II1. DEFORMATIONS OF HOPF ALGEBRAS 41

(2.1) Motivation for deformations

We are going to make the quantum group by deforming the enveloping algebra ig of a
complex simple Lie algebra g as a Hopf algebra. This last condition is important because
the enveloping algebra g does not have any deformations as an algebra.

(2.2) Deformation as a Hopf algebra
Assume that (A4,m,t, A, ¢, S) is a Hopf algebra over k. Let A[[h]]®A[[h]] denote the com-

pletion of A[[h]] ®kjn)) Al[R]] in the h-adic topology. A deformation of A as a Hopf algebra
is a tuple (A[[h]], mn, th, An, €n, Sn) where
my: A[[R)®A[R]] — A[[R]],  An: A[[R]] — A[[R]I®A[[A]],
i k[[h]] — A[[R]], en: A[[R]] — K[[R]], and Sp: A[[R]] — A[[A]],
are k[[h]]-linear maps which are continuous in the h-adic topology, satisfy axioms (1) - (7)
in the definition of a Hopf algebra, and can be written in the form
mp =m+mh+mah?+-.-
Ap=A+Ah+ A%+ ...
th=t+uh+uh?+-..
€h =€+ e1h+ e2h® + -+
Sh=S+Slh+Szh2+"'

where, for each positive integer 7,

mi:AQA — A, A A— AR A,
itk — A, €i:A— k, and S;:A— A,

are k-linear maps which are extended first k[[h]]-linearly and then to the h-adic completion.
We shall abuse language (only slightly) and call (A[[R]], 74, th, €n, Ap, Sk) a Hopf algebra
over k[[h]].

(2.3) Definition of equivalent deformations

Two Hopf algebra deformations (A[[A]], mp, th, Ap, €r, Sp) and (A[[R]], m},, ¢}, A}, Sp,) of a
Hopf algebra (A, m, ¢, A, €, S) are equivalent if there is an isomorphism

fh : (A[[h]]7 Mh, Lh, Ah) €h, Sh) — (A[[h]]a m;u l’;u ;za 6;17 S;:,)
of h-adically complete Hopf algebras over k[[h]] which can be written in the form
fr = ida+ fih+ f2h? + -

such that, for each positive integer 7, f; : A — A is a k-linear map which is extended
k[[h]]-linearly to k[[h]] ®% A and then to the h-adic completion A[[R]].
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(2.4) Definition of the trivial deformation as a Hopf algebra

Let (A,m,t,A,¢,S) be a Hopf algebra. The trivial deformation of A as a Hopf algebra is
the Hopf algebra (A[[h]], ma, th, An, €n, S) over k[[h]] such that mp =m, ¢p, = ¢, Ap = A,
en =€ and S, = S (extended to A[[h]]).

(2.5) Deformation as an algebra

Assume that (A,m,:) is an algebra over k. Let A[[h]]®A[[h]] denote the completion of
A[[R]] ®kqiny Al[R]] in the h-adic topology. A deformation of A as an algebra is a tuple
(A[[h]], mp, tn) where

mn: A[[RJ®A[[R]] — A[[Rl],  en: K[[R]] — A[[R]],

are k[[h]]-linear maps which are continuous in the h-adic topology, satisfy the axioms the
definition of an algebra (see I (1.1)) and can be written in the form

mp =m+mih+moh® +- ..
th=1t+ t1h+ k% + -

where, for each positive integer %,
mi:AQA — A, tick — A,

are k-linear maps which are extended first k[[A]]-linearly and then to the k-adic completion.
We shall abuse language (only slightly) and call (A[[h]], mp, ¢) an algebra over k[[h]].
This definition is exactly like the definition of a deformation as a Hopf algebra in (2.2)
above except that we only need to start with an algebra and we only require the result to
be an algebra. We can define equivalence of deformations as algebras in exactly the same
way that we defined them for deformations as Hopf algebras except that we only require
the isomorphism f;, to be an algebra isomorphism instead of a Hopf algebra isomorphism.

(2.6) The trivial deformation as an algebra

Let (A,m,¢) be an algebra. The trivial deformation of A as an algebra is the algebra
(A[[R]], M, tn) over k[[R]] such that m, = m and ¢, = ¢ (extended to A[[h]]). The de-
formation of the quantum group given in V (1.3) is even more incredible if one keeps the
following theorem in mind.

Theorem. Let g be a finite dimensional complex simple Lie algebra and let g be the
enveloping algebra of g. Then g has no deformations as an algebra (up to equivalence of
deformations).

In other words, all deformations of g as an algebra are equivalent to the trivial deformation

of ig.
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IV. Perverse sheaves

To any reader that has not met sheaves before: I suggest that you don’t read this
section, only refer to it a few times while you are reading Chapter VIII of these notes. The
most important thing, from the point of view of these notes, is to understand the basic
structures given in Chapter VIII; anyone who is going to study these topics in more depth
can always come back and learn these definitions later.

A large part of the material in this section is basic material about derived categories.
This material can usually be found in texts which treat homological algebra. Everything
in this section, except the definition and properties of perverse sheaves given in §3 can be
found in [KS] Chapt. I-III. The definition of a perverse sheaf is in [BBD] 4.0 and the proof
of Theorem (3.1) is in [BBD] Theorem 1.3.6. The Theorems in (3.2) are proved in [BBD]
2.1.9-2.1.11 and Theorem 4.3.1, respectively. We shall not review the definition of sheaves,
it can be found in many textbooks, see [KS] Chapt. II. '

1. The category Di(X)

(1.1) Complexes of sheaves

Let X be an algebraic variety. A complex of sheaves on X is a sequence of sheaves At on
X and morphisms of sheaves d;: A* — A*t1,

A= ( X d——2> AL &3 g0 oy g1 &y . ) such that diy1d; = 0.

The morphisms d;: A* — A**! are called the differentials of the complex A. Let A and B
be complexes of sheaves. A morphism f: A — B is a set of maps f,: A — B™ such that

the diagram
e e G L B NOE B N

lf—l lfo Jﬁ
d_g -1 d_, 0 do 1
— B — B — B —--

commutes.
The ith cohomology sheaf of a complex A is the sheaf
. ker( A® i+1
H(A) = .er( ' — A¥t1)
im(A4+-1 — A;)

We have a well defined complex of sheaves #(A) given by

IR (4) T HOA) B HA) Gy



44 ARUN RAM

A gquasi-isomorphism f: A—>B is a morphism f: A — B such that the induced mor-
phism H(f): H(A) — H(B) is an isomorphism. Note that every isomorphism is a quasi-
isomorphism but not the other way around (even though the notation may be confusing).

(1.2) The category K (X) and derived functors
Let X be an algebraic variety. Let A and B be complexes of sheaves on X. Two morphlsms
f: A— B and g: A — B are homotopic if there is a collection of morphisms k;: A* — B*~!

such that
fn —gn = kn+1dn +dp_1kn.

The motivation for this definition is that if f and g are homotopic then H(f) = H(g).
Define K(X) to be the category given by

Objects: Complexes of sheaves on X.

Morphisms: A K(X)-morphism from a complex A4 to a complex B is an homotopy
equivalence class of morphisms from A to B.

This just means that, in the category K(X), we identify homotopic morphisms.

Let A be a complex of sheaves on X. An injective resolution of A is a quasi-
isomorphism A —~+ J such that J* is injective (an injective object in the category of sheaves
on X) for all i. Let Sh(X) denote the category of sheaves on X and let F: Sh(X) — Sh(X)
be a functor. The right derived functor of F is the functor RF: K(X) — K(X) given by

F(d_ F(d- F(dg) (Jl) F(dl) . )

RF(A)=F(J) = (--- "9 p1) P9 poy 1%

where J is an injective resolution of A. The ith derived functor of F is the functor
R'F: K(X) — Sh(X) given by

R'F(A) = H(F(J)),

where J is an injective resolution of A. In other words R*F(A) is the ith cohomology sheaf
of the complex RF(A).

(1.3) Bounded complexes and constructible complexes

A complex of sheaves A is bounded if there exists a positive integer n such that A™ = 0
and A=™ =0 for all m > n.

An algebraic stratification of an algebraic variety X is a finite partition X = | |, X,
of X into strata such that

(a) For each ¢, the stratum X, is a smooth locally closed algebraic subvariety in X,
(b) The closure of each stratum is a union of strata, and
(c) The Whitney condition holds (see Verdier [Ver]).

Let [ be a prime number and let ; be the algebraic closure of the field Q; of I-adic numbers.

A sheaf F on X is () -constructible if there is an algebraic stratification X = |}, X, such
that, for each «, the restriction of F to X, is a locally constant sheaf of finite dimensional
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vector spaces over . A complex A € K(X) is Q -constructible if H*(A) is Qj-constructible
for all <. ,

(1.4) Definition of the category D’(X)
Let X be a variety. Let A and B be complexes of sheaves on X. Define an equivalence

relation on diagrams
A& C — B

in K(X) which have A and B as end points by saying that the diagram 4 «+— C — B,
is equivalent to the diagram A <~ C' — B, if there exists a commutative diagram

C
Y
A = D — B

N | s

o

The notation C <~ A denotes that the map is a quasi-isomorphism. The bounded derived
category of Q;-constructible sheaves on X is the category D2(X) given by
Objects: Bounded, Qj-constructible complexes of sheaves on X.
Morphisms: A morphism from A to B is an equivalence class of diagrams
A& C — B.
This definition of morphisms is a formal mechanism that inverts all quasi-isomorphisms.
It ensures (in a coherent way) that “inverses” of quasi-isomorphisms are morphisms, i.e.
that A <<~ B is a morphism from A to B.
Given two morphisms A +— D —s Band B +— E — C in D5(X) one can show
that there always exists a commutative diagram

4 p e N
A B c

and one defines the composition of the two morphisms A +—~ D —+ Band B+ E —
C to be the morphism defined by the diagram A +— F — C.

2. Functors
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(2.1) The direct image with compact support functor fi

A map g: X — Y between locally compact algebraic varieties is compact if the inverse
image of every compact subset of Y is a compact subset of X.

Let f: X — Y be a morphism of locally compact algebraic varieties. Let F be a sheaf
on X. The support, supp s, of a section s of F on an open set V is the complement in V'
of the union of open sets U C V such that s|y = 0.

The direct image with compact support sheaf fiF, is the sheaf on Y defined by setting

T(U; fiF) = {s € T(f Y (U); F) | f : supp s — U is compact},

for every open set U in Y. (For a sheaf F on X and an open set U in X, I'(U; F) = F(U).)
This defines a functor fy : Sh(X) — Sh(Y), where Sh(X) denotes the category of sheaves

on X.
Let f: X —+ Y be a morphism of locally compact algebraic varieties. The direct image

with compact support functor fi: D2(X) — D(Y) is given by

f! = th
so that fi is the right derived functor of the functor fi: Sh(X) — Sh(Y).

(2.2) The inverse image functor f*

Let f: X — Y be a morphism of algebraic varieties. Let ' be a sheaf on Y. The inverse
image sheaf f*F is the sheaf on X associated to the presheaf

V— lim F(U), for all V open in X,
U2£(V)

where the limit is over all open sets U in Y which contain f(V). This defines a functor
f*:Sh(Y) — Sh(X), where Sh(X) denotes the category of sheaves on X. It is very
common to denote this functor by f~! but we shall follow [BBD] and [Lu] and use the
notation f*.

The inverse image functor f*: D8(Y) — D2(X) is given by

f*=Rf*
so that f* is the right derived functor of the functor f*: Sh(Y) — Sh(X).

(2.3) The functor f,

Let f: X — Y be a morphism of algebraic varieties. Let A € D%(X). Then f,A is the
unique (up to isomorphism) complex on Y such that

A= f*(f, A).

Actually, I have cheated here: We can only be sure that the complex f, A is well defined if
f is a locally trivial principal G-bundle, A is a semisimple G-equivariant complex on X and
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we require f,A to be a semisimple complex on Y, see [Lu] 8.1.7 and 8.1.8 for definitions
and details. A

(2.4) The shift functor [n]

Let A be a complex of sheaves on X. For each integer n define a new complex A[n] , with
differentials d[n];, by

(Al))! =A™, and  (d[n]); = (~1)"dna.
The shift functor is the functor
Dy(x) 5 DYX)
A —  Aln].

(2.5) The Verdier duality functor D

This definition is too involved for us to take the energy to repeat it here, we shall refer the
reader to [KS] §3.1. The main thing that we will need to know is that this functor exists.

3. Perverse sheaves

(3.1) Definition of perverse sheaves
Let X be an algebraic variety. The support, supp F, of a sheaf F' on X is the complement
of the union of open sets U C X such that F |U =0.
A complex A € D%(X) is a perverse sheaf if

(a) dim supp H*(A) = 0 for i > 0 and dim supp H*(4) < —i for i < 0, and

(b) dim supp H*(D(A)) = 0 for i > 0 and dim supp H*}(D(A)) < —i for i < 0,
where D(A) is the Verdier dual of A.

An abelian category is a category which has a direct sum operation and for which
every morphism has a kernel and a cokernel. See [KS] I §1.2 for a precise definition.

Theorem. The full subcategory of D8(X) whose objects are perverse sheaves on X is an
abelian category.

(3.2) Intersection cohomology complexes

Theorem. Let Y C X be a smooth locally closed subvariety of complex dimension d > 0
and let £ be a locally constant sheaf on Y. There is a unique complex IC(Y, £) in D%(X)
such that

(1) HH(IC(Y,L)) =0, ifi < —d,
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(2) H™H(IC(Y, L)) ly= L,
(3) dim supp H*(IC(Y, L)) < —i, ifi > —d,
(4) dim supp H}(D(IC(Y, L))) < —i, if i > —d,

The complexes IC(Y, L) are the intersection cohomology complexes and an explicit con-
struction of these complexes is given in [BBD] Prop. 2.1.11.

Theorem. The simple objects of the category of perverse sheaves are the intersection
complexes IC(Y, L) as L runs through the irreducible locally constant sheaves on various
smooth locally closed subvarieties Y C X.
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V. Quantum groups

The definition of the quantum group and the uniqueness theorem, Theorem (1.4), are
stated in [D1] §6 Example 6.2. Theorem (1.4) appears with proof in [SS] Theorem 11.4.1.
The statements in (3.3) and (3.4) can be found in [CP] 9.2.1 and 9.3.1 and the treatment
there gives references for where to find the proofs.

1. Definition, uniqueness, and existence

(1.1) Making the Cartan matrix symmetric

Let g be a finite dimensional complex simple Lie algebra and let C = (a;(H;))1<i, j<r
be the corresponding Cartan matrix. There exist unique positive integers d,,ds, - -,d;
such that ged(dy, - - -,d,) = 1 and the matrix (d;a;(H;))1<i j<r is symmetric. The integers
dy,ds,---,d, are given explicitly by

B By di=1forall1<i<r,

B, : di=1for1<i<r-1, and d,=2,
C,: di=2,for1<i<r-—1, and d, =1,
F4: d1=d2=1, and d3=d4=2,

Gz: d1=3, and d2=1.

(1.2) The Poisson homomorphism §
Let 6 : g — g ® g be the C-linear map given by

§(H) =0, 8(XF)=di(X}®H;—H;®X]), 1<i<r

There is a unique extension of the map § : g — g ® g to a C-linear map ¢ : Ug — Ug ® Ug
such that
O(zy) = A(z)d(y) + 0(x)A(y), forall z,y € Ug.

(1.3) The definition of the quantum group

A Drinfel’d-Jimbo quantum group Ug corresponding to g is a deformation of $lg as a Hopf
algebra over C such that

(1) Poisson condition :

Bu(o) —AF(@)
h

(If Ap(a) = 37, aq) ® a(z) then AP(a) =), az) ® ag).)
(2) Cartan subalgebra condition:

mod k) = §(a mod h), for all a € Upg.
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There is a subalgebra Uz h C U,g such that
(a) Upb is cocommutative, i.e. Ap(a) = ApP(a), for all a € Upbh,
(b) The mapping U h/hilyh — g is injective with image 4b.
(3) Cartan involution condition: "
There is a mapping 6 : Upg — Upg such that
(a) 8% = idg, g,
(b) 6(Unb) = Unb,

(c) 8 is an algebra homomorphism and a coalgebra antihomomorphism, i.e.

6(ab) = 0(a)d(b), for all a,b € Upg, and
Ap(8(a)) = (0 ®0)AP(a), for all a € Upg,

(d) @ mod h is the Cartan involution.
(1.4) Uniqueness of the quantum group

Theorem. Let g be a finite dimensional complex simple Lie algebra. The Drinfel’d-Jimbo
quantum group ;g corresponding to g is unique (up to equivalence of deformations).

(1.5) Definition of ¢g-integers and g-factorials
For any symbol ¢ define

qn _ q—n
[nlg = q—-q 1’ [n]g! = [nlgln — 1]q- - - [2]4[1]q, and
|
me= ____[_'r_n]q._, for all positive integers m > n,
nly  [nlgm—n!

(1.6) Presentation of the quantum group by generators and relations

Note the similarities (and the differences) between the following presentation of the quan-
tum group by generators and relations and the presentation of the enveloping algebra of g
given in II (2.2).

Theorem. Let g be a finite dimensional complex simple Lie algebra and let C =
(aj(Hi))1<i,j<r be the corresponding Cartan matrix. The Drinfel’d-Jimbo quantum group
15 g corresponding to g can be presented as the algebra over C[[h]] generated (as a complete
C|[h]]-algebra in the h-adic topology) by

X],_’X2_1"-,Xr_1 H17H27"')Hr7 X]-,i-;X;-v"’X;*-)
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with relations
[Hi’Hj] =0, for all1 < ,j <,

[Hi, X;] = a;(Hi) X,
forall1 <i,j<r,
[H,',Xj_] = —aj(H,-)Xj',
edihHi . e—d,'hH.'
ed,’h — e—d,'h

(X, X;7] = 6y for1<i,j<r,

SENCI LA

. (XF)PXE(xF) =0, fori#j,
s+t=1—aj(H,-) e”

and with Hopf algebra structure given by

Ap(H;)=H;®1+1Q H;,
Ap(XH) = XFoet" i L1 XF,  AX])=X; @1+ *Mie X,
Sw(H;) = —H;, Sp(X;)=-Xfe 4hH: G (X7) = —edPHiX T,
Gh(H,') = Gh(Xj_) = Eh(Xi_) =0,

Cartan subalgebra Uh[[h]] C Upg, and Cartan involution 0: Upg — Uy g determined by

B(XF) = -X;

[

0(X;7) =-X}, 0(H;) = —H;.

2. The rational form of the quantum group

The rational form of the quantum group is an algebra which is similar to the algebra
31, g except that it is over an arbitrary field k. There are two reasons for introducing this
algebra.
(1) In the case when k = C(q) is the field this new algebra U,g has “integral forms”
which can be used to specialize ¢ to special values.
(2) In the case when £k = C and q is a power of a prime then part of this algebra
appears naturally as a Hall algebra of representations of quivers or, equivalently,
as a Grothendieck ring of G-equivariant perverse sheaves on certain varieties Ey .

(2.1) Definition of the rational form of the quantum group
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Many authors use the following form U,g of the quantum group as the definition of the
quantum group. :

Let g be a finite dimensional complex simple Lie algebra and let C = (o;(H;))1<i j<r
be the corresponding Cartan matrix. Let k'be a field and let ¢ € k be an nonzero element
of k. The rational form of the Drinfel’d-Jimbo quantum group U,g corresponding to g is
the algebra U,g over k generated by

F,F,,...,F,, K,K,,...,K,, K{YK;',...,K:', E\ E,,..., E,,
with relations

K;K; = K;K;, forall 1 <4,5<r,

KK '=K'K;=1, forall1<i<r,

KE;K' = ¢ H)E,
forall1<,5<r,
KiFjKi_l —_ q—d,'aj(Hi)Fj,

K;—-K!

m, forlSi,er,

E;Fj — F;E; = &;

S (- [1 - ag(Hi)]

EfE]Ef =0, for i # j,
s+t=1—aj(H,~) i

q

Z (_1)8 [1 - a;(Hz)] FstJEt — 0’ for i # j,
st+t=1-—a;(H;) qdi

and with Hopf algebra structure given by

A(K;))=K;®K;, A(E)=FE;®K;+1®E;, A(F)=F,®1+K;'®F,
S(K;)=K;', S(E;)=-EK;', S(F)=-K;F,
e(Ki) =1, €(E;)=0, €(F;)=0.

It is very common to take ¢ to be an indeterminate and to let k = C{q) be the field of
rational functions in q.

(2.2) Relating the rational form and the original form of the quantum group

The relations in the rational form of the quantum group are obtained from the relations
in the presentation of {5 g by making the following replacements:

e" — g, MK, X7 — F, X} —E..
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The ring U,g is an algebra over k and ¢ € k while the ring g is an algebra over C[[h]]
where h is an indeterminate. They have many similar properties. Most of the theorems
about the structure of the algebra 4, g have analogues for the case of the algebra U,g. The
category of modules for U,g is very similar to the category of module for the enveloping
algebra ${g. One should note, however, in contrast to Chapt. VI Theorem (1.1) which says
that U,g = Ug[[h]], it is not true that U,g is isomorphic to Ug, even if k = C and ¢ € k.
This fact complicates many of the proofs when one is trying to generalize results from the
classical case of {g to the quantum case U,g.

3. Integral forms of the quantum group

There are two different commonly used integral forms of a C(g)-algebra U,g, the “non-
restricted integral form” U4g and the “restricted integral form” U’f*g. Let us begin by
defining integral forms precisely.

(3.1) Definition of integral forms

Let ¢ be an indeterminate and let Uy be an algebra over C(g), the field of rational functions
in q. An integral form of U, is a A = Z[q, ¢~ ] subalgebra Uy4 of U, such that the map

Ua®aCq) — Uy

is an isomorphism of C(g) algebras. In other words, upon extending scalars from Z[q, ¢~}
to C(q) the algebra U4 turns into Uj,.

(3.2) Motivation for integral forms

The purpose of defining integral forms of algebras is that we can use them to specialize
the variable ¢ to certain elements of QQ, or R, or C, etc. Let U4 be an integral form of an
algebra U, over C(q) and let n € C, n # 0. The specialization at ¢ = n (over C) of Uy is
the algebra over C given by

U,=U4®4C, where the equation gc=rnc

describes how C is an A = Z[q, ¢~ !]-module. Similarly, we can define specializations of U4
over any field. With this last definition in mind we see that one could regard an integral
form of U, as an A = Z[q, ¢~!] subalgebra U 4 such that U, is the specialization of U4 over
C(q) at g =g.

(3.3) Definition of the non-restricted integral form of the quantum group

Let ¢ be an indeterminate and let £ = C(q) be the field of rational functions in ¢q. Let
U,g be the corresponding rational form of the quantum group. For each 1 < ¢ < r, define

elements
_Ki-K

K;;0],q; = .
[ © Vg qdi —q—di
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The non-restricted integral form of U,g is the A = Z[q, g~ ] subalgebra U 4g of U,g gener-
ated by the elements ‘

P, F,...,F,, Ki'Kf',. .. K% [K.;0],[K30),...,[Kr;0], E1,FEs...,Er.

The Hopf algebra structure on U,g restricts to a well defined Hopf algebra structure on
Uag.

(3.4) Definition of the restricted integral form of the quantum group

Let ¢ be an indeterminate and let & = C(g) be the field of rational functions in q. Let
U,g be the corresponding rational form of the quantum group. The restricted integral

form of U,g is the A = Z[gq,q '] subalgebra U®g of U,g generated by the elements
KE L KE', ... KX, and the elements

F# ¢ :
Fi(e) = 7] L D and E'.(e) = [E]E‘ T forall1<¢<randall{>1.
qd‘. th“

(The notation for the g-factorials is as in (1.5).) The Hopf algebra structure on U,g restricts
to a well defined Hopf algebra structure on Uf*g. It is nontrivial to prove that Uf®g is an
integral form of U,g.
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VI. Modules for quantum groups

The isomorphism theorem in (1.1) is found (with proof) in [D2] p. 330-331. The proof
of this theorem uses several cohomological facts, :

H%(g,4g) =0, H'(h,4g/(Ug)?) =0, and H'(g,Ug® Ug)=0.

The correspondence theorem in (1.3) is also found in [D2] p.331. All of the results in
section 2 can be found, with detailed proofs, in [Ja] Chapt. 5.

1. Finite dimensional 4,g-modules

(1.1) As algebras, ;g = $Ug[[h]]

The algebra Ug[[h]] is just the enveloping algebra of the Lie algebra g except over the ring
C[[h]] (and then h-adically completed) instead of over the field C. It acts exactly like the
algebra g, the only difference is that we have extended coefficients.

The following theorem says that the algebra i,g and the algebra $g[[h]] are exactly
the same! In fact we have already seen that this must be so, since $lg has no deformations
as an algebra (Chapt. III Theorem (2.6)). One might ask: If Ug and Ug[[h]] are the
same then what is big deal about quantum groups? The answer is: They are the same as
algebras but they are not the same when you look at them as Hopf algebras.

Theorem. Let g be a finite dimensional complex simple Lie algebra and let U,g be the
Drinfel’d-Jimbo quantum group corresponding to g. Then there is an isomorphism of

algebras
¢ : Upg — Ug[[h]],  such that

(a) ¢ =idyy (mod h), and
(b) (P|h = id[],
where, in the second condition, h = C-span{Hq,...,H;} C Ung.

(1.2) Definition of weight spaces in a {l,g module

A finite dimensional U, g-module is a Uy g-module that is a finitely generated free module
as a C[[h]]-module. If M is a finite dimensional {5 g-module and p € h* define the p-weight
space of M to be the subspace

M, ={me M |am= p(a)m, foralla € h}.

The dimension of the weight space M, is the number of elements in a basis for it, as a
C[[]]-module.
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(1.3) Classification of modules for g

Theorem (1.1) says that Ung and Ug[[h]] are the same as algebras. Since the category of
finite dimensional modules for an algebra depends only on its algebra structure it follows
immediately that the category of finite dimensional modules for 45g is the same as the
category of modules for Ug|[A]].

Theorem. There is a one to one correspondence between the isomorphism classes of finite
dimensional i g-modules and the isomorphism classes of finite dimensional {g-modules

given by 11
pg-modules > $g-modules

M —  M/RM
VI{[h]] — | %4

where the {4 g module structure on V[[h]] is defined by the composition

Ung—Ug([h]] — End(V{[h]]).

It follows from condition (b) of Theorem (1.1) that, under the correspondence in the
Theorem above, weight spaces of 4, g-modules are taken to weight spaces of {g-modules
and their dimension remains the same. Furthermore, irreducible finite dimensional g-
modules correspond taken to indecomposable i;g-modules and vice versa. (Note that
hV[[h]] is always a U g-submodule of the Uy g-module V[[A]].)

The previous theorem combined with Chapt. IT Theorem (2.5) gives the following
corollary.

Corollary. Let P* =3[ ; Nw; be the set of dominant integral weights for g, as in (2.4).
For every A € P™ there is a unique (up to isomorphism) finite dimensional indecomposable
i g-module L()\) corresponding to A.

2. Finite dimensional U,g-modules

The category of finite dimensional modules for the rational form U,g of the quantum
group is slightly different from the category of finite dimensional modules for 4,g. The
construction of the finite dimensional irreducible modules for U,g is similar to the con-
struction of these modules in the case of the Lie algebra g. Let us describe how this is
done.

(2.1) Construction of the Verma module M(\) and the simple module L(})

Let g be a finite dimensional complex simple Lie algebra and let U,g be the corresponding
rational form of the quantum group over a field k£ and with ¢ € k. We shall assume that
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char k # 2,3 and ¢ is not a root of unity in k.

Let A € P be an element of the weight lattice for g. The Verma module M(}) is be the
Ugg-module generated by a single vector vy where the action of U,g satisfies the relations

Evy = O, and K;v) =~q('\’a‘)v,\, foralll1 <i<r.

The map
Y —  yux
is a vector space isomorphism.
The module M(A) has a unique maximal proper submodule. For each A € P define

M)

L) = =

where N is the maximal proper submodule of the Verma module M ().

Theorem. Let g be a finite dimensional complex simple Lie algebra and let U,g be the
corresponding rational form of the quantum group over a field k with g € k. Assume that
char k # 2,3 and that q is not a root of unity in k. Let A € P be an element of the weight
lattice of g and let L()) be the Uyg-module defined above.

(a) The module L()) is a simple Ugzg-module.
(b) The module L()) is finite dimensional if and only if X is a dominant integral weight.

(2.2) Twisting L()) to get L(\, 0)
Let @ be the root lattice corresponding to g as given in II (2.6) and let o: Q — {£1} be

a group homomorphism. The homomorphism ¢ induces an automorphism o:Uyg — U,g

of U,g defined by
o: Ugg — Uqg

E,' — O’(Oi)Ei
K, — R

K +— o(xa) K,

where o3, ..., a, are the simple roots for g. Let A € P be an element of the weight lattice
and let L(A) be the irreducible Uyg-module defined in (2.1). Define a U,g-module L(), o)
by defining

(a) L(\, ) = L()) as vector spaces,

(b) U,g acts on L(A, o) by the formulas

uxm =o(u)m, forallu € U,g, m € L(\),
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where o is the automorphism of U,g defined above.

(2.3) Classification of finite dimensional irreducible modules for U,g

Theorem. Let g be a finite dimensional complex simple Lie algebra and let U,g be the
rational form of the quantum group over a field k. Assume that char k # 2,3 and q € k is
not a root of unity in k. Let P be the set of dominant integral weights for g and let Q
be the root lattice for g (see II (2.6)).
(a) Let A € Pt and let 0:Q — {£1} be a group homomorphism. The modules
L(\, o) defined in (2.2) are all finite dimensional irreducible U,g-modules.
(b) Every finite dimensional U,g-module is isomorphic to L()A, o) for some A € P*
and some group homomorphism o: @ — {*+1}.

(2.4) Weight spaces for U,g-modules

Retain the notations and assumptions from (2.3) and let (,) be the inner product on by
defined in II (2.7). Let M be a finite dimensional Uzg-module. Let 0:Q — {£1} be a
group homomorphism and let A € P. The (A, o)-weight space of M is the vector space

Mpoy={meM | K;m= a(ai)q(x"")m foralll1 <i<r.}
The following proposition is analogous to Chapt. II Proposition (2.4).
Proposition. Every finite dimensional Ugg-module is a direct sum of its weight spaces.

The following theorem says that the dimensions of the weight spaces of irreducible
Ugg-modules coincide with the dimensions of the weight space of corresponding irreducible
modules for the Lie algebra g.

Theorem. Let A € Pt be a dominant integral weight and let o be a group homomorphism
0:Q — {£1}. Let V> be the simple g-module indexed by the A and let L(\, o) be the
irreducible Uy-module indexed by the pair (A,0). Then, for all 4 € P and all group
homomorphisms 7: Q — {1},

dimg (L(A,0)u0) =dime((V*),)  and  dimg(L(A,0)u,) =0, ifo#7.





