify this directly or use the
isomorphism OB vB 4m together with 2.8.5(e) or 2.9.6(f).)

It will suffice to verify the relation tr(zx) = tr(z)tr(x) when x € C) for some k. Let
¢> 0, and choose ye€ oN for some {, such that __n..uﬁ__N < ¢ Then :.Qnr+mx: =

tr(y)tr(x), since o p(x)€alg {le, ;- -e., 1} Consequently,

| tr(zx) = tr(z)tr(x) |
= |tr(zay | ,(x)) - tr(z)tr(x)]|
< Jrl(z =)oy, () + ltalyay, () - trate()|

(since O g8 inner)
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= Jtr((z = V) o (D] + 1{t5(y) - @)
<2¢ =x=u

Since ¢ is arbitrary, this finishes the proof. #
Lemma 345, [Jol] Set Ry= {Leyeq )" Then [RiRg =4

Proof, We know (by 2.8.5 and 2.8.7 or by 2.9.6) that for each k22, the
relation ftr(e;x) = tr(x) holds when x € alg {1.e5,:" -e }, and, taking limits, we have
1
the same relation also for x € R & Therefore mwuﬁmt =L

Similarly  Eyley) = g, where N={lege,--}. For k23, any

X € alg :hm.. . .m_L is of the form x = a+ Mcmm&nm_ with a,b,.c; € alg {heg, - .a_L.
i
Consequently, mzcc =a+ m.—Man and e xe; = mz?vm_. Taking limits again, we
i
have
(*) e xe; = mzccm_ for all x € w\w

: o T
One next verifies that xe; = f mw_m?m—vm_ for all x € R, by first checking this for

X € alg :.ot:.mﬂ (that is, for x of the form x = a+ Mv,m_nm. with va.ﬁ €
i

alg {Leg, -e,}) and then by taking limits. Consequently Re, = wu e, and Re R
=R, e wu Observe also that R = ReR, because finite factors are algebraically simple
=RgeRy.
{[DvN], Cor. 111.5.3). 0 ,
Let e be the orthogonal projection of rmﬁs onto L :ﬂmv. One has exe = BEp (x)r
. 1 .
for all x € R, by 3.6.L.i. below, so that in particular, eeje = A e. We claim that also
1 i = i heck this equality on vectors xe yil
e ee; = g e,. Since R= m{mwwm‘ it suffices to chec q 1

where X,y € wm and 0 is the trace vector for R. But

e e, (xe,y0) = e ee  Ey(x)y® (by ()

= m_mmuﬁﬁmz?vib (by definitions of e and mxuv

= mpm_ﬂmﬂmtmz?vws (by W.mu_,:_mwu:w of mw_%

7l e Ex(x)y0
gl e,(xe,y) (by (*))-
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It follows from the relations eee = ulm and ejee;= mLm_ that e and e, are
equivalent projections in (R,e). Since e is finite in (R,e)} by 3.6.1(v), the projection J

is finite in (R,e). But 1 is the sum of finitely many projections each equivalent in R to
a subprojection of ¢, so (R,e) is finite. Hence _?Wm_ = :.@L = Em_vL =5

This completes the proof of the lemma, and also of 3.4.3(iii). #

It is tempting to guess that the pair R > mm is irreducible, also for 35 4, since on a

purely algebraic level it is easy to see that there is no element of the algebra generated by
{ej g, ++}  which commutes with _mm,mu,. -+}. V. Jones confesses to spending

considerable effort to prove this, but it turned out that m{ has non-trivial relative

commutant in R when f#> 4. A laborious proof of this non—obvious fact was given in
[Jo1} and a simpler proof in [PP1]; we will give a proof due to Popa in 4.7.5. The
difficulty is that one cannot write down an explicit form for an element in mu. NR

without invoking a beautiful representation of ?me...;. discovered by Pimsner and
Popa.
We have seen that one way to obtain a sequence of projections Am}vH satisfying the

relations 3.4.3.1 is to form the tower from an indecompesable pair BC A  of finite
dimensional C*-algebras. Then, as we have observed in Chapter 2, the restrictions on
index are related to restrictions on the type of inclusions B C A which yield & modulus
#< 4. This is where the Coxeter graphs of types A, D, and E enter the picture. But to
create the sequence Am}v_ one can also use a pair NCM of finite direct sums of

_:Lpgoa. In the following sections we will see how, if one allows this extra freedom, the

remaining Coxeter graphs appear!
We finish this section by recording one useful fact on index of subfactors from [Jo1].

Proposition 3.4.6. Let NCM be finite foctors and let H be any M-module such that

imy, (H)
%EZEV is finite. Then [M:N] = % (In particular, &BZC.: 2 &EEAE,\

Proof. If H, and H, are any two M-modules such that &BZAFV is finite for

i=12, then there is a finite dimensional Hilbert space K and an M-invariant
projection q such that H; ¥ q(H, ®K) as M-modules. Then

A_:szﬁ:_vm dimy(Hy @ K) = dimp(Hy) dim¢(K), by 3.2.5(i), so dimy(H,) is finite if
and only if dimy(Hy) is. In particular, [M:N] is finite if and only if dimy(H} is.
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Assuming that (M:N] is finite and choosing an M-module isomorphism
Hy ﬁrwc(c ® K), as above, we have

dimy(H) = dimy(a(LE(M) 8 K))
= try. (q) dimy(L¥(M) @ K) (by 3.2.5(¢))
= tryy. (a) dimg(K) dimyy(LZ(M)) (b 3.2.5(1)),

while dim,,(H) = tryg () &EAQC. #

3.5. Inclusions of finite von Neumann algebras with finite dimensional centers.

We saw in Chapter 2 that & unital inclusion B c A of finite dimensional C*-algebras
can be specified by the inclusion matrix A € ZE:__EV and & vector > €N" for some n,

specifying the algebra B up to isomorphism. It is impossible to specify an inclusion 80
precisely in the II,-case since, for example, it is possible to find infinitely many

non—conjugate subfactors of index 4 in R, even irreducible ones, as we shall see in Chapter
4. What we will do is specify enough information to be able to calculate all the needed
coupling constants, which will enable us to find the Markov traces as in Section 2.7.

The situation will differ in two ways from the finite dimensional case. The fitst is that
there are no minimal projections around, so integers do not appear in this way. The second
is that the subfactors can have indices different from squares of integers. This extra
freedom allows the appearance of new Coxeter graphs.

m
First some notation. Let M= & M, be a direct sum of finite factors with
i=l
corresponding minimal central projections py,- - *Pp- Since the trace on a finite factor i3

unique up to a scalar multiple, a trace on M is completely specified by a row vector

§= (8}, Bp)s with 8 = tr(p;). (Warning: This is not the same vector which was used

in Chapter 2 to specify a trace on a direct sum of finite dimensional factors; there we uscd
the vector whose m:H component is the trace of a minimal projection in Zw.u A trace is

positive (i.e., trace ?._wv 2 0} if and only % has non-negative components. We adopt the
convention that “trace" means "positive frace". A trace is faithful (i.e., trace (a*a) =0
m

implies a = 0) if none of the components of § are zero, and normalized if Mm, =1 A
=1

trace is automatically normal; i.e., if 5* is a family of mutually orthogonal projections,

)= M_:wssv.

w
then trace (v
= i=1

1
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Recall that if P is a finite factor, trp denotes its unique normalized trace, and if Tr
is any other traceon P, then Tr = .Hi:zv.
n
Let N= HM _z.m be another direct sum of finite factors, contained in M and having
the same identity, Let ;. .4, be the minimal central projections of N.

Definition 3.5.1. If N CM are as above, we define the m-by-n matrix HR_ = (g ;)
L)
by

nm J = ﬂ—.U_g:u_n_._v.

Proposition 3.5.2.

N i M . .
(i) The matriz Ty is row-stochastic; i.e., ¢y 0 and M..oE. =1 forall i
.-

m - N
(i) If 8 specifies a lrace on M, then meﬂ_._ specifies its restriclion to N.

(iii) If NcMcL are finile direct sums of finite factors, then .Jm = H_WHK.

Proof. (i} Mo. .= Mpqvmzﬁvmnhv = :v.gﬂvt =1, gince Mn.. =1 ,
j K : )
(i) As M.._.m =1, !
i
..Hwom?.z = M:wom?ma_.v = M...awam?m:_.umzﬁvmﬁv = Mmmni.
i

(iii) Let ?._L denote the minimal central projections of L, so that q,_w is the
matrix wh j i i
rix whose (k,j) entry is :._.rrc.rn..v. Since n_. = M..Ea.m. one has
i

Ly _
(T = M»“:;_LSE{.

But . _ .
ut in the finite factor A= qwr_ if  egf are two projections, then
ir,(e) = :..»:.v:;mmv. Thus

L
T .=
1
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If r,p;#0, then x— pnﬂrumrqrvm?xxv is a trace on p;M whose value at p, is 1, so in

fact tr (r,x) = tr_ ,((x). Hence
arumrnru_ k ) u._z_

Ly _
ﬁ,sz... = M.S._.wr?.rwt..nungma_.v
i

= Y TN
1
as desired. #

A second piece of data needed is the matrix of indices of the "partial embeddings".

Note that z:uzﬂvmﬁ n?mn.__x"xmzw mmpmagzﬁormeE.ch_.cm
k2
Mi,j = PiaMPia;

Definition 3.5.3. (i) With notation as above, define an m-by-n matrix >_,~m_ with

entries

(We note that this expression is the same as in the finite dimensional case. Observe that in

.,:o_.:_:maagao:p_ngm >K %..Q.E_Emm HE, namely

My
(TNDis = A 4A

where p, M & ZE.?_AQ, and n.mz v Zﬁ_\..,?v.v
(it The inclusion N ¢ M i3 called connected if Z(M) n Z(N) = C1. This is true if

and only if >K is indecomposable.

(i) A representation x of M on a Hilbert space H is called a finite
representation of the pair N ¢ M if a(N}" is a finite von Neumann algebra.

(iv) We say that N is of finite jndex in M if NCM admits a finite faithful

repregentation.
(Note that parts (ii), (iii), and (iv) make sense for arbitrary pairs of finite von

Neumann algebras - not necessarily with finite dimensional centers.)

Lemma 3.5.4. Suppese N CM are finite direct sums of finite factors. The jollowing

are equivalent:
(i) N is of finite indez in M.
(ii) The matriz >ﬁ has only finite entries.

LA
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) (iif) For any faithful trace tr on M, the reqular representation of M on
L(M,tr) is a finite representation of the pair N ¢ M.

(iv) For any foithful representation {r, ¥} of M such that a(M)' s fnite, the
algebre x(N)' is also finite.

Proof. (iv) = (iii) = (i) is evident.

()= (ii). If r is a faithful finite representation of the pair NcM on H, then the
commutant of iz.i.v on iuma.__vm is iump._wizvh a:vma_.v, which is finite. It follows

that &32. {n(p;,q.)H) < » (Proposition 3.2.4.d), and
o

{by 3.4.6.), which is finite.
(i)} = (iv). Consider a faithful M-module H for which M' is finite. Since
1= vmnb. to show that N* ig finite, it suffices to show that each Ea.‘d is a finite
i,)
projection in N’ (because a sum of finite projections is finite.} If En_.*o_ then

cma%z,vmn_. is the commutant of z.C, on vmnq,:. By 3.4.6 and 3.2.5.h,
. _ 12 .
Q.Ezm-_.?mpv.zv = »Z. a::gm _.@bnh.zv
2 -1, .
= KLQEZAEQHV 9533::5.

Since M’ s finite on H, so is M’ = 57:. on pH, so by 3244,

9333359. mea:_aaaz. .5&.59. gmi.piﬁps;zl.;
1,] )
finite. #

Observe that the analogue for A of Proposition 3.5.3.iii does not hold. For example,
let. R be the hyperfinite =_ factor, let p be a non-trivial projection in R, let ¢ be an

isomorphism from ww to w—nv, and set

N={yeR: y=x+ px) aﬂmosmxmwcrwng
M=R oR, .
Then
R, M
ARAM = :E =2,
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and
AR = RNI'2 = (s + i

by Corollary 2.2.5 of [Jol] or 4.7.2. These are not equal, unless tr(p) = 1/2.
Of course, if NcMcL is a triple of finite {actors, then [L:N] = [L:M] [M:N] by
Proposition 3.4.6.

If N and M are as in 3.5.4, and the inclusion N ¢ M is connected, then all factors of
N and M areof type II;, or &Ba?\: < w. It is also known that all factors of N and M
share (or do not share) the property of being hyperfinite (Lemma 2.1.8 in [Jol]) or the
property T (see [Ana) and [PP2]).

If = is a finite faithful representation of the pair NcM on H, then the centers of

M)’ and «(N)’ are the same as those of M and N respectively, and the rows and

columns of A% WW“ are naturally indexed by the columns and rows of >K. The

generalization of Proposition 2.3.5 to this setting is the following.

Lemma 3.5.5. Let N ¢ M be a pair of finite direct sums of finite factors, as above, a3

suppose 7 is a faithful finite representation of the pair. Then
! Mt
ﬁmw = (AN

Proof. If M and N are factors, the equality holds because [x(N)':x(M)'] = [M:N]

by Propositions 3.4.6 and 3.2.5.g. To extend the equality to the general case, one proceeds
exactly as in the finite dimensional case (Proposition 2.3.5), with Proposition 2.2.5b being
replaced by [DvN], Proposition 1 of §1.2, which says: if Q is a von Neumann algebra on
H and p is a projectionin Q orin Q', then m=avov€m: equals u@:aDAE? #

Also note that x(M)' is of finite index in z(N)’ by Lemmas 3.5.4. and 3.5.5.

Proposition 3.5.6. Given an irredundant m-by—n matriz A over
{0} u{2cos x/q:q2 3} U[2«], and an m-dy-n row stochastic matric T having the
same pollern of zero entries a3 A, there ezists a pair N CM (both hyperfinite) with
AM = A and TN =1T.

Proof. Take M to be the direct sum of m copies of R, the unigue hyperfinite EH

factor, denoted R, In each R;, choose a partition of unity EW i 1< jsn} with

:,Sr.ﬂv = G.:L.. If G.r;. is non-zero choose a 1I; subfactor vS of wE uniw\_ni
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. p o l/2 .
with :w,__. : 15._ 12 TCC (possible by [Jol], Theorem 4.3.2). For each i and j such
that A‘EE # 0, choose an isomorphism mf. :R— w: (possible since all the factors are
1I, and h fini = = o
1 yperfinite). Set 9 .Mnf._ put z.U = *Maicc :x€R}, and N H.qopz.
i i =
Then .:2 = z_.. and N is the required subalgebra.  #

3.6. The fundamental construction.

The discussion of the fundamental construction in Chapter 2 was purely ring theoretic.
In the von Neumann algebra framework, where the preferred modules are Hilbert spaces, it
is natural to make & construction which, apparently, depends on the choice of a trace on
M. We begin by showing that in fact the ring theoretic construction is exactly the same.

First we recall some notions from [Jol] which work for arbitrary finite von Neumann
algebras exactly as for factors. Let N ¢ M be finite von Neumann algebras with the same
identity. Given a faithful normalized trace on M, there is a unique faithful normal
conditional expectation Ey:M—N determined by tr(xy) = tr(Ep(x)y) for x€ M and

YyE z.w In fact mz is the restriction to M of the orthogonal projection
. 2

ey : LY(M,tr) — L(N,tr). We denote by (M,ey) the von Neumann algebra on rw:S..i

generated by M and eN-

S_.a. let J denote the conjugate linear isometry of rwcs.i extending the map
Xx—x on M.

Proposition 3.6.1.

(i) enxey = mzo%z Jor xeM |
(i) Jeyd =ey

(iii)  For x€ M, x commutes with ey ifond only if x € N.
(iv)  (Mey) =IN'J 7

N— (M, ey}

v Th ; injects ]
(v) e map ¥ i an injective morphism onlo mzAZ.azvmz. 7

yr—yey
(vi) The central support of ey in Az,mzv is 1. 7
(vii))  The space Zmzz__ which denotes the linear span of ?.mZx. 1x'x* €M}, is .
8 strongly dense *—subalgebra of ﬁshzv.

Proof, (ef. [Jo1]). 7
(i) It suffices to check that EN(xEg(y)) = EN(x)En(y), but this follows from 7
the N-linearity of En-
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(i) Follows from EZ?J = mz?v{.

(ili)  Note that x commutes with ey if and only if left multiplication by x
commutes with mz. This is clearly so for x € N. On the other hand, if x€M and x
commutes with Ey, then x = xEn(1) = Eglx) €N.

(iv) By(iii) N=Mn{ey}’, so N' = (M'ufe )" = (M'ep). But IM'J=M
and .umz._ =ey, 80 JN'J = AZ_mzv.

(v) By (i), the indicated map is an epimorphism. Let  denote the canonical

trace vector in r.NAZ.HJ. If vey =0, then yenQl = yR=0 and y=0 because £ is

separating, so ¥ i8 an isomorphism.
(vi) Let z be the central support of ey in N'. Then zeNNN' and

Yz-1) = zey -ey = 8, by definition of a central support, so z=1 by (v). Now (vi)

follows from (iv) and (ii).
(vii First note that by (i), the set

n
X={xg+ M.xmmzf :n €M, x,y; € M}
1=1
wmp.rmcg_mmgpa AZ.mzv ncﬁw:___nmz_Eamz.uo..rmm.._,ouw n_cmc_.mo.‘xa

Az,mzv. If
Y = AMﬁQZB 1%,y € M},

then Y is a two sided ideal in X, so by the Kaplansky density theorem and the joint
strong continuity of muliplication on the unit ball, the strong closure Y of Y isatwo
sided ideal in AZ.mzv. But Y contains the central support of ey, which is 1 by point

(vi),s0 Y= Ag.mzv. #

We now specialize to the case where N and M are direct sums of finitely many :—
factors with minimal central projections T:Ln 1,+-n} and {p;i= 1,---,m}
respectively. By the equality (iv) above, <M,e> s also a finite direct sum of :—

factors, with minimal central projections tnh.,r j=1,---,n}.

Lemma 3.6.2.

(a) If NcM are type 11| von Neumann algebras with finite dimensional centers and

N is of finite indez in M, then &Bmﬁz.zzy < o
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(b) If NcM are 11, factors, then dim¢(N'nM) ¢ [M:N].
{c) If NcM are 11, factors with [M:N] < 4, then N' N M = C1.

Proof. We first consider the case that N and M are factors. Let H = hu?c and

write Try. for the natural trace on m.azAE. If  isa projectionin N‘ N M, then

52.3 = &SZAEV (by definition of &SZV
2 dimpy(H) (by 3.4.6)

= :EEL (by 3.2.5(h))
> 1

Suppose N' N'M contains k mutually orthogonal projections IS »fj with M‘m =1

Then
[M:N] = Try(1) HMHHZAJV
i

NM:zsv-_ y k2.
1

In particular, if N’ nM#C1. then [M:N]»4, and if N' nM is infinite dimensional,
then [M:N] = . Suppose [M:N]¢w, and let f},--+.fy be a mezimal family of mutually
orthogonal projections in N’ N'M; then [M:N]» K2, dim¢(N'nM). This proves all the
assertions in the case of factors.

.205 return to the situation where N and M are finite direct sums of finite factors. The
projections uma_. are central projections in N’ N M and En%z‘:zv =N" nM So
P Pay
. . ] i
if dime(N'NM) = @ there must be a pair (i,j) for which &:izﬁw q.n Zv q )= But
. . m h. m -w
this contradicts the observation just made for the case of factors, and completes the proof

of (a). #

The next results (3.6.3~3.6.5) depend on ideas of Pimsner and Popa [PP1].

Lemma 3.6.3. Let NCM be finite direct sums of type I, factors with N of finite

indez in M, and let tr be a faithful trace on M. Ifxe Az_mzv“ there i3 a unigue y € M
Jor which xey = yey.



164 Chapter 3: Finite von Neumann algebras

Proof. Regard N Cc M represented on ruﬁsv.

Let us first check uniqueness. Suppose y,y' € M with xey=yey=y'ey. If 0 is

the trace vector in rm:sv. then
(y-y' )02 = (yy" Jeyft = 0,
80 y' =y because 2 is separating.

To prove existence, we have to show that AZ_ozvmz =Mey and we proceed as

follows.
As N’ is finite, (M,ey) is finite by 3.6.1.iv, and there exists a faithful normal

conditional expectation F from AZ,mzv onto M (see Proposition 11.5 for the proof of
this latter fact). We claim that Emzv is invertible in M. Since F is an
M-M-bimodule map, F(ey) belongs to N' nM, which is finite dimensional by Lemma
3.6.2. Consequently, to show that the self-adjoint element Eozv is invertible, it is

enough to check that xF(ey)x # 0 for any positive element x#0 in N’ n M. But if
0= xﬂozvx = m_?mva,

then xeyx =0, since F is faithful. And Xenx = ?z&..?zuc. 80 exx = 0. Hence
0 =eyxey = Ex(x)ey,

which implies x =0 by 3.6.1.v and the faithfulness of mz. This proves the claim that

F(ey) is invertible.
Now we may obtain a formula for xey. Suppose first that x i3 in MeyM, namely

that x is a finite sum M..sz,._. with a,b; € M. Then Fxey) uMszﬁ.Emzv and
Exmzvﬂmzvu_mz = Xey.

This formula holds for any x € (M,e) because both sides are strongly continuous in x
and because MeyM is strongly dense in (M,ey) by Proposition 3.6.1.vii. Thus

xey € Mey for any x € Az__mzv. #

Theorem 3.6.4. Let NCM be type :~ von Neumann algebras with finite dimensional
cenlers and let tr be a faithful normal trace on M for which N’ is finite on rmAZ.S.V.
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Then

3 As a right module over N, the algebra M is projeciive of finite type.

(ii) The conditional ezpectation ENy:M—N s very faithful (in the sense of
Section 2.6).

n
(i) (Mey) = MeyM := M b, :
N’ N A.THJQZJ iny 1, J.J € M}.

(ivy If a:M—M isgq right N-module map, then o ertends uniquely to an

element of cs,mzv =JN') on rmcs_:.v.

(v) If x€IN'J then x(M)CM, where M is viewed 43 8 dense subspace of
rw:s.:v.

Proof. (i) Any strongly closed right ideal in N is projective of finite type, and in fact

of the form pN with p a projection in N. (See [Tak], 11.3.12)) We are going to show
that M is isomorphic, as a right N-module, to a finite direct sum of such ideals. In the
course of doing s0 we exhibit a bagis {vj:15ign} of M over N with the following

properties:
*
(a) En(vivi) =0 if i ¢},
*
P . . K] . * *

(b} f:= z?}v I8 & projection in N, vf. = Vi and En(v.x) = LEN(v;x), for
l¢ign and x e M.

(c) Every x in M has a unique expansion

n
X = M«.E. with Y; € N.
i=t

*
In fact vi¥; = v;En(v;x).
Since the central support of ey in Az.mzv is 1 and since AZ.mzv is finite with

finite dimensional center by 3.6.1(iv), there exists a finite set Wiyt W
*

o Of partial

i
i¥jsen Ea Ms._.s.h. = I, in particular the s._. have

Mutually orthogonal range projections. (See [Tak], v.1.34.) As wiey = W; there are, by
-—- )

isometries in A_S.mzv with w

3.6. e i i i
3, elements VitV €M with Wy = VieN for all j. We verify that the v have the
Properties (a){c). For i j

° | ... ' * i

= WiWj=enviviey = mz?mdvmz,
*

m — . N . * . .

o* mz??..v =0 by 3.6.1(v). Similarly, since w.w; is a projection in cs_mzv and

*
wiw, nmz?}voz_ 3.6.1(v) implies that f= mz?wé is a projection in N.
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Furthermore
* *
VifieN = ViENYiVieN = WiV

w; = <moz.
30 that Jm =V by the uniqueness statement of 3.6.3. Therefore, since m €N,
* * *
LEq(v;x) = Eg(fiv;x) = Ey(v;x) for x € M.

For any x e M,

* *
xey M.s_.s_.xmz = M‘sza._.xmz
J J

®
M.J.mz?.dxvmz_
J

*
and hence x = MJMZAJ&_ by 3.6.3. To show uniqueness of the expansion, suppose

j
that ng}s with y; € N. Then

*
v.E <._m_z?m M.Jw_.v

J

4
—
<
-
»
fan
I

H

L 3
VENCY Y)Y,
=vify; = vi¥pe

using N-linearity of Ey and properties (a) and (b) of ?L. We will refer to a family
{v;} baving properties (a)-(c) as a Pimsner-Popa basis of M over N; see [PP1].
Now consider the N-linear map

M— G :2
¥ I¢js¢n

X Ez?_w:.

»
It follows from the expansion x HMJMZ?H& that ¥ is injective. On the other hand,

if Q_.vmmm.z and xuMJﬁ then by the uniqueness of the expansion,
.v *
iy = <h.mz?mxv for all j. Multiplying both sides on the left by v and applying Ey
* * . R *
gives mﬁnm.mz?uin since both ¥; and _wz?h.xv are in mz. that is wh.lmZ?_.xv.

¥(x) and ¥ is surjective.

Thus Q_.v
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(i) Let a:M—N bea right N-linear map and set a HM‘&JTM. Recall from
i

. TR ;
Section 2.6 that Eg(a): M — N is defined by mm?vg = En(ax) for x € M. We have

afx) = RMsz?wx:

»®
= MRJEZ?._& by N-linearity of o
L]
= mzAMa?th.xv by N-linearity of Ey
= ER(a)(x),

so that a= Hh?v.
iii) It foll i i i i
ﬂ. ) ) os.m....wcn.. 3.6.3 Hrwﬂ MeyM is a two-sided ideal in Az.mzv. But Zozz
contains M.c._.sz = M.s..mi_. =1, 50 MeyM = AZ_mzv.
J

J
(iv) It a:M—M is  right N-linear th
%cuaMsm ?#TM%.E ?_.% th S et Bt (s,
g. {En(Y ), o(v)En(vjx):  thus QIM.»EJ:%ZO:{, where
] J

Aly) denotes left multiplication by y. The unique ||
2 . *
L(M,tr) is M&JXZJ € (M,ey).

J

w.8=z==o=m extension of a to

(v) Any xe¢ (Miey) is of the form M.Jaz_u.. by claim (iii). If y € M then
J

x(y) = Mp_.mz?E €M. #

Corollary 3.6.5. Let NCM be a pair of von Neumann algebras of type =_ having

finite dimensional centers, and suppose that N is of finite indez in M. Let tr be any
Jeith ful normal trace on M and define ey ond mz via tr. Then

Mey My (Mey)  as N-bimodules, and
Endg(M) ¥ (Mey)  as C-algebras.

Proof. Since N¢M has finite index, AZ,mzv is finite. The isomorphism
r

miz:(: L] Ag,mzv follows from 3.6.4(iv) or (v); the correspondence is defined by
Aa. .

Y (3)ENA(b) — Y ajenb
The isomorphism Zozgmmibﬁz_v extending the map a8y c.l.»?vmz\zs on

elementary tensors follows from 3.6.4(i} and (ii) and 2.6.3. One can also verify directly the
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isomorphism M &y M ¥ (M,ey) by using a Pimsner-Popa basis. #

The next proposition determines one part of the spatial data for the inclusion
Mc (Mey)-

Proposition 3.6.6. Let NCM be finite direcl sums of finite factors such that N is of

(Men) Myt
.m::aS%aSZE;:m:.naanae.?;...‘m&_s%aaz ﬁ.«:> ﬁ>zv .

Proof. This follows from 3.5.4, 3.5.5, and the formulas ,_zs_ues,mzv,

IMI=M. #

To describe M C Az.mzv more precisely, we also have to compute the matrix of traces
T (Mey).
M
case presented in Chapter 2.
Before proceeding, we summarize our notation: N CM is a pair of finite von Neuman
algebras with finite dimensional centers, with N of finite index in M; the minimal
central projections in M and N are respectively ?. :1¢i¢m} and 3. :1¢jsn}l. A

This is the part of the theory which differs most from the finite dimensional

trace tr on M is specified by the row vector §, s;=tr(p;). Let H= rm:s.i. Set

N o= Pia; NPy, M; ;=P iMpa;:

NG =RhgNReg = ma_zw._.ia_.s_

My =RhgMipg = mazsﬁa__mr
M

when nma.w # 0. We have the trace matrix .H,z with entries aE = ﬁvmz_?mabr and the

index matrix >§ with entries

\J:.d =0 ﬁmnb =9,
1/2 .
Ny =N 2 piaj 0.
{(Mep) M
Our present goal is to compute the entries of ez_ .H,z ,, namely

d;. = .._.a.z_ﬁn.muu.

[
—
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Letmma 3.6.7. If vmn.._ #0, then

(i) A:Ez. Hv 9;H) = MM.._ and
i,j

ii d. . dimy,,
(i) B Eﬂ_Z ?n_: 95&.2.2.‘5.

Proof. By 3.4.6,

dim .q.H
2o N, .?_a_ )
i,j = dimy, (p.q.H)®
Zr._. i
and by 3.2.5(h),

dimyy - (pyo;H) =

-1,.
. S.u Z?:.ut 935255.

But since M is in standard form on H, so is _:S on _u: and dim Z:u 5
2

Combining these observations,

M
».. a. ..
L) _E_IF.MQ_Q._E ﬁvmz_?ﬁ:.v
=dim,, (p.q.H)c.

N i)

”Q.:.:Zﬁ ﬂ—.: n. .

L)

by 3.2.5.g. Hence (i).
(ii) This reads

&Sz.m HAEQ..E =

E.mmv_

which follows from 3.2.5(h).  #

Notation: For each j, let

1

the sum being over those i such that Pq; #£0, and let F be the diagonal matrix

F = diag(¢),---,¢,). Furthermore, iet T be the n-by-m matrix
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(Mey) .
Proposition 3.6.8. Ty N _F

Proof. Combining 3.6.7(3) and (ii) we get

(3.6.8.8)

if Sa.._*o. and aEuc otherwise. To eliminate &En.ZA&.E we nse the fact that

)
M.e.
H“_ zv ig row stochastic,

1= . |_L &Bn.z.ﬁﬁmr

) J

80

(3.6.8.b) &Bn.z.gumv = Gw.

)

2
AT . ]
Putting this back in (3.6.8.a} gives &.._ =¥ m__.ru_ if P9 #0 and u.._.m =0 otherwise, as

degired. #

(Miey)
Remark. Let us check what that formula _H,z_

dimensional algebras. Suppose that p;M ¥ Mat thS and a‘._z ~ Mat JAQ. As noted

=FT means for finite

. . M .
before, the inclusion matrix A = >K determines the trace matrix T = Hz via

since n_.wm is the sum of »SJ o:romonp_iaaﬂvqouoosoammu EZ. mﬁ.:um

ji = diag(py, -+ iy, and ¥ = diag(v), ++.¥), this can be written

T= m.— AV
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32
When p.q. #0, wehave (T) .I.I...._l» ﬁ d wh =0, (T),,=0=2A W
i 7% PTE T Ny AW BT D T TR Ay
Thus
T =AY

n
= = . N - t= -
Set L= (Mey), L= 0 Ly then LjzMat, () where x= (A __:.IM.{E.. Note
1

j = i
that
= 5 41 _ (1 -1_Y
b= AM.‘H,_._V =, M“\,_.}v =%
i 193 ]
Thus A v
M,e v,
[\ Z. _ o _ {-_ ﬁm _ \.—m
Tv = M= 5 A = Niwy

which is in accord with the relation observed above between the inclusion matrix and the
index matrix.

We now return to the analysis of the general case.

As the minimal central projection in (Miey) = JN'J are precisely Ea_.._ :1¢jgn},
any trace Tr on AZ.mZv is specified by a row vector T, with = ,H,_.A.Ehb. 1t will turn
out to be useful to calculate the quantities ,Himz._ah..:. Recall that Jey = enJ- Also

observe that
(3.6.9) @Zhab = mZn.ﬂ.

In fact, let € denote the trace vector in H = rmﬁz__s,v_ ie. the identity 1 of M
reqarded as an element of H. The linear space {x{: x € M} is densein H and we have

enJaI(x0) = e a2 = eyxq;2
= MZCR:.VD = m.z?vn.mb
= n,.mz?vb = mzﬁu.va
= mzf?bv.
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Lemma 3.6.10. Let Tr be any irace on AZ,mzv and let 1= A.A.E.ﬂ.:. Then

D r -1
() Z.S mzv ¥ = M. L.—
(i) H..?Za.mu = Aimz._a.._.: =195

Proof. (i) Since N is in standard form on eyH, sois n.wz and its commutant

a.mmzz.ah.mz on aumzzu hence

1= a_Bn_.mzz.n_.mzﬁh.sz

= -1y

= ?,nh.zgabmz: &Ea.._z.ﬁ_.mv (by 3.2.5(h).)
= -1

= _?auz.?bmzz A4 (by 3.6.8(b).)

(i) Since the map x+— Tt(Jx*]) is a trace on the factor a.wz_ we have

Tr(Ix*)) = Haea.ﬂ.:sa 2.99 and in particular, using 3.6.9,
i

Tr ?Z.E J) = H—Cosz = H;.E .:..a ?zﬁ_._v =19,
by part (i). #

3.7. Markov traces on mnnzﬂz_v. a generalization of index.

Definition 3.7.1, Let Nc M be finite von Neumann algebras with N of finite index
in M. We say that a faithful trace tr on M is a Markov trace of modulus § for the pair
N ¢ M if it extends to a trace, also called tr, on Az_bzv for which

(3.7.2) ftr(xey) = tr(x) for x e M.

The extension of tr to AZ,mzv is uniquely determined by (3.7.2). Also it suffices for

(3.7.2) to hold for x € N, since then for x € M

:.OSZV = :Aozuﬁzv = :.:,uz?vmzw
= Jr(Ep(x) = w tr(x).
Cf. Lemma 2.7.1.
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We restrict our attention to pairs of finite direct sums of finite factors and continue to
use the notation of the previous section.

Theorem 3.7.3. A trace on M specified by the vector m, § = :.:L 18 a Markov trace
of modulus B if and only if

wt

Proof. (=). Suppose Tr is a trace on {M,ey) extending the given traceon M and
salisfying the Markov property (3.7.2). Let T be the row vector, = qi.E_E. By the

Markov property we have

8 H_Aozn_.._v = tr(q

P
[ = M. - .
where t =3 Hz is the vector specifying 2_ N+ Putting this together with 3.6.10(ii) gives
ua.ﬂﬁ._; or
(3.7.3.1)
Hence
. (Mey) .
B =BFTy N =pFFT (by368)
=1T (by 3.7.3.1)
=5 THT.

(=) Given a trace tr on M satislying § Z- =%, define ‘mublm Hﬂmﬁ
(motivated by 3.7.3.1), and define a trace Tr on AZ.mzv by ‘?Ca_;: =r, Then

- {Mey)
FTy N = (@E TN T = 5,

so Trextends tr on M (3.5.2(ii)).
It remains to show the Matkov property, ,Hixmzv = mL:O& for x €N, and by
linearity it is enough to check this for x € z@_., Now x — thxmzv is a trace on the factor

zﬁ_ 80 ,Hixmzvuﬂzﬁmz?zf?w hence it suffices to show that

Tr{ajey) = kﬁi{ = m.:_.. But by 3.6.10(ii)
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H_.S.mzu I = T.m.:
_ le mnMp-1
=(0 s TRF 3_.
= mL:
as desired.  #

Corollary 3.7.4. Suppose N CM are finile direct sums of finite factors, with N of

finite indez in M. Set T =T

(i) If NCM is a connected inclusion, then there is o unique normalized Markov
trace on N C M; it is faithful and has medulus equal to the spectral radiss of TT.

(ii) If tr is @ Maorkov trace of modulus § on NC M, then the unique extension of
the trace to AZ_mzv satisfying (3.7.2) is a Markov irace of modulus § (for M C Ag,mzz.

Proof. (i} Since Nc M is connected, T is indecomposable and TT is irreducible by

a straightforward generalization of Lemma 1.3.2b. Therefore by Perron— Frobenius

theory, TT has a unique non-negative eigenvector 5 with = 1. Furthermore 8,> 0

1

and the corresponding eigenvalue is the spectral radius of Tt

(i) If § is the vector specifying the Markov trace on M, then the extension of the
trace to  (Mey) satisfying the Markov condition (3.7.2) is specified by the vector

- o Me) L .
_m. § TF *. Let R denote the matrix ﬁs = FT, with entries

(Mey) Myt oz _ - .
Since Ay = (Ay)", the matrix R (whichisto R as T isto T) has entrics
(A2 R =c @ .
PR RN Tl N S X
1,)
0 if P =

That is R = TF L. But then

£RR = (7% TFYFT)(TF )
g5 TiTF?

§ TF (by 3.7.3)

BE.

[l

It
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Hence T defines a Markov trace on (M,ey) by Theorem 3.7.3. #

Remark, Before going on, let us see how the analysis above agrees with that in
Chapter 2 for finite dimensional algebras. Assume that Mp, ¥ Mat () and
TH

Ng; ¥

j Zw..:.ﬁc. We noted in the remark following 3.6.8 that

J
T=j3"AD and T=1AY,
where ji = diag(py, ) and = diag(v,,-++,v,). Thus

TF = 5 1aA

In this chapter we have been specifying a trace tr on M by the vector § with

T-

s, = Eumv. while in Chapter 2 we specified the trace by 5‘, where 8; is the trace of a

- =, - -~

minimal projection in Mp,. The vector 3 and &' are related by §5=35'j. The

condition given in Chapter 2 for tr to be a Markov trace of modulus 8 is §* AAt = A%
But this is equivalent to

5(TT) = (& xii:
=5 AN =85 E=45 #

Definition 3.7.5, Let NcM be finite sums of :~| factors with the same identity and

M
with N of finite index in M. Let A= >Z > V be the matrix of indices and

_ M . . -

T= Ty = ?Sv be the row stochastic matrix of traces as above. Form T = T(A,T), the
. m

matrix whose (j,i) entry is 0 if nr =0 and L. otherwise. Then the index of N in M,

i T

[M:N), is the largest eigenvalue of the matrix TT.

Remark, It is easy to see that this definition agrees with that of Section 3.4 when N
and _s are factors. We mention again that P. Jolissaint has recently shown that this
definition always coincides with the ring theoretic definition given in Section 2.1 and [Jod).

Corollary 3.7.6, If NcM are os aebove ond {
M:N] < 4, then
[M:N]) e {4 ocmwa\a 1q 3).

Proof. The index is the largest of the numbers [Mz:Nz], where z is a minimal
projection in Z{M) n Z(N), so we can assume that M 7 N is connected.
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By 3.7.4(i}, there is a Markov trace tr on M of modulus [M:N].
Then 3.7.4(ii) allows us to iterate the fundamental construction in the usual way to

obtain a tower

go"annngﬁ...hg—nﬁzrn—-wﬁ‘.._

a sequence of self-adjoint projections ?wvrw— with My ., = cs_zorv for all k, and a

trace tr on UM, salisfying the Markov property
k

[M:N]tr(e,x) = tr{x) for x € M.

The projections ¢, then satisfy the usual relations and therefore the restriction on [M:N]

follows from [Jol]; sce the argument given in Section 3.4. #

Next we provide some examples. Note that by 3.5.6, to construct examples it suffices
to give the matrices A and T.

7.7. The simplest new example is where M isa _rn?nno_._ p isa

projection in M and N =pMp + {1-p)M(1-p). Here the matrix >K is (1 1), and Hﬂ_

is (L14), where L=try(p). Thus enZE and TT =2 So [M:N]=2

independent of t!  #

Example 3.7.8, Consider an inclusion NcM with A= >R_ = ; ﬂ and

N 01 /1t 1

T=TM= T TJ. Then T = H Ly J and TT = T\w.o HMJ The characteristic
equation is »w -3y+1=0, s0 [M:N] =4 8%1? independent of t. #

M_1 M_(al-a .
Example 3.7.9, Take >Z = T L. .Hz = Tv TL. with 0<abci. Then

— 2

a, 1-a
b b7 b Tpe characteristic polynomial is
2

-_:. -|
T= T\Wp :_NIL and TT = b, ib
a -a

(rA-2 |?+Q+Q1M WA-2+ ?+Q+Q|H )

with a= m :Hw. . So [MiN]=2+ ._m+Q+QL, szn:npncoﬁéap_==5cm_.m8§2

than or equal to 4. #
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.
Example 3.7.10, Let M be a _:1.,8_.2_ p a projection of trace t in M and

N =pMp +4Q, where i i i

>§MA_ »:ﬁ > .H.z_nm is a msE.wnmo_. &Hﬁ%x A in (1-p)M(1-p). Then
M M =(t11). So auT:L and TT =1+ Thisis ¢4
when X = H.m_.ﬁagma\u. or 3.

Remark, The index matrices in example 3.7.10 correspond 10 Ag, By, Hy, and G§V)

respectively, under the corespondence of Theorem 1.1.3, when A =1, 2, »Smma\m and 3
This is no accident, as we will see. , .

Let A= Cr.v be an irredundant matriz over {2 cos(x/q):q 2 2}

and T = Hniv 13 @ row stochastic malriz with the same paliern of zero entries as A. Let

L 2
T =T(AT) be the mairiz whose (j,i)-entry is zero if n:.ue and equal o >|_L
] C.

I,

otherwise.

;\ the hﬂmh: QN _nR:hb. QH TT is less than —\ then it mﬁﬂﬁhw 4 cos”x or some

Proof. We can suppose that A and T are indecomposable. By 3.5.6, there is a

connected inclusion M 2O N of finite direct sums of :_l..pn_.oa with A= >R~ and

M
T= ez. Thus the result is a corollary of 3.7.6. #

Remark. It would be interesting to find a proof of 3.7.11 within usual matrix theory;

hopefully this might give information on the spectral radius of TT even when it is larger
than 4.

Aw.v Let A be an irredundant m-by-n malriz with non—negative real values. Then
there is a row stochastic m-by-n matriz T with the same patlern of zeros suck that

where p denotes spectral radius and T = T(A,T) is as above.
(b) If A is érredundont with volues in {2 cos(n/q): q2 2}, then there is ¢ pair

N L .
C M of finite direct sums of 11, — faclors with A = >_W\_ and [M:N] = =>__w.

(c) If A is any non—zero matriz over {2 cos(x/q):q > 2} and ||Al| < 2, then
IAll € {2 cos(n/q) : q 2 3}.

Proof. (a) As A isirredundant, we can define a row stochastic matrix T = (c, ) by
—u-—
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C..= ~M> ._L? ., or T=XA, where X isthe m-by-m diagonal matrix whose
L] m -L :._

-1 , o oAbyl
(i ;;E:Q is ﬁM» ..L Then the (j,i) entryof T is JLHM.»?L. ie, T=A
J
Thus TT = x>>,x , which has the same spectrum a8 AA". "
(b) By 3.5.6 there is a pair NCM with >n>,_,mA and T=Ty. Then

(M:N) = o(TT) = A%
{¢) 1t suffices to consider A irredundant, so the result follows from (b) and
376 #

Of course, 3.7.12(c) was already known as a consequence of Theorem 1.1.3. Theorem
1.1.3 suggests (but does not immediately imply) the following, which is the main result of
this section.

Theorem 3.7,13. Let NCM e a connected inclusion of finite direct sums of
F[Ea?a.

(a) If [M:N]c4, then >K is the matriz essociated (in Theorem 1.1.9) to a
bicoloration of one of the Jollowing Cozeler graphs:

Ag (22 2), By (£23), Dy (22 4), By (2 =6,78),
m,a, Om. ﬂa (L =34), -wﬁﬁv {p=5orp2 7.

Moreover [M:N] = __>_,_m_=m =4 8%1? where h is the Coreter number. (See tables

1.4.5, 1.4.6, and 1.4.7.)
(b) If [M:N] =4, then >K corresponds to one of

AfD (wodd, 22 1), BV (22 2), ¢ (22 9),
pf!) (@2 4, B{V (L = 6,78, F{1), a{b.

Lemma 3.7.14. (Schwenck, (Sch2]} Let A= A v be a non-negative n-by—n

matriz and let G = (g h.v be the matriz with 2_:..2 8= H_ 8 v:w Then

IGIl = p(G) ¢ p(A), where p denotes spectral radius.

Proof. For any k+l-tuple o= c_.mm_.:.:niv with 1¢ m_.“ n, let QL denote the

reversed tuple nn_ = eri.. . ._mw,:v, and let

a . =a .8 . ***4&
& _w‘_m -N._w __a___a+—
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Let W) be the set of k+l-tuples with i =i, ; thus aw o™ is bijection of W

k
and
A= 3 2g=3Y (8,48 )
thx s.mt
Thus
u(Ak) M. (a2 -::w M msliowv.
nmtr nmtr

forall k € . When k is even, we have
n(A)* = na(A%) 2 tr(A¥) 2 u(G¥) 2 HG)Y,
where the first equality and last inequality result from considering canonical forms for A

and G, noting that the eigenvalues of Gk are positive. Taking Kth roots and then the
limit a8 k — o gives the result. #

lemma 3715, Let A
{reR:r=00rr21}. Let T

f

CEV be an  m-by-n irredundant matriz over

3. .wv be a row slochastic matriz with the same pattern of

zero entries as A. Let T be the n-by-m matriz whose (j,i)~entry is 0 if m: =0 ond
M *.
As
MWL.W otherwise.
L)

If (TT) s 4 then JAR% ¢ o(TT).

Proof, We may assume without loss of generality that A is indecomposable.

Suppose that there exist indices : Hm_.:.hw such that the four entries » L.__\ for

#v € {1,2} are all non-zero; that is, the graph I'(A) contains a subgraph of the form

Rearranging the rows and columns, we can suppose : = .: =1 and iy = _.m = 2. Denote

2
Al

the (ij)-entry of TT by 7,j; Then %= M_ LI._..Ir - the sum being over those k
w_.

.

for which ¢, i,k # 0. In particular % i M_ Lw with equality everywhere if and only if all
k

the non—zero A, ik are equal to one.
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By monotonicity of the Perron-Frobenius eigenvalue, we have

N1 M2

o1 2 p
T2 Y2,2

]

with equality if and only if A is 2-by-n. This in turn is no smaller than

.n.
hM_nl_.w _
&) 1¢ije2

by the observation above, with equality if and only if all the non-zero .J. " with j¢ 2 are

equal to one. Truncating the sums defining the entries of the last matrix we see that the

spectral radius is at least

[ C
P B G ¥
C1 %2

) ,
Ca1  C22 5

|1r+lr

‘11 G2

with equality if and only if \J k=0 for j=1,2 and k> 2. If we replace the off-diagonal

entrics by their geometric mean, we do not alter the spectrum, so the last quantity is equal

to

2 G+Q+Q|JHB

ﬁ | ,
(2+ata J:G 2

“1,1%2
where a = —+—=%, Finally, this is at least
C2,1%1,2

But since p(TT)¢ 4 by hypothesis, we must have

with equality if and only if a=1.
and a=1. Since T i8

equality at every step: A and T are 2-by-2 with A = ﬁ W

1
row-stochastic this implies T = m m , and __>__M =p(TT) = 4.
772

, then for i#

—-

1€ on the other hand T'(A) contains no subgraph of the form

there is ab most one non—zero term in the sum defining ¥, i
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: :th .
0 if the i"" and _3_ rows of A are orthogonal
b nw.ro

. 2
— ik

~n_.,rc 0 for some rc, otherwise.

Observe th . . .
rve that rc depends on (i,j), and _ﬂc?: Hrcc,_v. On the other hand,

_ 2 . ..
Ni= M»rr. Note that for all pairs (i,j), the (i,j) entry of AAY s the geometric

mean of the (i,j) and (j,i}-entries of TT; i.e.,

I . K ,
(AA vr._l 0 if the i*P and _..: rows of A are orthogonal

1,

._.\_: o;muimmm.
ko™i kg

Hence by Lemma 3.7.14

= oA ¢ p(TT). #

g ~ -
(a) Let T= Ty and T= T(A,T). By hypothesis

[M:N] = Rﬂd < 4, 50 by 3.7.15 we have __>__m ¢ p(TT). Let S be the (convex) set of all
row- stochastic matrices of the same dimension and zero—pattern as A and T. For each

SeS define §=T(A,S), the matrix whose (j,i)-entry is 0 if A i= 0 and A?Z J(S):
* Hu.— —m.u

otherwise, and (S) = p(SS). Then p is a continuous function of S by elementary
perturbation theory, and ¢ assumes the value [M:N] = p(TT) as well as the value __>__m
by 3.7.12(a). But by 3.7.11, the set of valucs of ¢ less than 4 is discrete, so by convexity
of §, y is constant and

AN = o(TT) = [M:N).

The classification of >K then follows from Theorem 1.1.3.

M o
(b) We have [JA)2¢ o(TT) =4, by 3215 11 A% < 4, then the connectedness
argument of i T icti
__>m=w n:; of part (a) ,.aosj imply that ||Al]* = p(TT) < 4, a contradiction. Thus
, and the classification follows from 1.1.3 again.  #
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CHAPTER 4

In Section 4.2, we study the notion of commuting squares and give a number of
Commuting sqares, subfactors, and the derived tower

examples of constructions which produce commuting squares. In particular we consider the
behavior of commuting squares under the fundamental construction.
4.1. Introduction.

C,cB,
two main themes in this chapter. The first is the approximation of a pair Proposition 4.1.2. Consider a commuling square U U with respect lo a irace
There are tw . factors by pairs C_ ¢ B of finite dimensicnal von Neumann Oc ¢ B,
N ¢ M of hyperfinite :H actors Dy p: n-n
tr which is ¢ Markov trace for the pair wc C B, of finite von Neumann algebras with finite
lgebras, with . ) .
algent N ¢ M dimengional centers. Let ww = Aw__m_v be the von Neumann algebra obtained via the
u U
Jundamental construction for B CB,, andlet C, = {C,.e,}". Then
C cB . 0 1 2 11
n+l n+1
u u 7
o= C B ) ow C mm
u u
and M=(UB)*, N= v on_u.. In order for the approximating "ladder" of finite 7 O_ c wH
= ) _ .
1 ional al Mv:& to behave well with respect to the fundamental construction and the is also a commauting square.
dimension g

s N 1d
index. it should behave well with respect to the conditional expectations: nz_w= shou

ﬁ Therefore iterating the fundamental construction will produce an infinite ladder of

" ; to C_. We are thus led to the following definition commuting squagcs,  Now suppose thet me bave & sar N at o pop e ode
be the conditional expectation of B, on i

. : Iso [Pop2)): algebras with a Markov trace tr of modulus £ and a ladder of commuting squares
which was first introduced by Popa (Lemma 1.2.2 in [Popl}; see also [Pop2]) |

N ¢ M

. Definition 4,1.1. A diagram ) "
C,cB

: _ o=+_ ¢ wa+u

3 u ; .
C,CcB

: 0¢ o ¢ cn

. . : ; tr on B, isa
of finite von Neumann algebras with a finite faithful normal trace 1 with N=(UC))" and M=(UB_)". Let (M, e) be the result of the fundamental

commuting gquare if the diagram construction for NcM and set A, =(B,, e) for each n>1. We show that the

Ec M c (M, e
c, R B, algebras ﬁ>=v=wo generate (M, e), and M c >c is a commuting square with
U U n n
respect to the Markov extension of the trace to (M, e).
Oo .||m.|||l B, In Section 4.3 we prove a theorem of H. Wenzl on pairs NCM generated by a ladder
Co of commuting squares satisfying a periodicity assumption. (See Section 4.3, Hypothesis
(B), for the exact assumption.)
commutes.

182



184 Chapter 4: Commuting squares and subfactors

Theorem 4.1.3. Suppose N CM is a hyperfinile pair (with a finite foith ful trace tr on
M) generated by e ladder of commuting squares

O=+_ ¢ _w=+~
u u
C, By
of finite dimensional von Neumann algebras. Suppose ihat the inclusion data for the ladder
is periadic, in the sense of Hypothesis B of Section 4.3. Then
(i) N and M are factors and [M:N] < .
Let e and A>=v=vc be as above and let 2 be the ceniral support of € in >=.

(ii For large n, z =1 Equivalently, A s %oiegiagﬁﬁﬂmaeae:\:

fundamental construction jor C CB .
(i) Forlarge n, [M:N]=[B :C ] = __,m?:_n:_m?v__m, where T and 5 gre

the vectors of the trace on o: and mu respeciively.

Section 4.4 contains a contruction of (necessarily irreducible) pairs of hyperfinite
factors with index less than 4, as follows: Start with a connected pair 0o C mc of finite

dimensional von Neumann algebras with index g« 4, and let B, = ch. eo y be the
0

result of the fundamental construction for Cy ¢ By, with respect to the Markov trace of

1

modulus A on B, Define qeT by f=2+q+4q , set g=gey — (1€ ), &
0 Gc Go

C, ¢ By

1

unitary element in By, and set C = mmomum. Then U U is a commuting square,
Cy © By
with respect to the Markov extension of the trace to By. Let (B, )ysp be the tower
obtained by iterating the fundamental construction, with B/, = Amm_,msv and sel
O=+~ ¢ m=+-
C,4q = 2l8(C,, e} for n21. Then U u

n
o= nw=

is a ladder of commuting squares,

with respect to the Markov trace on UB, . It turns out that the inclusion data is periodic
and that B=(UB )" >C= (UC,)" is a pair of factors with index 7.
Let AZroo be the tower obtained from a pair Nc M of finite von Neumann

algebras with finite dimensional centers, with index < 4 and let Hmrvrv_ be the usual

|

§ 4.1. Introduction 185

sequence of projections in the tower construction. We already know another construction
of an irreducible pair with index 8, namely ?ﬁ_mm.. -}* 3 {egeq,- -} (Theorem 3.4.3).

An argument due to C. Skau shows that *o_ €1t ‘}'n(u M) =N (Theorem 4.4.3).
In Section 4.5 we present a construction which yields irreducible pairs of hyperfinite I

factors, starting with a Coxeter graph I' of type A, D, or E and a choice of a distinguished
vertex w; on T. In particular for T = Mm and w, an end vertex on one of the long

arms of T, we obtain the index value 3 + {3, which is at present the smallest known value
larger than 4 of the index of an irreducible pair. The construction goes as follows.
Give T the bicoloration with w, white and with r white vertices altogether. Let

My denote the abelian von Neumann algebra ¢ and M, the finite dimensional von
Neumann algebra containing Zc such that T is the Bratteli diagram of the inclusion
Mg ¢ M;. Form the tower AZ._.:wc, starting with the pair My <M, and the Markov
trace tr on M,, and let Am}w_ be the usual sequence of projections. Let M be the

factor A._v_og_.v. and let N be the subfactor of M generated by 1 and the a_._m. Set
2

g= _Z_"Zc_ = | since #< 4, Skau's Lemma 4.4.3 applies and M NN’ = M,

p be the minimal projection of M, corresponding to the vertex w, andset C=pN and

Let

B = pMp. Then Cc B is a pair of factors with C' NB = p(N'nM)p = Ech = Cp; that

is CCB isirreducible. The index of this pair can be computed as follows:

Let T also denote the matrix of the bicolored graph T, and let 2 denote the unigue
Perron-Frobenius row vector for H,aﬁ normalized so that its first co-ordinate
?o:o%c_amsm to the distinguished white vertex s: is1. Let A be the Coxeter graph of

type A with the same Coxeter number as T, and with a bicoloration having at least one
white end vertex, which is labelled as the first white vertex. Denote also by A the matrix
of the graph A, and let % be the Perron-Frobenius row vector of >p>_ normalized so
that its first co-ordinate (corresponding to the chosen white end vertex) is 1. then
[B:C) = I72/112I%. The proof uses Wenzl's index formula from Section 4.3.

The second main topic of Chapter 4, presented in Sections 4.6 and 4.7, is the derived
tower and pringipal graph of a pair of finite factors Nc M of finite index. The derived
lower is the chain of relative commutants (N'n Z_Lrvc. where Aztrvo is the tower

for the pair N ¢ M. It follows from 3.6.2 that dim (N' N M, ) < [M:N]¥ for k3 0.
Let ?rvrwc be the projections in the tower construction, let <r denote N' n Zr
and A, the inclusion matrix for Y oY, 4+1- The following summarizes the structure of

the derived tower.
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Thecrem 4.1.4.

(i) The inclusion Y, CYy 1y is connected.
(ii) <rmr<x is an idesl in Y, ), ond if 7, = imrv is the corresponding

central projection in <r +1 then the homomorphism Yy — <rar<w has inclusion

X X
: t
matriz Ay ;.

(i) Forall k, [IAJNZ ¢ [M:N).
(iv) For k2, if x€Y) and x?rarﬁu =0, then xQ_THa_TQ_TZ =0.
v) Forall k3 1, the following are equivalent:

() Yo Yp = Yt

(b) .m.cTS>“_TH>_T~ = [M:N] meT:. where 5K1) is the vector of the trace

on Yy 4.
© A = ALy
(@) WAyl = N
(vi) 1f the equivalent conditions of (v) hold for k, then they also hold for k+1.

We call the ideal <rmr<w "ihe old stuff, since it is determined by Y, ; C <_m the

complementary ideal is called "the new stuff. Then (iv) says that "the new stuff comes
only from the old new stuff", or ?nr:—ériv = 0. The principal graph of the pair

N C M is obtained as follows: on the Bratteli diagram of the derived tower, delete on each
lovel the vertices corresponding to the old stuff, and the edges emanating from them; the
result is a connected bipartite graph with a distinguished vertex #, the unique vertex on
level 0. The Bratteli diagram of the derived tower can be reconstructed from the principal
graph. The pair NcM is said to be of finite depth if the principal graph is finite; the
depth is the maximum distance from any vertex to *.

This analysis, together with the work of Chapter 1, yields a new proof of the restriction

on index values:

Corollary. (i) Suppose N CM is a pair of 11 Joctors with [M:N] < 4. Then

(a) [M:N] =4 8%1__ Jor some integer h 3 3.
(b) The depth of N CM is no greater than h-2.
(c) The principal graph of NcM ise Cozeter graph of type A, D, or E, whose
norm is :Snzu:w.
(ii) Suppose N CM is a pair of 11, factors with [M:N] = 4.
(a) If NCM is of finite depth, then the principal graph T 5@ completed Cozetcr
graph of type A, D, or E, ie., one of the graphs in Table 1.4.6.
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(b) If Nc M isofinfinite depth, then T is one of the following:

VA VAN

-4

>=_s . \ ./.\ ./.\ . """ (end verter ot distance 1 from *)
NREA VA VAVA S

(doubly infinite linear graph)

o NN

e NN\

(end verter at distance n from «)

Section 4.7 is devoted to computing the derived tower for a number of examples:
owommmaiuﬂoa:oa and fixed point algebras for outer actions of finite groups give examples
with depth 2. The pairs mun R {of Proposition 3.4.4) when g < 4 have principal graphs

of type >=" for 8= 4 the principal graph is >B. In 4.7.c we give a general method which

allows the computation of the derived tower in many examples coming from group actions
In 4.7.d i i j i .
e T MM\_ use e:._m method to obtain .:_a derived towers for the index 4 subfactors

aty(€))", where the hyperfinite II, factor R is realized as the weak closure

{ e i
of the CAR algebra @ Zw..m?v in the trace representation, and G is a closed subgroup of

SU(2) acting by the infinite tensor product of its action by conjugation on Mat,(C). In

this way one obtains as principal graphs all the affine Coxeter graphs of type A, D, and E
as well as the infinite graphs >a, >s_s. and Ue listed above. Finally we compute the

dori . -
ived tower for the pair H{n R when f)» 4. This is the most difficult resuit of the

chapter, involving a i i
g & representation of the sequence Amt in the CAR algebra due to

il

Pj .

p :_Em:mq and Popa and a theorem of Popa on the tunnel construction (a mirror image of
e tower construction). Ultimately one identifies the pair w_mn R with the pair

T
N T .
c(Ne Zﬁw?b where N is the completion of the CAR algebra with respect to a

tertain Powers state. The principal graph is therefore A
@,
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4.2. Commuting 8quarcs.

We begin with a proposition, inspired by Lemma 2.1 of [Pop2], which gives a number
of equivalent conditions for a commuting square.

Consider ¢ diagram

o_nm_
U u
Oonmo

of finite von Neumann algebras and o finite foithful normal trace tr on B;. All conditional
ezpectations being with respect Lo tr, the following are equivalent.

(i) mouwcv cCy

(i) EnEy =Eg.
C,"By G

(i) EnEp =Eg Ep .
C; "By~ Co By
(ivy EnEp =Ep Eq and BynC =C,.
O_, wo Wc OH 0 1 0

E
C

——B,

¢
(v} The diagram u U commules.
c
0
(vi) mo@?co_v = mao?ovmauo?_v Jor by € By ond ¢ €C,.
(vii) moo?cn—v =0 jfor byeBy with MOQ?QV =0 and ¢ €C) with

moc?_vnc.
Morcover (i) lo (vii) are equivalent with the analogous conditions obtained by

inlerchanging By with C,.

Proof. Let p,q,r be three projections acting on some Hilbert space. The following ar¢
clearly equivalent:

(a) pg=r
(b) pa=rq and 1 ¢ q
(c) pa=gp=r

As we may view the conditicnal expectations as projections on rwaw_.:.v, this shows the

equivalence of (ii), (iii) and (iv). Obviously (ii) implies (i).
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Assume (i) holds and let b, € By, Forall ¢g € Cp one has
tr(E~ (bgle,y) = =
( OcA 0)%) tr(bycg) :,:wow?ovncv.

As Eg (b is impli -
* Eg, (b) € Gy this implies g, (by) = B, (by), and (v) follows.  As (v) implies (il

conditions (i) to (v) are equivalent.
The equivalence of (vi) and (vii) follows from the formula

E~ {(b~E~ {b,))c,~E~ (c =E -
Co oy Pal)er B (6D} = Eg (bgey) - B (g)Eg, (€]
for vc € B, and c € O_‘
The next step is to show that (ii) and (vii) are equivalent. Observe first that one has
E  (Enp (X)-E~ (x))=E~ E -
OH mc OcA ) O_ mo?v mo:c&
for any x€ B,. Thus (ii) can be reformulated as

mw%& - mo%& 1Cy forall xeB,.

Suppose (i} holds. Then, in particular, rc L oH for co € wc with mo ?ov =0.
0

Consequently, for all ¢ € OH and €y € OQ_ one has

.._.AEO ﬁvoo— voav = E,Qucn—n@v =0.

0

A e s
8 tr ig faithful on Oc. this implies moo?cnt =0 and (vii) holds.

Suppose (vii) holds. For all x € wH and for all ¢ € o_‘ one has

::mwo?v - moc?:ot

z:mmcg - moc?v:m - moﬁ_?_i + Emmogmocf: - Emoogmo (c)))

0+ tr{Eg (xEg (e))) - tr{Eg, (xEg, (¢))

0

1

:i:nr is zero, since the conditional expectations are trace preserving. Consequently (ii
olds.
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Finaily, as (iv) is symmetric with respect to By and ou. we may exchange By and C B
C, i of th ditions (i) to (vii # i j ‘ S
| inany e conditions (i) to (vii). Proof. (i) Foreach j> 0 and kj'1, the diagram U u is a commuting
C i mh.
It follows for example from (v) that in diagrams like
NcM
C,CB, square, by induction on k. It follows that the limit diagram U U is also a
u o u Cy CByCAy o.ﬂn w_.
commuting square, and thus f . =
C,cB, o U U U or any b€ wu one has eybey = Ey(bley = mou?ymz.
u u C,CB,CA : . i
0CBgCAg Since elements of N, and in particular mou?v_ commute with ey, this shows (i).
B R
Oo CBy Claim (ii) is obvious.
(i) Onehas Bp  (ey) = 0", because
the "rectangles”" are commuting squares a3 soon as the "small squares" are commuting i+l
squares,
A crucial point about commuting squares is their behavior with respect to fundamental t{Eg ~?27& = trleyx) = f~ _ixv
J+

construction defined in Section 3.6.

for all x€ B.,,. Consi f oy
ition Consider a pair NCM of finile von Neumann aigebras, o finite i+l onsider now y 0Ya¥a € w_.. Then

faithful normal trace tr on M, and the algebra AZ.mzv obtained by the fundamental

E ¢ o ' 1. .
consiruction. Assume that M [respectively N] is generated as a von Neumann algebra by mu+~c€ +M.<nm2<nv =¥t qum| Y, € w.m.
a nested sequence Aw.mv.._wo [resp. AO.._JE_ of von Neumann subalgebras in such a way that @ a

one has for each §2 0 a commuting square Thus mw_.ibw.mv C B; for a dense *-subalgebra 3 of Aj.
Q_.+_ ; m.TH Let xe€ >w By the density theorem of Kaplansky, there exists a sequence ?_L_c#
. i} with x € h., and llx, [l ¢ [Ix|| for all k1, such that x= __n:: x, in the topology
C. ¢ B B,
defined b : i
i i y the norm || __m. It follows that mmu.tco = __T_.M— mwh.t?rv € w.ﬂ. Thus
) E A, . i
and set 3 = Evmz* . Then m_.iA _V ‘ wh and ihis proves (i) #
() eybey = B (bey = exBe,(0) fr beByj20 | CicBy
i The algebras A>}wo generate AZ.mzv a5 & von Neumann algebra. Corollary 4.2.3. Consider a commuting squdre U U with respect to a trace tr
Oc C mo
Suppose moreover that tr is & Markov trace of modulus § Jor Sa.maﬂ NcM, and which is ¢ Markov irace for the pair ByCB. Let By=(B,e)) be the von Neumann
denote the Markov extension of tr fo (Mey) by tr again. (See Definition 3.7.1.) Then algeb ;i 1 -
gebra oblained via the fundamental construction for mo CB,, and let Cy= *o_.mL..
w.ﬂ+~ c >.m+u Ow C mn
(iii) ] ] is a commuting square with respect to s._ Ay Then U U isalso @ commuting square. |
B. ¢ A ] C,cB;

J J
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ano C M=B, ¢ mm

Proof. This is the special case of 4.2.2 applied Lo U U . #
Cy ¢ € ¢ C,

Remark. Suppose morcover that m° and mH have finite dimensional centers. Then

the fundamental construction iterates to give the tower Am.w:wo with m.mt = Amu.m.ﬂv for

all j. Decfine inductively O.I.H = *O_._m_.w. for j»1. Then we obtain a ladder of

commuting squares U . We are going to use this idea to construct

Oun._

examples of subfactors below, starting with a commuting square of finite dimensional
algebras. The next two lemmas concern conditions which cause the inclusion matrices for
the resulting ladder of finite dimensional algebras to be repeated with period 2.

Bi1
U
B,

Ouan

Lemama 4.2.4. Consider ¢ commuting square U U
CyC By

of finite dimensional

von Neumann algebras, with respect to some trace tr on By Let By = Amu,muv be the

finite dimensional von Neumann algebra obtained via the fundamental construction for
By C B, and let Cy = w_ﬁow.ml.

Suppose that Cy=Cie,C; (or equivalently, by 2.6.9, that Mx._mOaS . Mxmmﬂz._
is an isomorphism from the algebra Ao_,mo Y obtained by the fundamental construction Jor
0
OQnO_ onio OMV. Then
B, Bo
(i) A c.= A More ezactly, let q, p be minimal central projections in Gc. wc
2 0
respeetively. Let d = QCO a,_O } and p= Ig Em be the corresponding minimal
1 1 1 1
central projections in Cq, By respectively. Then :wovvn : HOcvv& = :ww 3y Aoﬁmmu.
Suppose in addition tha! tr is a Markov irace with respect lo mo c mu. Let Aw}.vc

be the tower obisined by itcraling the fundamental construction Jor By CBy, with

wT_ = Awu,mwv_ and let o_.t = w_mﬁo.,_.mm Jorall jy 1. Then
i)  Forall j»1, CeC.=C 4 AP 2 ADY Tne inctusion matrices
(ii) orall j21, CeiC;=Cyyy an O_..Z = O.T. 2
Cc C C

Jor O.T_ C o.. are alternalely >OM_ and >ow = 30%..‘

4.2. C i
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n

Proof. (i) Let f be a minimal projection in (Cg)q and let pf= Mm be &
i=1

into orthogonal minimal projections in Aucvu (so

decomposition of  pf

- . 1/2
n=[(Bg)p, : (Colpg] / ) Then (by 2.64) fe, = qa.mo@v is & minimal projection in Cog
and
fe,p = fe;p {by 3.6.9)

=fpe;  (because p € By)

ple; (because p € Z(By))
n

Y gy

i=1

Thus Qm:w is a sum of n orthogonal minimal projections in (By)x.
21

it

(ii) We are now supposing that tr is a Markov trace. The statement C, +1
J

= O.@.O.
. . . -— -— .w
is valid for j = 1 by hypothesis. Suppose it is valid for some j. Then o.ﬂ+_a.w+_o.+H is
- N . h
an ideal in O._+_~ containing .mm..dm@.v_m.._ =¢j where J is the modulus of the Markov
Lrace. e
race. Then 0_+HJ+_O.¢+H ! o_.m_b.m 31,80 C C

It follows that for all j,

41841841 =
the tower

H2
o_r— c o.w C ob.i is isomorphic to

. ) C. C
o_.L C o_. o m.aoh.n%o_.r 30 the inclusion matrices >OML are alternately >o
So_ ). Finally th ing An .
¢, inally the statement regarding >o. follows from (i) and induction. #
)

1
0

and

—

C,cBy
Lemma 4.2.5, Consider a commuting square U U of finite dimensional von
CyC By
Neumann algcbras, with respect to o t o_ wc t
3 P o g trace tr on w_. Suppose >o. n>o =A" and
B 0 0
B
A=At =A por A
B, = Ac, some A. Lel By=(B e|) be the algebra obtained via the

fandamental construction for By CB; andlet Cy=alg{C,.e;}. Then

c B
i = 2_ 2 _ .t
(i) Cy=Cye/Cy, Ac, = A and Ag, = A"
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Suppose in addition that tr is o Markov irace with respect to By C B,. Let Am}vc
be the tower oblained by iterating the fundamental construction, with w.d+w = Amh;m.ﬂv_ and

set O.TH H m_iow,&w HE.E:H.%..;:

(ii) The chain O.I c O_ C Oh+H 13 isomorphic to 0.1 c Oh C msmohruno._v Jor all j

C,
The inclusion matrices >ob.+H are allernately AY ord A (j20), and the inclusion
J
B. ¢
matrices >o._ are glternately A" aend A (j2 0).
]

C [A
. 2 .

Proof. (i) We have C,=C.e,C,®K and A HH # for some matrix Q,, by

(i) 2 17171 Oﬂ b— 1

B, ¢ . By Tt

2.6.9. Also >GHjOH = A" by the argument of 4.2.4(i), so >oN = T SL for some
Q, Therefore ALZ= ALZAC? = A'A + 0,0, On the other hand A2 = AQZAC)
9 erefore ¢, "M he, = ;- On the other han ¢, = AciAc

= A'A. Thisis only possible if K = (0), because otherwise fi {2, #0. The remainder of
(i) and (ii) now follows from the previous lemma. #
The next result is that commuting squares are preserved under reduction by certain
projections.
C,cBy
Proposition 4.2.6. Consider ¢ commuting square U U with respect lo a
Gy < By

trace tr on m_ and a projection p € w:: O.__ not zero. Then

pCy CpBp
U U
pCy C pByp

is a commuting square with respect to s_ pB, p’
1

Proof. Let y€ vae. Then

m.wm%@ nvmmcgu because one has

ivmm (y)pu) = tr(pypu) = tr(yu) for all u € pBp. Consider z ¢ vnt say z=pi,
0

with c€ OH_ Then
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mvwcuE = ummcsnav = %onv €pCy

and the claim follows,  #

Remark. A similar result holds for reduction by projections in C.

Next we give some examples of commuting squares involving relative commutants,
fixed-point algebras of groups, and crossed-products.

. Let NCM be a pair of von Neumann aigebras, let tr be a Jinite
Joithful normal trace on M, andlet S be a self-adjoint subset of N. Then

SSnMc M

U u
SnNc N

i5 @ commuting square.

Proof. We may suppose that S is a von Neumann subalgebra of N. Choose x € M.
Denote by C the ||-|

o~¢losure of the convex hull of {uxu® : u is unitary and u € 5} in

rw;\ri. and denote by y the projection of the origin onto C. Then y € M because the
ball of radivs [[x|| in M isa | ll,—closed subset of rwﬂz,:v. Moreover, by the

uniqueness of the projection onto a closed convex set, EE_.. =y for any unitary ueS. It
follows that y isalsoin S'.

wcu any Zz€S'NM and for any unitary u€Ss, one has
tr{uxu®z) = tr(xu*zu) = tr(xz), so that Mm,:Z?x:J = Eg.qp(x}-  Consequently
Mmiz_av =Eg/qy(x), and y = Eg. nm(Y) = Eg: pq(%)- In particular, if x €N, then
CCN and Eq.om(x)=y€S'nN. #

Let M be a von Neumann algebra given with o finite faith ful normal
trace tr. Let G=H wK bea semi—direct product group which acts on M and preserves
tr. Assume that K is a compact group and ikat the restricted aetion of K on M is
conlinuous. Denote by MC the algebra of vectors in M fired by G, and similarly for
mH and z_x. Then

an M
U u
MG mH

is @ commuting square.
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Proof. For each x € M, onc has

B k()= ‘—zixzr

H

Suppose moreover that xeMH Then k(x) e M for any keK, so that

E xEmHs::zzuz_o. #
M

We leave it lo the reader to formulate the details of a proposition involving the
diagram
MxH CM»G
U V]
M c MxK

where » indicates now a crossed product.
We next describe three examples which are interesting in light of the connections

between the theory of subfactors and that of the braid groups.
Example 4.2.9. Let e, ey be a sequence of projections acting on some Hilbert
space such that

i) €0 = ] :._T._u~

for some real number > 1 {see the last remark of Appendix llc). Let tr be a normalized

faithful trace on the algebra generated by the identity and the m_.. s, and assume that the

Markov relation

mismuu = tr(w), WE w_m:,m_.. . :m.LT _:.:_

holds (sce Section 3.4). Then the diagram

C

1 Em:_au,...,muufoaw B = p_m:.m__mm_..;m—_utmav

u u
0 w_m:-m@....oznl ¢ By w_m:.mfan.....o:u:

O
I

is a commuting square.

4.2, Commuti
§ uting squares 197

Proof. i
roof. Let us show that mmccc € Cy for any x € C,. This is obvious when x e Co-

By Proposition 2.8.1, one may then assume without loss of generality that x = ye 2 with

2€C, As E =g!
y 0 wc?:v 4 (sce the proof of 4.2.2.iii), one has mmccaus —yf e ¢,
#

. Example 4.2.10. Let N CM be a connected pair of finite von Neumann algebras with
finite dimensional centers, of finite index (Definition 3.5.3). Let tr be the normalized
Markov trace on N ¢ M (Corollary 3.7.4.i), and let = [M:N] be its modutus (Definition
3.7.5). Then tr has an extension to Az,mzv which is again a8 Markov trace of modulus

B on McC Ag.mzv (Corollary 3.7.4.ii), and that we denote by tr again.
Suppose morcover that B¢ 4, write =2+ q+ aL. define

g = qey - (1-ey)

and obscrve that g is a unitary which commutes with N. Then

gMg ! ¢ (Men?
u u

N «C M
1s & commuting square.

Prool. Let x € mz_mL. Ify= mLxm € M, one has

x = {(q+1)ey - By{(a +Dey - 1).

Since MZ?ZV = ,QL, we have

Ep(x) = 8 Bpglegyey) + {1 - (a+ 1) - (¢ 48 )y

B Ep(En(yley) = En(y). #

Remarks.

(1) Up to scalars, g and .wL are the only unitaries in alg{l,ey} for which the

al ; . .
hove construction works. Obscrve that g is precisely the element involved in the braid
group representation of [Jo2].

(2) This example is the basis for the examples of Section 4.4 below.
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Example 4.2.11. Let N C M be a pair of factors, of finite index f#, and let tr denote

the normalized trace on M. Assume that there exists a projection ey € M such that

€ and N generate M
s,?owv = ftr(y) forall yeN.

Let Az: 50 be the tower and let (e, :Z be as usual. (See Section 3.4; of course

M; =M.) Let M_ denote the von Neumann algebra generated by _ch Then

M
U U

N
is a commuting square.

Proof. We want to check that tr(xy) = tr(x)tz(y) for all x € {1eye;,--}" and for

all y € N. Because of the density theorem of Kaplansky (see the proof of Proposition
4.2.2.iii), we may check this for all x € w_m?_mat . .,muw andforall n» 0. If n=0, this

follows from the hypothesis on € To end the proof, we may assume that n 1 and that

the claim holdsup to n-1.

For wo..c mw_mr‘mo_.:h?v and x |M e Q.
a

tr(xy) = iMw Wboy) = mLiM.m b, ¥)

which is by induction

WHEM.N Sy} = r(x)u(y)-

This shows that the claim holds up to n.  #

Remark. It would be interesting to have a systematic classification of commuting

squares ,
C; ¢ (Bytr)

O C
o
W C
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of finite dimensional von Neumann algebras.

4.3 Wenzl's index formula.

In this section we prove a formula due to H. Wenazl [Wen 2] for the index of a pair of
factors generated by a ladder of commuting squares. The set up is as follows: We are
given a chain Aw.}Nc of finite dimensional von Neumann algebras and a faithful tracial

m..mS..—.o: waucw_.. Since the GNS representation = of tr {on aL is faithful, we
J

regard ws as a subalgebra of B = aﬁcw_.v._ a finite hyperfinite von Neumann algebra.
I
We suppose we have a chain Ao}w o ©f finite dimensional von Neumann algebras such

that 1€ O_. C _wh. and:

C +Hnw

Hypothesis {A). For each },

U is a commuting square.

c B.

i
u
O )

Then C= Eo.z. is a von Neumann subalgebra of B. In the periodic case which we
)

consider below, tr is the unique tracial state on UC. and UB., sothat C and B are

i i
factors.
If E:B—~C and mh‘ : w.w — Oh. denote the conditional expectations with respect to
CcB
tr, then m_w. = m.m thatis U U is a commuting square for each jo Let A= (Be)
! C;c B;

J
_un the result of the ?:aﬁso:..m_ construction for CC B with respect to tr, and let

_w,ﬁ for each j. Then >. is an mh.umx..msm_o__ of w_ in the terminology of

mon:os 2.6. Hence if Am f. v is :_m result of the fundamental 83:.5:9. for O o w
then the formula QAM»:L Mmmmcm ?m.cm € w_.v defines an _mon_o_.uw_m_u ».85

i
Awh..m._v onto the two mE& ideal mh.ow_. generated by e in >.m. by 2.6.9.

lemma 4.3,

(i) The central support 3 of e in >.-
the ideal mh.mm.ﬂ.

(i limz; =1 in the strong operator topology.
jro

is q.ﬂA:“ this is also the central support of
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Proof. (i) This is straightforward, since the central support of m in Aw.}v is 1, by

3.6.1(vi).
(ii) Since E\Jv. = A and the central support of ¢ in A is 1§, one has ,.%Jmﬂa_
J }

=[Ael ] =7, . Thatis, 2 increases to 1. #

Next we introduce a very strong periodicity assumption on the inclusion data for the
Ci1cBjy
ladder of inclusions U u .

c. .
i © By

Hypothesis (B). We assume thereisa jg2 0 and a p:1 and a suitable ordering of
the factors in the w.m‘m and o_..m such that for all j 2 jy:
(i) The inclusion matrix for m_. o whi is the same as that for mu+v C wh.+v+_.

Similarly for Ob. C O.w+~ and O._+U C Ou+v+w.

(ii) The inclusion mattices ¢, for m.w cB

] and e.w for ouno.?u are

i+p
primitive.
(iii)  The inclusion matrix >.ﬂ for O.._ C w.w is the same as that for O.-+v ¢ wu+u.

We remark that under this hypothesis, tr is the unique tracial state on co.w and _._w_,.
) J

In fact the trace vector 50 for _w.m [resp. T for ou_ is a Perron-Frobenius (row)

vector for e..ﬂ [resp. e_._ for j2jj because mcwnm::uvem *o_,w__:o.

Furthermore the dimension vectors m@ of w_. {esp. $0) o Oh_ approach

Perron-Frobenius eigenvectors of eb [resp. e.w_. Zo_.mvan._mmq.: s.m wmgmmvan:p_

radius of ®,, then lim mc+m3\s~. = :Sﬁea. mc.:\,% exists, and is a Perron-Frobenius
J e J - J J
§)]

eigenvector for ., and similarly for the vectors P

.‘_

Lemma 4.3.2. Assuming hypotheses (A) and (B),

(i) B and C are factors and [B:C] ¢ =

(ii) .mcv>w>._m [B:C] i: for all j,  the inequality holding component-
by—companent.

(iii) if 2 is the central support o] € in A and e.w denotes the speciral radius of

eu_ then Jor j2 wo.

tr(1-z.

._+fvv = A.mcu - E"O_L._HC;;; ﬁwmuc+m3v.

)

4.3. Wenazl's i
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Proof. (i) That B and C are factors follows from the uniqueness of the trace on

_.%w_. and w_o.._. We have to show that A = (B,e) is a finite factor. In any case A is

semi-finite, 50 has a faithful normal semi-finite trace Tr; we have to show that Tr(1) ¢ w.
zng ,_w>a = Ce is isomorphic to C, which is a finite factor, 5o e is a finite projection
an r(e) < w. Fix some j» I and let g be a minimal central projection in Oh., and

H

n ._o_ N._>_ Then

q; = .uw‘n:.uw_. and mm = Jﬁmu the corresponding minimal central projections in Am.,mv

Tr(eq;) _ Tr(eq;)
Huﬁm- ) H_Amm }

(using 3.6.9)

= tm.:\_;wfucvy.

because ¢q; is the sum of tm._v minimal projections in mw.p.m (by 2.6.4) while q. is the
i

sum of >...>..A.._V. _ L= . . ”
( AP ); minimal projections in A:>.m. Let &,HH:“:?M._V\:\,._;H:A._;? Then

we have &. > 0 and

Tr(e) = Tr(ez) uMﬁ?mmv > 4 M...ﬁ@ = dTr(z,).
1

Since 0+EP) 0 .
Since v \f converges to a Perron-Frobenius vector for e.w. it follows that
d:= mwh Q_.+~v is positive. We have

Tr{e) 2 d qiu.m 2 d H;J.

j+ip +§H .Zvv

3;:@ i i =1, i
.m:am:am _mE Ziptp = 1, it follows that Tr(e) » d Tr(1), and Tr is finite.

Since f#=[B:C]<w, the normalized trace tr on A has the Markov property:

_ 1
trfex) = f “tr(x) for x¢ B. It follows from this and 2.6.4(c) that the weight vector of tr
on BeB, = N_.>_. is g7 1),

1
(i) Tt follows from 2.4.1(b) and 2.6.9 that the inclusion matrix of w.m CA. isof the
. J
Al
—'Oﬂﬂ.— J f t : . . .
Du or some bw >L., being the inclusion matrix of m_. C J.f. By the remark

above, the wei 50
@ weight vector of tr on A, has the form (gt oev..mc:. 50 that



