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Introduction

(1.1) Goal of this survey

The theory of quantum groups began its development in about 1982-1985. It is now
10 years since the 1986 ICM address of V.G. Drinfel’d ignited a wild frenzy of research
activity in this area and things related to it. During this time quantum groups have
become a “household” term in Lie theory in much the same way that Kac-Moody Lie
algebras did in the 1970’s. Given that quantum groups are now a part of every day Lie
theory it seems desirable that there are treatments of the subject which are accessible to
graduate students.

It has been my goal to produce a survey which is accessible to graduate students, and
which contains the necessary background and the main results in the theory. I have chosen
to make this a compendium of motivation, definitions and results. A secondary goal has
been to write this in a relatively small space (long works are usually too daunting) and
with this in mind I have chosen not to include any proofs. In many cases, providing a full
proof would require introducing and developing some fairly sophisticated tools.

My main focus in these notes is to give a description of what the Drinfel’d-Jimbo
quantum groups are, how one arrives at them and why they are natural. In the last
chapter I shall explain how the Drinfel’d-Jimbo quantum groups are applied to get link
invariants such as the Jones polynomial.

(1.2) References for quantum groups

Drinfel’d’s paper in the proceedings of the ICM 1986 is a dense summary of many of
the amazing results that he had obtained. This paper still remains a basic reference.

[Dr] V.G. Drinfeld, Quantum Groups, in Proceedings of the International Congress of
Mathematicians, A.M. Gleason ed., pp. 798-820, American Mathematical Society,
Providence 1987.

Between 1987 and 1995 literally thousands of papers on quantum groups have been
published. The book by V. Chari and A. Pressley which appeared in 1994 has 70 pages
of references in minuscule type! Instead of wading through this mass of literature I have
decided to only refer you to the books on quantum groups which have begun to appear
recently, as follows:

[CP] V. Chari and A. Pressley, “A Guide to Quantum Groups”, Cambridge University
Press, Cambridge, 1994.

[Ja] J. Jantzen, “Lectures on Quantum Groups”, Graduate Studies in Mathematics
Vol. 6, American Mathematical Society, 1995.

[Jo] A. Joseph, “Quantum groups and their Primitive Ideals”, Ergebnisse der Math-
ematik und ihrer Grenzgebiete; 3 Folge, Bd. 29, Springer-Verlag, New York-
Berlin, 1995.
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[Ka] C. Kassel, “Quantum groups”, Graduate Texts in Mathematics 155, Springer-
Verlag, New York, 1995. ‘

[Lu] G. Lusztig, “Introduction to Quantum Groups”, Progress in Mathematics 110,
Birkhauser, Boston, 1993. ‘

[Ma] S. Majid, “Foundations of quantum group theory”, Cambridge University Press,
1995.

[SS] S. Shnider and S. Sternberg, “Quantum groups: From Coalgebras to Drinfel’d
Algebras”, Graduate Texts in Mathematical Physics Vol. 2, International Press,
Cambridge, MA 1995.

I recommend [CP] for obtaining a basic understanding of what quantum groups are,
where they came from, what the main results are, and what was known as of about the
end of 1993. It contains only easy proofs and sketches of more involved proofs, very
often referring the reader to the original papers for the full details of proofs. This book,
however, is very useful for understanding what is going on. The recent book [Ja] is written
specifically for graduate students. It has an excellent choice of topics, thorough descriptions
of the motivations at each stage and detailed proofs. The book [SS] treats the deformation
theory aspect of quantum groups in detail and the book [Lu] is the only one that covers
the connection between the quantum group and perverse sheaves.

(1.3) Some missing topics and where to find them

There are many beautiful things in the theory of quantum groups that we won’t even have
time to mention. A few of these are:

(a) Canonical and crystal bases and the Littelmann path model for representations,
see [Jo] Chapt. 5-6 and [Ja] Chapt. 9-11.

(b) Yangians, see [CP] Chapt. 12.
(c) Quasi-Hopf algebras and twisting, see [CP] Chapt. 16 and [SS] Chapt. 8.

(d) The Knizhnik-Zamalodchikov equation and hypergeometric functions, see [CP]
Chapt. 16, [Ka] Chapt. 19 and [SS] Chapt. 12.

(e) Lie bialgebras, Poisson Lie groups, and symplectic leaves, see [CP] Chapt. 1.

(f) Representations at roots of unity and the connection to xe esegtations of alge-
braic groups over a finite field, see [CP] Chapt. 11 and@ A

(g) The connection between representations of quantum groups at roots of unity and
representations of affine Lie algebras at negative level, see [CP] Chapt. 11 and
Chapt. 16 and@ h

(1.4) Further references for the background topics

Chapters I-IV consist of background material needed for the material on quantum
groups. These chapters are:
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1. Hopf algebras and braided tensor categories
II. Lie algebras and enveloping algebras
ITI. Deformations of Hopf algebras
IV. Perverse Sheaves .
The following book contains a very nice up-to-date account of the theory of Hopf algebras,
and it also includes some useful things on quantum groups.

[Mo] S. Montgomery, “Hopf Algebras and their Actions on Rings”, Regional Conference
Series in Mathematics 82, American Mathematical Society, 1992.

The book by Chari and Pressley [CP] contains a nice introduction to monoidal categories
and braided monoidal categories.

The following little book is a beautiful summary of the main results in semisimple Lie
theory.

[Se] J.-P. Serre, “Complex Semisimple Lie algebras”, Springer-Verlag, New York,
1987.

Comprehensive accounts of the theory of Lie algebras and enveloping algebras can be found
in Bourbaki and in the book by Dixmier.

[Bou] N. Bourbaki, “Groupes et Algebres de Lie, Chapitres I-VIII”, Masson, Paris,
1972,

[Dix] J. Dixmier, “Enveloping algebras”, Amer. Math. Soc. (1994); originally pub-
lished in French by Gauthier-Villars, Paris 1974 and in English by North Holland,
Amsterdam 1977.

The following are standard (and very useful) texts in Lie theory.

[Hu] J. Humphreys, “Introduction to Lie algebras and representation theory”, Grad-
uate Texts in Mathematics 9, Springer-Verlag, New York-Berlin, (3rd printing)
1980.

[K] V. Kac, “Infinite dimensional Lie algebras”, Birkhauser, Boston, 1983.

The most comprehensive reference for modern deformation theory, especially in regard to
deformations of Hopf algebras, is the book by Shnider and Sternberg [SS] listed above.
The book [CP] also contains a very informative chapter on deformation theory.

Unfortunately, to my knowledge, there is no good introductory text on the theory of
perverse sheaves. The classical reference is the following monograph.

[BBD] A. Beilinson, J. Bernstein, and P. Deligne, Faisceaur pervers, Astérisque 100
(1982), Soc. Math. France.

On the other hand, much of the background material to perverse sheaves, such as homo-
logical algebra and sheaf theory is classical and appears in many books. The first few
chapters of the following book contain an introduction to these topics.
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[KS] M. Kashiwara and P. Schapira, “Sheaves on Manifolds”, Grundlehren der math-
ematischen Wissenschaften 292, Springer-Verlag, New York-Berlin, 1980.

(1.5) On reading these notes

I advise the reader to begin immediately with Chapter V and find out what a quantum
group is. One can always peek back at the earlier chapters and find out the definitions later.
This makes it more fun and provides good motivation for learning the earlier background
material. It also avoids getting bogged down before one even gets to the quantum group.

In a number of places I have chosen to make these notes “nonlinear”. There have been
some occasions when I have decided to repeat some definition or some statement. Also in
a few places, I have used some terms and notations that have not been defined yet, with
an appropriate reference to the place later in the text where the definitions and notations
can be found. I have done this with the intention of making each section a somewhat
complete set of ideas without disrupting any particular section with a myriad of lengthy
definitions. Even though we may wish it so, ideas in mathematics are not really linear and
this has been reflected in these notes. The reader should feel free to skip around in the
notes whenever the inclination arises.

I have included a complete table of contents in the hope that it will be helpful to the
reader as a tool for finding definitions and for organizing and motivating the structures.
For the same reason I have given every small section a title. This way the reader can follow
the process of the development, as well as the details. Think of the table of contents as a
flow chart for the mathematics.

(1.6) Disclaimer

Even though the theory of quantum groups is less than 15 years old I shall not un-
dertake the complicated task of giving appropriate references and credits concerning the
sources of the theorems and their first proofs. I refer the reader to the above books on
quantum groups for this information.

Let me stress that none of the theorems stated in this manuscript are due to me with
two possible exceptions. Chapt. I Proposition (5.5) and Chapt. VII Theorem (5.2) are
more general than I know of in the existing literature. Chapt. I Proposition (5.5) is well
known in the context of the quantum group and I am only pointing out here that the well
known proof, see [Ta] Prop. 2.2.1, works for any quantum double. Chapt. VII Theorem
(5.2) is a nontrivial, but very natural, extension of well known results which appear, for
example, in [Ja] Chapt. 8. The crucial part of the proof is similar to the proof of [Ja]
Lemma 8.3.

I have tried to indicate, at the beginning of each chapter, where one can find proofs of
the theorems stated in that chapter. In many instances I have had to make minor changes
in notations and statements in order to be consistent with the definitions that I have given.
Especially since I have not included proofs the reader should be watchful and open to the
possibility that there may be some minor errors.
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I. Hopf algebras and quasitriangular Hopf algebras

Let k be a field. Unless otherwise specified all maps between vector spaces over k are
assumed to be k-linear and, if V is a vector space over k, then idy:V — V denotes the
identity map from V to V.

The proofs of most of the statements in this chapter can be found in [Mo]. The proof
that the antipode is an antihomomorphism (2.1) is given in [Sw] 4.0.1. The statement of
Theorem (5.3), giving the construction of the quantum double, is given explicitly in [D1]
§13, and the proof can be found in [Ma] p. 287-289. A statement similar to Proposition
(5.5) is in [Ta] Prop. 2.2.1 and the proof is similar to the proof given there.

1. SRMCwMFFs

(1.1) Definition of an algebra
An algebra over k is a vector space A over k with a multiplication

m: AQRA —» A
a®b — a-b=ab

and an identity element 14 € A such that
(a) m is associative, i.e. (ab)c = a(bc), for all a,b,c € A, and
(b) lara=a-14=a,foralla € A.

Equivalently, an algebra over k is a vector space A over k with a multiplicationm: AQA — A
and a unit ¢: k — A such that

(a) m is associative, i.e. mo(m®idsa) =mo (idg ® m), and

(b) (unit condition) mo (t®idg)=mo (idg @) =ida.
The relationship between the identity 14 € A and the unit i:k — A is ¢(1) = 14. If we are
being precise we should denote an algebra over k by a triple (4, m,¢) or (4, m,14) but we
shall usually be lazy and simply write A.
(1.2) Definition of a module
Let A be an algebra over k. An A-module is a vector space M over k with an A-action

AM — M
a®@m +— a-m=am

such that
(a) (ab)m = a(bm), foralla,b€ A and me M, and
(b) 1gm=m, forallme M.
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Let M and N be A-modules. An A-module morphism from M to Nis a map o: M -+ N
such that ‘
p(am) = ap(m), forallac Aand me M.

The set of A-module morphisms from M to6 N is denoted Hom4 (M, N). An A-module is
finite dimensional if it is finite dimensional as a vector space over k.

(1.3) Motivation for SRMCwMFFs

Our interest will be in special algebras for which the category of finite dimensional A-
modules has a lot of nice structure. We want to be able to take the tensor product of two
A-modules and get a new A-module, we want to be able to take the dual of an A-module
and get a new A-module and we want to have a 1-dimensional “trivial” A-module.

(1.4) Definition of SRMCwMFFs

Let A be an algebra over k. The category of finite dimensional A-modules is a strict rigid
monoidal category such that the forgetful functor is monoidal (a SRMCwMFF for short) if

(a) For every pair M, N of finite dimensional A-modules there is a given A-module
structure on M ® N,

(b) For every finite dimensional A-module M there is a given A-module structure on
M* = Homy (M, k),

(c) There is a distinguished one-dimensional A-module 1 with a distinguished basis
element 1 € 1,

and the following conditions are satisfied:
(1) For all finite dimensional A-modules M, N, and P,

(M®N)®P = M®(N®P)

as A-modules*.
(2) The maps
1eM = M . M1l = M
1@m +— m m®l — m
are A-module isomorphisms.
(3) For each finite dimensional A-module M, the maps
M*®M - 1 1 = MeM*

d
e®m +— p(m)-1 an 1 — Zi m; @ p;

are A-module morphisms.

* Strictly speaking we can only identify (M ® N) ® P and M ® (N ® P) up to coherent
natural isomorphisms. If we are being precise this is crucial, but conceptually these two
spaces are “equal”.
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In condition (3) the set {m;} is a basis of M and the set {¢;} is the dual basis in M*, i.e.
@i € M* is such that @;(m;) = d;; for all 4, . ‘
The distinguished one-dimensional A-module 1 is called the trivial A module.

2. Hopf algebras

(2.1) Definition of Hopf algebras
A Hopf algebra is a vector space A over k with

a multiplication, mARA— A,
a comultiplication, A:A— AR A,
a unit, vk — A,
a counit, e:A—k, and
an antipode, S:A— A,

such that

(1) m is associative,
mo (idg ®m) =mo (m®ida),
(2) A is coassociative,
(ida ®A)o A= (AQ®idy) oA,
(3) (unit condition),
mo (idA®L) =mo (L®idA) =idy4,
(4) (counit condition),
(ida®e)oA=(e®ids) o A =idg,
(5) A is an algebra homomorphism,

Aom=(m@m)o(ida ®T®ids) o (A® A),

(6) e is an algebra homomorphism,

eom =€QE¢,

(7) (antipode condition),
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mo(ida®S)ocA=mo(S®idg)oA=1ro0e.

In condition (5) the algebra structure on A-® A is given by
(a®b)(c®d) =ac®bd, foralla,b,cdeA,

and the map 7 is given by
m AQA — AQ®A

a®b +— b®a.
In condition (6) we have identified the vector space k @ k with k. One can show that the
antipode S: A — A is always an anti-homomorphism,

S(ab) = S(b)S(a), for all a,be€ A.

(2.2) Sweedler notation for the comultiplication
Let A be a Hopf algebra over k. If a € A we write

Aa) = Z aq1) @ a(z)
a

to express A(a) as an element of A® A. This unusual notation is called Sweedler notation
and is a standard notation for working with Hopf algebras. Don’t let it bother you, we are
simply trying to write A(a) so that it looks like an element of A ® A, without having to
go through the rigmarole of actually choosing a basis in A.

(2.3) Hopf algebras give us SRMCwMFFs!
Let (A,m, A, ¢€,S) be a Hopf algebra over k.
(a) If M, and M; are A-modules define an A-module structure on M; ® M, by

a(m1 @ my) = Aa)(m1 ®ma) = Y aqymi @ aymz ,
for each a € A, m, € My, and my € M,.
(b) Define 1 to be the vector space 1 = k- 1 and define an action of A on 1 by

a-1 = €¢(a)-1, foreacha € A.

(c) If M is a finite dimensional A-module define an A-module structure on M* =
Homy (M, k) by

(ap)(m) = p(S(a)m), foreacha € A, p € M*, and m € M.
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The point is that if A is a Hopf algebra then, with the definitions in (a)-(c) above, the
category of finite dimensional A-modules is very nice; it is a strict rigid monoidal category
such that the forgetful functor is monoidal.

(2.4) Group algebras are Hopf algebras

Let G be a group. The group algebra of G over k is the vector space kG of finite k-linear
combinations of elements of G,

kG = {chg | ¢y € k and all but a finite number of ¢, = 0} ,
9

with multiplication given by the k-linear extension of the multiplication in G. A G-module
is a kG-module.

(a) If M, and M, are G-modules define a G-module structure on M; ® M; by

g(my @ my) = gmy1 ® gmgy, for all g € G, my € My, and my € M.

(b) The trivial G-module is the 1-dimensional vector space 1 with G-action given by

g-v=v, forallgeG,vel.

(c) If M is a finite dimensional G-module define a G-module structure on M* =
Homy (M, k) by

(gp)(m) = @(g"'m), forallge G, me M, and p € M*.

With these definitions the category of finite dimensional G-modules is a strict monoidal
category such that the forgetful functor is monoidal.

The group algebra kG is a Hopf algebra if we define
(a) a comultiplication, A:kG — kG ® kG, by

A(g) =g®g, forallgeg,
(b) a counit, e kG — k, by
e(g)=1, forallged,
(c) and an antipode, S:kG — kG, by

S(g)=g ', forallgeg.
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(2.5) Enveloping algebras of Lie algebras are Hopf algebras

Let g be a Lie algebra over k and let 4g be its enveloping algebra. (See II (1.1) and II
(4.2) for definitions of Lie algebras and enveloping algebras.)

(a) If My and M, are g-modules we define a g-module structure on M; ® M; by

z(m; @ mg) = zmy ® my +my @ zmy, for all z € g, my € My, and my € M,.

(b) The trivial g-module is the 1-dimensional vector space 1 with g-action given by

zv=0, forallzeg, vel.

(c) If M is a finite dimensional g-module we define a g-module structure on M* =
Homy (M, k) by
(zp)(m) = p(—zm), forallz € g, ¢ € M*, and m € M.

With these definitions the category of finite dimensional g-modules is a strict rigid monoidal
category such that the forgetful functor is monoidal.

The enveloping algebra ilg of g is a Hopf algebra if we define
(a) a comultiplication, A:ig — g ® ig, by

Alz)=2z@1+1®=z, forallzeg,

(b) a counit, e:ilg — k, by

e(z)=0, forallzeg,

(c) and an antipode, S:ilg — g, by

S(z) =—z, forallzeg.

(2.6) Definition of the adjoint action of a Hopf algebra on itself

Let (A,m, A, ¢, S) be a Hopf algebra. The vector space A is an A-module where the
action of A on A is given by

ARA — A

a®b — ¥, a1)bS(ag)’ where A(a):?a(l)@’a(g).

The linear transformation of A determined by the action of an element a € A is denoted
ad,. Thus,
ada(b) = Za(l)bS(a(z)), for all b € A.
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(2.7) Motivation for the definition of the adjoint action

Let M be an A-module and let p: A — End(M) be the corresponding representation of A,
i.e. the map ;
p: A — End(M)
a —  p(a)
where p(a) is the linear transformation of M determined by the action of a. Note that
End(M) = M ® M* as a vector space. On the other hand M ® M* is an A-module. If we
view A as an A-module under the adjoint action then the composite map

p:A— End(M)2MeM*

is a homomorphism of A-modules.

(2.8) Definition of an ad-invariant bilinear form on a Hopf algebra
Let A be a Hopf algebra with antipode S and let M be an A-module. A bilinear form

() MeM = &k

men +— (m,n) is invariantif (amy,m2) = (m1, S(a)ma),

for all a € A, mi,my € M. This is equivalent to the condition that the map (,) is a
homomorphism of A-modules when we identify & with the trivial A-module 1..
A bilinear form

():A®A—k is ad-invariant if (ad,(b1),b2) = (b1,ads(a)(b2)),

for all a,b,bs € A. In other words, the bilinear form is invariant if we view A as an
A-module via the adjoint action.

3. Braided SRMCwMFFs

(3.1) Motivation for braided SRMCwMFFs

Our interest here will be in even more special algebras for which the category of finite
dimensional A-modules is “braided”. Specifically, we want the two tensor product modules
M ® N and N ® M to be isomorphic.

(3.2) Definition of braided SRMCwMFFs

Let A be an algebra over k. The category of finite dimensional A-modules is a braided strict
rigid monoidal category such that the forgetful functor is monoidal (a braided SRMCwMFF
for short) if it is a strict rigid monoidal category such that the forgetful functor is monoidal
and
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(3.4) What “natural isomorphism” means
Let M, M’,N,N’ be A-modules and let 7:M — M’ and 0: N — N’ be A-module iso-
morphisms. Then the naturality condition on the isomorphisms R,y means that the

following diagrams commute.

M®N ™% MeoN M®N “*% rpmeN

o
NoeM '8 NeoMm NeM 2% NeoMm

Pictorially we have

M ® N M ® N M ® N M ® N

I8 TR
4 (

M @ N = NQ®M and M ® N = N® M

ST R

( 4

N @ M N ® M N @ M N @ M

(3.5) The braid relation
The relations in (3.3) imply the following relation which is usually called the braid relation.

M ® N®P
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where the middle equality is a consequence of the naturality property and the fact that
the map RN p is an isomorphism.

4. Quasitriangular Hopf algebras

(4.1) Motivation for quasitriangular Hopf algebras

In addition to the definition of a braided SRMCwMFF the following observations help to
motivate the definition of a quasitriangular Hopf algebra.
Let (A,m, A, ¢€,¢,S) be a Hopf algebra and let 7 be the k-linear map

71 AQA — AQA
a®b — b®a.

Let A°? = 70 A so that, if a € A and

Aa) = Z a1) ®a(z), then A%(a)= Z a2) ® a)-
a a

Then (A4, m, AP, 1, ¢, S71) is a Hopf algebra.
The map 7 : AQ A -+ A® A is an algebra automorphism of A ® A (the algebra
structure on A ® A is as given in (2.1)) and the following diagram commutes
A & Ax4
oL
AP

A — ARA

Sometimes we are lucky and we can replace 7 by an inner automorphism.

(4.2) Definition of quasitriangular Hopf algebras

A quasitriangular Hopf algebra is a pair (A, R) where A is a Hopf algebra and R is an
invertible element of A ® A such that

A°P(a) = RA(a)R™!, foralla € A, and
(A®id4)(R) = R13Rz3, and (ida ® A)(R) = Ri3Ruz,
where, if R = ) a; ® b;, then

’R.12=Za,-®bi®1, R13=Zai®1®bi, and R23=Zl®a,~®b.ﬁ.
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(4.3) Quasitriangular Hopf algebras give braided SRMCwMFFs

Let (A, R) be a quasitriangular Hopf algebra. For each pair of finite dimensional A-modules

M, N define .
Run: M®N.— NOM

meen +—> Y. hn®a;m,

where R = Y a; ® b; € A® A. Then the category of finite dimensional A-modules is a
braided strict rigid monoidal category such that the forgetful functor is monoidal.

5. The quantum double

(5.1) Motivation for the quantum double

In general it can be very difficult to find quasitriangular Hopf algebras, especially ones
where the element R is different from 1 ® 1. The construction in (5.3) says that, given a
Hopf algebra A, we can sort of paste it and its dual A* together to get a quasitriangular
Hopf algebra D(A) and that the R for this new quasitriangular Hopf algebra is both a
natural one and is nontrivial.

(5.2) Construction of the Hopf algebra A*°°°P

Let (A,m, A, ¢, S) be a finite dimensional Hopf algebra over k. Let A* = Homyg (A4, k)
be the dual of A. There is a natural bilinear pairing (,): A* ® A — k between A and A*
given by
(a,a) = afa), forall @ € A* and a € A.

Extend this notation so that if o, a3 € A* and a1,a3 € A then
(1 ® az,a1 ® az) = (a1,a1){az, az).

We make A* into a Hopf algebra, which is denoted A*°°°P, by defining a multiplication
and a comultiplication A on A* via the equations

(a102,a) = (a1 ® a2, A(a)) and (A°P(a), a1 ® az) = (@, ai1az),

for all @, @1, a3 € A* and a,a;,az € A. The definition of A°P is in (4.1).
(a) The identity in A*°°°P js the counit e: A — k of A.
(b) The counit of A*°°P is the map
e A* - &k
a = al),
where 1 is the identity in A.

(c) The antipode of A*®°°P is given by the identity (S(a),a) = (o, S~1(a)), for all
o € A* and all a € A.
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(5.3) Construction of the quantum double

We want to paste the algebras A and A*°°°P together in order to make a quasitriangular
Hopf algebra D(A). There are three main steps.

(1) We paste A and A*°°°P together by letting
D(A) = AQ® A*°°P,

Write elements of D(A) as a« instead of as a ® .

(2) We want the multiplication in D(A) to reflect the multiplication in A and the multi-
plication in A*°°°P, Similarly for the comultiplication.

(3) We want the R-matrix to be
R=) bV,
i

where {b;} is a basis of A and {b'} is the dual basis in A*.
The condition in (2) determines the comultiplication in D(A),

Afaa) = A(@)A(e) = agyaq) ® a@)oqe),

a,a

where A(a) = ), a¢1) @ a(z) and A(a) = ), @a) ® oz). The condition in (2) doesn’t
quite determine the multiplication in D(A). We need to be able to expand products like
(alal)(azag). If we knew

a0y = Z bjB;, for some elements B; € A**°°P and b; € A,
J

then we would have

(a101)(az02) = ) _(a1b;)(Bjera)

J

which is a well defined element of D(A). Miraculously, the condition in (3) and the equation
RA(a)R™' = A%(a), forallac€ A,

force that if @ € A**°°P and a € A then, in D(A),

aa =Y (a5 (am)) o) a@)a@ae), and

a,a

aa =Y (o), e o), S (a@))x@ae),

a,a
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where, if A is the comultiplication in D(A),

(A® id) o A(a) = Z a(1) ® a(z) ® a(s), and (A ® id) o A(a) = Z (1) @ a2y @ agz).

These relations completely determine the multiplication in D(A). This construction is
summarized in the following theorem.

Theorem. Let A be a finite dimensional Hopf algebra over k and let A*°°°P be the Hopf
algebra A* = Homy(A, k) except with opposite comultiplication. Then there exists a
unique quasitriangular Hopf algebra (D(A),R) given by

(1) The k-linear map
AQ® A*°?  —  D(A)
a® — ax

is bijective.
(2) D(A) contains A and A**°°P as Hopf subalgebras.
(3) The element R € D(A) ® D(A) is given by

'R,=Z b @b,
i

where {b;} is a basis of A and {b‘} is dual basis in A*°°P.
In condition (2), A is identified with the image of A ® 1 under the map in (1) and A*°°°P
is identified with the image of 1 ® A*°°°P under the map in (1).

(5.4) If A is an infinite dimensional Hopf algebra

It is sometimes possible to do an analogous construction when A is infinite dimensional
if one is careful about what the dual of A is and how to express the (now infinite) sum
R =3,b; ®b*. To get an idea of how this is done see VII (7.1) and [Lu] Chapt. 4.

(5.5) An ad-invariant pairing on the quantum double

Proposition. Let (A, m,A,¢,¢,S) be a Hopf algebra. The bilinear form on the quantum
double D(A) of A which is defined by

{ac,bB) = (B, S(a)){c, S71(b)), for alla,b€ A and all o, 3 € A**°°P,
satisfies

(ady(z),y) = (z,ads)(¥)), for all u,z,y € D(A).

The proposition says that the bilinear form is ad-invariant, as defined in (2.8). This bilinear
form is not necessarily symmetric,

(y,z) = (z,5%(y)), for all z,y € D(A).
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An ideal a of g is solvable if there exists a positive integer n such that D™a = 0. The
radical of g is the largest solvable ideal of g. A finite dimensional Lie algebra is semisimple
if its radical is 0.

(1.4) Definition of simple modules for'.a Lie algebra
Let g be a Lie algebra over a field k. A g-module is a vector space V over k with a g—actlon

gV — |4
TR®U — T-Vv=2IV

such that
[z,y]-v=z(yv) — y(zv), forallz,y€g,andveV.

A representation of g on a vector space V is a map

p: g8 — End(V)

r —  plz) Suchthat p(z ) = p(@)e(y) - py)e(z),

for all z,y € g. Every g-module V determines a representation of g on V (and vice versa)
by the formula
p(z)v=zv, forallzeg,andveV.

A submodule of a g-module V is subspace W C V such that zw € W for all z € g and
w € W. A simple or irreducible g-module is a g-module V such that the only submodules
of V are 0 and V. A g-module V is completely decomposable if V is a direct sum of simple
submodules.

(1.5) Definition of the adjoint representation of a Lie algebra

Let g be a finite dimensional Lie algebra over a field k. The vector space g is a g-module
where the action of g on g is given by

g®g — g
zQy +— [z,y]

The linear transformation of g determined by the action of an element z € g is denoted
ad,. Thus,
ad;(y) = [z,y], forallye€g.

The representation
ad: g — End(g)
Tz — ad.

is the adjoint representation of g.

(1.6) Definition of the Killing form



I1I. LIE ALGEBRAS AND ENVELOPING ALGEBRAS 27

Let g be a finite dimensional Lie algebra over a field k. The Killing form on g is the
symmetric bilinear form (,) : g X g — k given by

(z,y) = Tr(adzady), forallz,ye€g.
The Killing form (,) is invariant, i.e.

([z,9),2) + (y,[2,2]) =0, foralz,yze€g.

(1.7) Characterizations of semisimple Lie algebras

Theorem. A finite dimensional Lie algebra g over a field k of characteristic 0 is semisimple
if any of the following equivalent conditions holds:
(1) g is a direct sum of simple Lie subalgebras.
(2) The radical of g is 0.
(3) Every finite dimensional g module is completely decomposable and g = [g, g].
(4) The Killing form on g is non-degenerate.

2. Finite dimensional complex simple Lie algebras

(2.1) Dynkin diagrams and Cartan matrices
A Dynkin diagram is one of the graphs in Table 1. A Cartan matriz is one of the matrices
in Table 2. The (4,5) entry of a Cartan matrix is denoted «;(H;). Notice that every
Cartan matrix satisfies the conditions,

(1) as(H;) =2,forall1 <i<r,

(2) «;(H;) is a non positive integer, for all ¢ # 7,

(3) ai(H;) =0 if and only if a;(H;) = 0.
If C is a Cartan matrix the vertices of the corresponding Dynkin diagram are labeled by
a;,1 <1 <, such that o;(Hj)a;(H;) is the number of lines connecting vertex a; to vertex
aj. If ;j(H;) > a;(H;) then there is a > sign on the edge connecting vertex c; to vertex
a;, with the point towards ;. With these conventions it is clear that the Cartan matrix
contains exactly the same information as the Dynkin diagram; each can be constructed
from the other.

(2.2) Classification of finite dimensional complex simple Lie algebras

Fix a Cartan matrix C = (o;(H;))1<ij<r- Let go be the Lie algebra over C given by

generators
X7, X5 ,..., X7, Hy,H,...,H, X{ XxXt,... X},
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and relations
[HHHJ] = 01 for all 1 S Z,] S T,

[Hi,XJ?L] =aj(H,-)XJT*,
foralll <i,j <r,

(Hy, X;7] = =3 (H)X;,
[Xi-i_an—] = 6;; H;, for1<i,j<r,

IX:_’ [X,-’L,-”[X{*;Xf]]-“] =0,

—a; (H;)+1 brackets

for 7 # j.
LXi_v [Xi_’ o ’[Xi_;Xj_]] o ] =0,

~aj(H;)+1 brackets

Theorem. Let C' be a Cartan matrix and let gc be the Lie algebra defined above.
(1) The Lie algebra g¢ is a finite dimensional complex simple Lie algebra.

(2) Every finite dimensional complex simple Lie algebra is isomorphic to g¢ for some
Cartan matrix C.

(3) If C,C’ are Cartan matrices then

gc =~ gor ifandonlyif C = C'.

(2.3) Triangular decomposition
Fix a Cartan matrix C' = («;(H;))1<i,j<r and let g = g¢. Define

n~ = Lie subalgebra of g generated by X, X, ,..., X .
f] = C—span {Hl, H2, e ,H,.},

nt = Lie subalgebra of g generated by X;, XJ,..., X7,

The elements X1, X, ..., X, , Hy,...,H,, X;5, X, ..., X;F are linearly independent in g
and
g=n"®hont,
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The Lie subalgebra h C g is a Cartan subalgebra of g and the Lie subalgebra b = h@nt is
a Borel subalgebra of g. The rank of g is r = dim §. ’
(2.4) Weights and weight spaces

Fix a Cartan matrix C = (a;(H;))1<i,j<r and let g = g¢. Let h* = Homg (b, C) and define
the fundamental weights w,...,wy € h* by

wi(Hj) = 6;5, for1<4,5<r.
Let V be a g-module and let u = Y_;_, p;w; € h*. The subspace

Vi={veV|hv=p(h), for heb}
={veV|Hy=uwv, for 1<i<r}

is the p-weight space of V. Vectors v € V,, are weight vectors of V' of weight p, wt(v) = p.
The weights of the g-module V are the elements u € h* such that V, # 0. If u is a weight
of V, the multiplicity of p in V' is dim(V,,). A highest weight vector in a g-module V' is a
weight vector v € V such that n*v = 0 or, equivalently, a weight vector v € V such that
X{"v=0, forl1<i<r.

The set of dominant integral weights PT and the weight lattice P are the subsets of
h* given by

r T
Pt = ZNw,- and P= Z Zw;, respectively,
=1 i=1

where N = Z5,.

(2.5) Classification of simple g-modules

Theorem. Let g be a finite dimensional complex simple Lie algebra. Every finite dimen-
sional g-module V is a direct sum of its weight spaces and all weights of V are elements of

P,
vV = @V.
uepP

Theorem. Let g be a finite dimensional complex simple Lie algebra.

(1) Every finite dimensional irreducible g-module V contains a unique, up to constant
multiples, highest weight vector vt € V and wt(vt) € P*.

(2) Conversely, if A\ € Pt then there is a unique (up to isomorphism) finite dimensional
irreducible g-module, V>, with highest weight vector of weight M.

(2.6) Roots and the root lattice
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Fix a Cartan matrix C = (o;(H;))1<i,j<r and let g = go. The adjoint action of g on g
(see (1.5)) makes g into a finite dimensional g-module. An element a € P, a # 0'is a root
if the weight space go 7 0. A root is positive, @ > 0, if g, C n™ and negative, a < 0, if
ga € n~. We have .

: dim g, = 1 for all roots a,

“—=®9a, b = go, ﬂ+=@ga, and g = n"@haont.
a<0 a>0

The roots a;, 1 <1 <7, given by go, = CX;L are the simple roots. The Cartan matrix is
the transition matrix between the simple roots and the fundamental weights,

r
a; = Zai(Hj)wj, for1<i<r.
i=1

-
The root lattice is the lattice Q C P C h* given by Q = Z Zay.

i=1
(2.7) The inner product on b
Let g be a finite dimensional complex simple Lie algebra and let C' = (o;(H;))1<ij<r
be the corresponding Cartan matrix. There exist unique positive integers dy,ds, - -,d,
such that ged(dy, -+, dr) = 1 and the matrix (dja;(H;))1<i j<r is symmetric. The integers
di1,d2,- -+, d, are given explicitly by

A di=1foralll<i<r,
B, : di=1for1<i<r-1, and d,=2,
C,: di=2for1<i<r-1, and d,=1,
Fy : di=dy=1, and d3=d4 =2,
Gz: d1=3, and d2=1.

Let ay,...,a, be the simple roots for g. Define

r
br =Y Ra;,
=1

so that by is a real vector space of dimension r. Define an symmetric inner product on hg
by
(a4, o) = dio; (Hj), for <i,5<r,

where the values o;(H;) are the entries of the Cartan matrix corresponding to g.

(2.8) The Weyl group corresponding to g
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Let g be a finite dimensional complex simple Lie algebra and let R be the set of roots of g
and let ay, ..., a, be the simple roots. For each root o € R define a linear transformation
of by by

2c
(@)

The Weyl group corresponding to g is the group of linear transformations of hy generated
by the reflections s,, @ € R,

sa(A) =A— (N, oY), where o=

W =<sq|a€eR>.

The simple reflections in W are the elements s; = 84,, 1 <2 < 7.

Theorem. Let g be a finite dimensional complex simple Lie algebra and let W be the
Weyl group corresponding to g.

(a) The Weyl group W is a finite group. 7
(b) The Weyl group W can be presented by generators s1,. .., S, and relations

s? =1, 1<i<r,
$iSjSiSj = §;8;5j8; "+ for i # j,
mi; ‘f,actors mij };ctors
where
2, ifai(Hj)a;(H;) =0,
F— 3, ifa.-(Hj)a,-(Hi) = 1,
K 4, ifa,-(Hj)aj(H,-) = 2,
6, ifa,-(Hj)aj(H,-) = 3.

Let w € W. A reduced decomposition for w is an expression
W = 84, 8i5 " " Siy(w)

of w as a product of generators which is as short as possible. The length £(w) of this
expression is the length of w.

Proposition. Let g be a finite dimensional complex simple Lie algebra and let W be
the Weyl group corresponding to g.

(a) There is a unique longest element wo in W.

(b) Let wo = s;, -+ ;5 be a reduced decomposition for the longest element of W. Then
the elements

ﬁl = j,, ﬂz = 81 (aiz)’ ceey ﬂN = 84,84y *° 'si)v_l(aizv)7

are the positive roots of g.
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3. Enveloping algebras

(3.1) Motivation for the enveloping algebra

A Lie algebra g is not an algebra, at least as defined in I (1.1), because the bracket is not
associative. We would like to find an algebra, or even better a Hopf algebra, ilg, for which
the category of modules for ilg is the same as the category of modules for g. In other
words we want g to carry all the information that g does and to be a Hopf algebra.

(3.2) Definition of the enveloping algebra

Let g be a Lie algebra over k. Let T(g) = @, 8°* be the tensor algebra of g and let J
be the ideal of T'(g) generated by the tensors

TQy—y®zx—[z,y], where z,y€g.

The enveloping algebra of g, g, is the associative algebra

There is a canonical map
ap: g — g
z — z+J.

The algebra ig can be given by the following universal property:
Let o : g — A be a mapping of g into an associative algebra A over k
such that

a([z,y]) = a(z)a(y) — a(y)a(z),

for all z,y € g, and let 1 and 14 denote the identities in g and A
respectively. Then there exists a unique algebra homomorphism 7 :
ilg — A such that 7(1) = 14 and a = 7o ay, i.e. the following diagram
commutes.

g — g
o\ lf
A

(3.3) A functorial way of realising the enveloping algebra
If A is an algebra over k, as defined in I (1.1), then define a bracket on A by

[z,y] =2y —yz, forallz,ye€ A

This defines a Lie algebra structure on A and we denote the resulting Lie algebra by L(A)
to distinguish it from A. L is a functor from the category of algebras to the category of
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Lie algebras. U is a functor from the category of Lie algebras to the category of algebras
In fact Y is the left adjoint of the functor L since

Homag (g, A) Homye (g, L(A))

for all Lie algebras g and all algebras A.

(3.4) The enveloping algebra is a Hopf algebra
The enveloping algebra g of g is a Hopf algebra if we define
(a) a comultiplication, A:ig — g ® g, by

Alz)=zQ®1+1Q®z, forallzeg,

(b) a counit, e:ilg— k, by

e(z) =0, forallze€g,

(c) and an antipode, S:ig — Hg, by

S(z)=—=z, forallzeg.

(3.5) Modules for the enveloping algebra and the Lie algebra are the same!
Every g-module M is a $g-module and vice versa, since there is a unique extension of the
action of g on M to a ilg-action on M.

(3.6) The Lie algebra can be recovered from its enveloping algebra!

An element z of a Hopf algebra A is primitive if

Alz)=1Q@z+zQ1.

It can be shown that if char £ = 0 then the subspace g of g is the set of primitive elements
of Ug. Thus, if char k¥ = 0, we can “determine” the Lie algebra g from the algebra ilg and
the Hopf algebra structure on it.
(3.7) A basis for the enveloping algebra
The following statement is the Poincaré-Birkhoff- Witt theorem.

Suppose that g has a totally ordered basis (z;);ca. Then the elements

Ti Ti, * T4

n

in the enveloping algebra Ug, where #; < i3 < .- < 4, is an arbitrary
increasing finite sequence of elements of A, form a basis a {g.
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5. The enveloping algebra of a complex simple Lie algebra

(5.1) A presentation by generators and relations

Let g be a finite dimensional complex sim;;'le Lie algebra and let C' = (o;(H;))1<i j<r be
the corresponding Cartan matrix. Then the enveloping algebra ilg of g can be presented
as the algebra over C generated by

Xy, Xy,..., X, Hy,H,,...,H, Xf',X;,...,X:‘,
with relations
[H‘i’ H]] =0, forall1<4,5<r,

[H;, X;f] = q;j (H,.)X;“,
forall1 <4, <,
[Hi, X5) = —o(H) X5,

(X5, X; ] =6 H,, for1<i,j<r,

L— oy (H; L
> o (VT Erap -0, pritd,
s+t=1—a;(H;)

where, if a,b € g, we use the notation [a,b] = ab — ba. Note that since

(o[, g, 8] 1= 3 (=1)° (ﬁ) a*bat,

£ brackets s+t=t

for any two elements a, b € 4lg and any positive integer ¢, the relations for g are exactly
the same as the relations for g given in (2.2).
(5.2) Triangular decomposition

Let g be a finite dimensional complex simple Lie algebra as presented in (2.2). Recall from
(2.3) that g has a decomposition

g=n"ohonT,

where

n~ = Lie subalgebra of g generated by X;, X5 ,..., X .
h = Cspan {Hy,H,...,H,},
nt = Lie subalgebra of g generated by X", XF,..., X
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It follows from this and the Poincaré-Birkhoff-Witt theorem that

g = Un~ @ Uh ® Un't, as vector spaces.

(5.3) Grading on Un* and in~

Let g be a finite dimensional complex simple Lie algebra as presented in (2.2). Let
o1,...,a, be the simple roots for g and let

QT = ZNa,-, where N = Z,.
;

For each element v = Y ;_, v;o; € Q% define

(Unt), = span-{X;F - -Xi': | Xt -Xi"; has v;-factors of type X;L}
(4n7), = span-{X; -- X | Xi, - -X;, has v;-factors of type XJ"}
Then

Un~ = @ (Un7),, and Unt = @ (Unt),,
ve@t vet

as vector spaces.

(5.4) Poincaré-Birkhoff-Witt bases of {n~, U4f, and Unt
Let g be a finite dimensional complex simple Lie algebra as presented in (2.2), let nt,

n~ and b be as in (2.3) and recall the root spaces g, from (2.6). Let W be the Weyl
group corresponding to g. Fix a reduced decomposition of the longest element wy € W,
Wo = S;, *** Sip, and define
pr = a,, B2 = si; (i), coey BN =8i,8i, 0 Siy_, (i)
The elements S, ...,y are the positive roots g and the elements —f,...,—Bn are the
negative roots of g.
For each root a, fix an element X, € g,.

Since g, is 1-dimensional X, is uniquely defined, up to multiplication by a constant. Since

n = @ga, n+ = @90:’ h = Spa'n'{HhHZ"' Hr} and g = n e h ®n+a
a<0 a>0

it follows that )
{Xp,y--- Xpn} is a basis of nt,

{X_gy,.-» Xy} is a basis of n™, and

{Hy,H,,...,H,} is a basis of h.
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Then, by the Poincaré-Birkhoff-Witt theorem,
{XS;XE: o 'stm | p1,...,pN € Zgo} is a basis of Un™,

N

{ng’lezﬁ2 --folﬂ] | 7y, . R OIS Z>o} is a basis of {n~, and
{H{*H3*---H{" | s1,...,5N € Zxo} is a basis of 41h.

(5.5) The Casimir element in g

Let g be a finite dimensional simple complex Lie algebra and let (,) be the Killing form
on g (see (1.6)). Let {b;} be a basis of g and let {#*} be the dual basis of g with respect
to the Killing form. Let c be the element of the enveloping algebra ilg of g given by

c= Zbibi.

Then
c is in the center of ilg.

Any central element of {ig must act on each finite dimensional simple module by a constant.
For each dominant integral weight A let V* be the finite dimensional simple $g-module
indexed by A (see (2.5)). Let p be the element of b given by

pP=3) 0

a>0

where the sum is over all positive roots for g. Then the element
c acts on V* by the constant (A + p, A + p) — (p, p),

where inner product on by is as given in (2.7).
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Ar._1: = © O—— | e ——- © ©
a1 Q3 a3 v Qr_2 Qr-1
B,: e —o o——— @ ------ —a—>—0D1
(251 Q2 a3 cr (o 70m | (078
C.: o— © o——my  ------ —_—<=—
aq Q2 Qg o Qr—1 ay
Qr—1
D, o o o——  ------
1231 Q3 a3 v Qp_2
Qy
i a3 oy Qs Qg
> © © ©
EGZ
a2
an 038 4 (013 ° ae Q7 °
E7: l
a2
i a3 Qa4 as g o7 asg °
Eg: I
(63
Fy: ——a——>—p1p Go: L= ——>)
(03] Q9 [0 4] [0 71 (051 Q9

Table 1. Dynkin diagrams corresponding to finite dimensional complex simple Lie algebras
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2 -1 0 0 2 -1 0 0
-1 2 -1 0 -1 2 -1 0
0 -1 2 0 0 -1 2 0
A,-_lt : Br
0 -1 2 -1 0 -1 2 =2
0 o -1 2/ 0 0 -1 2
2 -1 0 0 2 -1 0 0
-1 2 -1 0 -1 2 -1 0
c 0 -1 2 0 D :
" . " 0 1 2 -1 -1
0 -1 2 -1 0 0 -1 2 0
0 0 -2 2 0 0 -1 0 2
> 0 10 0 0 (20 -1 0 0 0 0y
0 2 0 -1 0 0 B
10 2 1 0 o -1 0 2 -1 0 0 O
Eg: Ey: 0 -1 -1 2 -1 0 0
0 -1 -1 2 -1 0
0 0 0 -1 2 -1 0
0 0 0 -1 2 -1
0 0 0 0 -1 2 \0 0 0 0 -1 2 —1)
0 0 0 0 0 -1 2
/2 0 -1 .0 0 0 0 0)
0 2 0 -1 0 0 0 O
-1 0 2 -1 0 0 0 0
I 0 -1 -1 2 -1 0 0 0
8 0 0 0 -1 2 -1 0 o0
0 0 0 0 -1 2 -1 0
0 0 0 0 0 -1 2 -1
\o 0 0 0 0 0 -1 2/
2 -1 0 0
-1 2 -2 0 2 -1
Fa: 0 -1 2 -1 Ga: (—3 2)

Table 2. Cartan matrices corresponding to finite dimensional complex simple Lie algebras
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ITI. Deformations of Hopf algebras

The basic material on completions given in §1 can be found in many books, in partic-
ular, [AM] Chapt 10. The book [SS] has a comprehensive treatment of deformation theory.
Theorem (2.6) is stated and proved in [SS] Prop. 11.3.1.

1. h-adic completions

(1.1) Motivation for h-adic completions

We will be working with algebras over C[[h]], the ring of formal power series in a variable
h with coefficients in C. A typical element of C[[h]] which is not in C[h] is the element
2 3
eh=1+h+%+%+--~.

The ring C[[h]] is just C[h] extended a little bit so that some nice elements that we want
to write down, like e®, are in C[[A]].

An algebra over C[[h]] is a vector space over C[[h]], i.e. a free C[[h]]-module, which has
a multiplication and an identity which satisfy the conditions in I (1.1). If A is an algebra
over C then we can extend coefficients and get a new algebra A ®c C[[h]] which is over
C|[[h]]. But sometimes this new algebra is not quite big enough so we need to extend it a
little bit and work with the h-adic completion A[[h]] which contains all the nice elements
that we want to write down.

Continuing in this vein we will want to consider the tensor product A[[k]] ® A[[h]].
Again, this algebra is not quite big enough and we extend it to get a slightly bigger object
A[[h]]®A][R]] so that all the elements we want are available.

(1.2) The algebra A[[h]], an example of an h-adic completion
If A is an algebra over k then the set

A[[A]] = {ao + a1h + azh® + - - - | a; € A}

of formal power series with coefficients in A is the completion of the k[[h]]-module k[[h]]®%A
in the h-adic topology. The k[[h])-linear extension of the multiplication in A gives A[[h]]
the structure of a k[[h]]-algebra. The ring A[[h]] is, in general, larger than k[[h]] ®4 A. For
each element a = 3° .o a;h? € A[[h]] the element

2

h3
) + (a + 3(apa1 + a1a0) + 6ay) ( ) +o--

eha=z__ =1+a0h+(a(2)+2a1)(h ?

2

is a well defined element of A[[h]].
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(1.3) Definition of the h-adic topology

Let k be a field and let & be an indeterminate. The ring k[[A]] is a local ring with unique
maximal ideal (k). Let M be a k[[h]]-module. The sets

m+h*M, meM,n¢€N,

form a basis for a topology on M called the h-adic topology. Define a mapd: M x M — R
by
d(z,y) = e~'CEY) forallz,ye M,

where e is a real number e > 1 and v(z) is the largest nonnegative integer n such that
z € h®M. Then d is a metric on M which generates the h-adic topology.
(1.4) Definition of an h-adic completion

Let M be a k[[k]]-module. The completion of the metric space M is a metric space M
which contains M in a natural way and which has a natural k[[h]]-module structure. The
completion M of M is defined in the usual way, as a set of equivalence classes of Cauchy
sequences of elements of M. Let us review this construction.

A sequence of elements {p,} in M is a Cauchy sequence in the h-adic topology if for
every positive integer £ > 0 there exists a positive integer N such that

Pn — Pm € KM, for all m,n > N,

i.e. pn — pm is “divisible” by A’ for all n,m > N. Two Cauchy sequences P = {p,} and
Q = {gn} are equivalent if the sequence {p, — gn} converges to 0, i.e.

P ~ Q if for every £ there exists an N such that p, — ¢, € h*M for all n > N.

The set of all equivalence classes of Cauchy sequences in M is the completion M of M.
The completion M is a k[[h]]-module where the operations are determined by

P+Q={pn+¢.}, and aP = {ap,},

where P = {p,} and @ = {g,} are Cauchy sequences with elements in M and a € k[[h]].
Define a map

~

¢: M — M
m > [(m,m,m,...)],

i.e. ¢(m) is the equivalence class of the sequence {p,} such that p, = m for all n. This
map is injective and thus we can view M as a submodule of M.

2. Deformations



