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VII. Properties of quantum groups

Let g be a finite dimensional complex simple Lie algebra and let 4l,g be the Drinfel’d-
Jimbo quantum group corresponding to g that was defined in V (1.3). We shall often
use the presentation of g given in V (1.6). In this chapter we shall describe some of
the structure which quantum groups have. In many cases this structure is similar to the
structure of the enveloping algebra {lg.

The proofs of the triangular decomposition and the grading on the quantum group
given in §1 can be found in [Ja] 4.7 and 4.21. The proof of the statements in (2.1) and (2.3),
concerning the pairing (, ), can be found in [Ja] 6.12, 6.18, 8.28, and 6.22. The statement in
(2.2) follows from Chapt I, Prop. (5.5). The theorem giving the existence and uniqueness
of the R-matrix is stated in [D2] p.329 and the uniqueness is proved there. The existence
follows from (7.4); see also [Lu] Theorem 4.1.2. The properties of the R-matrix stated in
(3.3) are proved in [D2] Prop. 3.1 and Prop. 4.2. Proofs of the statements in the section
on the Casimir element can be found in [D2] Prop 2.1, Prop 3.2 and Prop. 5.1.

Theorem (5.2a) is proved in [Ja] 8.15-8.17 and [Lu] 39.2.2. Theorem (5.2b) is a non-
trivial, but very natural, extension of well known results which appear, for example, in [Ja]
Chapt. 8. The proof is a combination of the methods used in [CP] 8.2B and [Ja] 8.4 and a
calculation similar to that in the proof of [Ja] Lemma 8.3. The properties of the element
Ty, given in (5.3) are proved in the following places: The formula for (T, )Tw, is proved
in [CP] 8.2.4; The formula for T} is proved by a method similar to [Ja] 8.4; The formula
for Ay (Ty,) is proved in [CP] 8.3.11 and the remainder of the formulas are proved in [CP]
8.2.3.

The construction of the Poincaré-Birkhoff-Witt basis of 4, g given in section 6 appears
in detail in [Ja] 8.18-8.30. The statement that {,g is almost a quantum double, Theorem
(7.3), appears in [D1] §13, and an outline of the proof can be found in [CP] 8.3. The proof
of Theorem (8.4) can be gleaned from a combination of [Ja] 6.11 and 6.18. Both of the
books [Lu] and [Jo] also contain this fact.

1. Triangular decomposition and grading

(1.1) Triangular decomposition of U,g

The triangular decomposition of the quantum group g is analogous to the triangular
decomposition of the Lie algebra g and the triangular decomposition of the enveloping
algebra Ug given in II (2.3) and II (4.2).

Proposition. Let g be a finite dimensional complex simple Lie algebra and let g be
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the corresponding Drinfel’d-Jimbo quantum group as presented in V (1.6). Define

Upn~ = subalgebra of U, g generated by X, X, ,..., X,
Urbh = subalgebra of U,g generated by H,,H,, ..., H,,

Upnt = subalgebra of g generated by X;F, XS ,..., X .

The map
Spn” @ Uph @ Upnt  — Urg
v Qul@ut —  u~ulut

is an isomorphism of vector spaces.

(1.2) The grading on Uynt and Upn~

The gradings on the positive part Uxnt and on the negative part {;n~ of the quantum
group g are exactly analogous to the gradings on the postive part {int and the negative
part Un~ of the enveloping algebra g which are given in II (4.3).

Proposition. Let g be a finite dimensional complex simple Lie algebra and let U,g be

the corresponding Drinfel’d-Jimbo quantum group as presented in V (1.6). Let a;, ..., a,
be the simple roots for g and let

QT = ZNa,-, where N = Z.
1

For each element v =3Y._, vio; € Q" define

(Unnt), = span-{X;}--- XM | X} X' has vj-factors of type X'}

(Unn™)y = span-{X --- X, | X --- X, has v;-factors of type X; '}

Then
Upn~ = @ (Upn~), and Upnt = @ (Upnt),,
veQt veQt

as vector spaces.

2. The inner product (,)
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In some sense the nonnegative part 4,b* of the quantum group is the dual of the
nonpositive part U,b~ of the quantum group. This is reflected in the fact that there is a
nondegenerate bilinear pairing between the two. Later we shall see that this pairing can
be extended to a pairing on all of i,g. The extended pairing is an analogue of the Kllhng
form on g in two ways:

(1) it is an ad-invariant form on g, and
(2) upon restriction to g it coincides (mod h) with the Killing form.
(2.1) The pairing between i{,b~ and i;bt

Let g be a finite dimensional complex simple Lie algebra and let {5 g be the corresponding
Drinfel’d-Jimbo quantum group as presented in V (1.6). Define

Upb™ = subalgebra of i, g generated by X7, X5 ,..., X and H,,..., H,,
U b = subalgebra of U,g generated by X;, XJ,..., X} and H;,..., H,.

Theorem.
(1) There is a unique C[[h]]-bilinear pairing

(,) : Upb™ x Upbt — C[[]] which satisfies

(@ (1,1)=1,
(b) (B, Hy) = 20D,

d;
- 1
(c) {X; aX;L) = 5ijma
(d) (ab,c) = (a®b,Ap(c)), foralla,be Upb~ and c € Ubt,
(e) (a,bc) = (AP(a),b®c), foralla € Uyb™ and b,c € Upb™.

(2) The pairing (,) is nondegenerate.
(3) The pairing {,) respects the gradings on Uxnt and Upn~ in the following sense:
(a) Let p,v € QF.
If p # v then ((Upb™),, (Upb¥),) =0.

(b) Let v € Q*. The restriction of the pairing {,) to (Upn~), x (Upnt), is a nonde-
generate pairing
(7 ): (ﬂhn_)u X (‘uhn+)u - C[[h‘]]

If 6 is the Cartan involution of 4, g as given in V (1.6) and S}, is the antipode of {5 g then
(O(u),0(u7)) = (u™,ut) and (Sa(u7),Sa(u?)) = (u™,ut),
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for all u= € Upb~ and ut € YUyb™.

(2.2) Extending the pairing to an ad-invariant pairing on g
The triangular decomposition (1.1) of {5g says that g = Upn~ ® Uph ® Upn™ and that

every element u € g can be written in the form u~u%u™,
where u~ € Upn~, u® € Uph, and ut € Ypnt. We can use this to extend the pairing
defined in (2.1) to a pairing
(,):Ung x Upg —> C[[h]] defined by the formula

<“1 U1u1 y U “2“2 > <u1 ,Sh(u2u2 )><U2 S 1(“1“1 )>

for all uT,u; € Upn—, ul,ud € Uph, and uf,uf € Upnt, where S, is the antipode of Uyg.
Then
(ady(v1), v2) = (v1,adg, (u)(v2)), for all u,v1,v2 € Usng,

This formula says that the extended pairing (,) is an ad-invariant pairing as defined in I
(5.5). The pairing {, ): Upg x Upg — C[[h]] is not symmetric, see I (5.5).
(2.3) Duality between matrix coeflicients for representations and U,g.

Let g be a finite dimensional complex simple Lie algebra and let U,g be the rational form
of the quantum group over a field k, where char k£ # 2,3 and ¢ € k is not a root of unity.
Let @ be the root lattice for g.

Theorem. Let M be a finite dimensional Uy,g module such that all weights A of M satisfy
2\ € Q. Then, for each pair n* € M* and m € M there is a unique element u € U,g such
that

n*(vm) = (v,u), for allv € Uyg,

where (,) is the bilinear form on U,g given by (2.1) after making the substitutions in V
(2.2).

The function
Cmn+:Ugg — C(q) defined by cmp+(v) = (n*,vm)
is the (m,n*)-matriz coefficient of v acting on M. The above theorem gives a duality

between matrix coefficient functions and Ugg. It also says that every element of U,g is
determined by how it acts on finite dimensional Ugg-modules.

3. The universal R-matrix

(3.1) Motivation for the R-matrix
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The following theorem states that there is an element R such that the pair (Uxg,R)
is a quasitriangular Hopf algebra. In particular, this implies that the category of finite
dimensional modules for the quantum group g is a braided SRMCwMFF.

(3.2) Existence and uniqueness of R

Let g be a finite dimensional complex simple Lie algebra and ;g be the corresponding
quantum group as presented in V (1.6). Recall the Killing form on g from II (1.6).
Let {H;} be an orthonormal basis of § with respect to the Killing form and define

r
to = Z gi ® f{i-
=1
If v € Q7 (see (1.2)) and v = 3_, v;a; where a1, ..., a;, are the simple roots, define

n, to be the smallest number of positive roots a > 0 whose sum is equal to v.

The element R is not quite an element of 4Uyg ® U g so we have to make the tensor
product just a tiny bit bigger. To do this we let 4, g®3;g denote the h-adic completion
of the tensor product ,g ® Urg, see III §1.

Theorem. There exists a unique invertible element R € U;,g®4, g such that

RAL(@)R™' = AJP(a), for all a € Uyg, and

R has the form R= Y _ exp{h(to+3(H, ®1-1®H,))}P,,  where
veQt
P, € (Upn7), ® (Upnt),,
H,=Y._,viH;, ifv=3Y,va,
P, is a polynomial in X;f ® 1 and 1® X, 1 <4 < r, with coefficients in C[[h]],
such that
the smallest power of h in P, with nonzero coeflicient is h™v.

(3.3) Properties of the R-matrix

Recall V (1.6) that g is a Hopf algebra with comultiplication A, counit €, and antipode
Sp and that ;g comes with a Cartan involution . The following formulas describe the
relationship between the R-matrix and the Hopf algebra structure of U,g. If R = )" a; ®b;
then let

R12=Zai®bi®1, Rl3=Zai®1®bia and R23=21®ai®bi,

and let Ra1 = Z b; ® a;.
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Let o: 455 — Ung be the C-algebra automorphism of il,g given by o(h) = —h, o(XF) =
th, and o(H;) = H;. With these notations we have :

(Ap ®id)(R) = R1sRas, and (id ® Ap)(R) = RizRiz,
(er ®id)(R) =1 = (id ® €1)(R),
(Sr®id)(R) = (id® S;l)(R) =R™! and (S, ®5S:)(R) =R,

(B®60)(R)=Ry1 and (c®0)(R)=R .

4. An analogue of the Casimir element

(4.1) Definition of the element u

Let g be a finite dimensional complex simple Lie algebra and let 4, g be the corresponding
Drinfel’d-Jimbo quantum group as presented in V (1.6). The antipode Sp:iUpg — Upg is
an antiautomorphism of Uxg, see I (2.1). This means that the map S2:4,g — Upg is an
automorphism of 4z. The following theorem says that this automorphism is inner!

Theorem. Let R € U,g®ig be the universal R-matrix of U,g as defined in (3.2).
Suppose that R = 5 a; ® b; and define u =), S(b;)a;. Then u is invertible and

uau~! = S2(a), for alla € Upg.

(4.2) Properties of the element u.

The relationship of the element u to the Hopf algebra structure of L,g is given by the
formulas

Ap(u) = (Ra1R12) H(u®u), Sp(u)=wu, and en(u)=1,

where R12 = R = ) a; ® b; is the universal R-matrix of Uzg given in (3.2), and Ry =
3" b; ® a;. The inverse of the element u is given by

u" !l = ZS,:I(dj)cj, where R7!= ch ® d;.

(4.3) Why the element u is an analogue of the Casimir element



VI1I. PROPERTIES OF QUANTUM GROUPS 65

Let p be the element of § such that a;(p) = 1 for all simple roots o; of g. An easy check
on the generators of ;g shows that ‘

e"Pae=h? = S2(g), for all a € Upg.

It follows that
the element e~ *Pu = ue="? is a central element in g.

Any central element of ;g must act on each finite dimensional simple {5 g-module by a
constant. For each dominant integral weight X let L()) be the finite dimensional simple
{15, g-module indexed by A (see VI (1.3)). As in II (4.5), let p be the element of hy given by

=3,

a>0

where the sum is over all positive roots for g. Then the element
e~"Py acts on L()\) by the constant g—(A+eA+e)+(ep)

where ¢ = e” and the inner product in the exponent of g is the inner product on b given
in IT (2.7). Note the analogy with II (4.5). It is also interesting to note that

(e PPu)? = uSy(u).

5. The element T,

(5.1) The automorphism ¢of8o Sy

Let W be the Weyl group corresponding to g and let wy be the longest element of W (see
II (2.8)). Let sy, ..., sy be the simple reflections in W. For each 1 < % < r there is a unique
1 < j < r such that wys;wy 1= sj. The map given by

$(XF) =X}, and ¢(H;)=Hj, where wosiwg'=s;, for1<i<r,

extends to an automorphism of U,g. Let 6 be the anti-automorphism of U, g defined by
O(Xii) = X; and 6(H;) = H;. This is an analogue of the Cartan involution. Let S; be
the antipode of ;g as given in V (1.6). These are both anti-automorphisms of {,g. The
composition

(Sh oo ¢):8ng — Ung
is an automorphism of Ug. The following result says that this automorphism is inner.

(5.2) Definition of the element T,
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Let g be a finite dimensional complex simple Lie algebra and let 4,g be the corre-
sponding quantum group as presented in V (1.6). Let ¢ = e and for each 1 < i < r

let
+\r ‘ +\r
Efr) — (Xz ) F;(r) — (X‘l. ) and Ki — ehd,-H,"
[r]ga:! {r]qa:!

where the notation for g-factorials is as in V (1.5). For each 1 <3 < r, define
Ty= 3 (~1)bg-ect(crabie—a) @ p® gl Ko,
1 1 1 1
a,b,c>0
where the sum is over all nonnegative integers a,b, and c.

Theorem.
(a) The elements T; satisfy the relations

TTTT; - = LT T fori#j,
A= > . -~ >
m;; factors m;; factors

where the m;; are as given in II (2.8).
(b) Let wy = s;, - - - 8;,, be a reduced word for the longest element of the Weyl group W,

see II (2.8). Define
Twe =Tiy - Tip-

Then T, is invertible and

TwoaTy, = (Sh o 8 0 ¢)(a), for all a € Upg.

(5.3) Properties of the element 7,

Let u € U,g be the analogue of the Casimir element for U,g as given in §4 and let o be
the C-algebra automorphism of ;g given in (3.3). Let & be the C-linear automorphism
of ilsg given by 5(h) = —h, 5(XF) = XF, and 6(H;) = —H;. Then

0(Two)Two =u and Tl =6(Tu,)-

The relationship between the element T, and the Hopf algebra structure of {g is given
by the formulas

An(Twy) = Rig (Two ®Tug) = (Two ®Tug ) Ro1 s Sh(Tuws) = Tuwoe™, and €4 (Tw,) = 1,

where R12 = R = Y a; ® b; is the universal R-matrix of g given in (3.2), and Ry =
Z bi ® a;.
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6. The Poincaré-Birkhoff-Witt basis of i,.g

(6.1) Root vectors in Uxg

Let g be a finite dimensional complex simplé Lie algebra and let U,g be the corresponding
quantum group as presented in V (1.6). Let T; be the elements of i,g given in (5.2).
Define an automorphism 7;:,g — Upg by

7i(u) = Tt for all u € Upg,

Let W be the Weyl group corresponding to g. Fix a reduced decomposition wy =
8, - - 8iy Of the longest element wy € W, see II (2.8). Define

br=ai, Ba=si(a,), .-y BN =885 Siy_,(aiy)
The elements By, . .., 8N are the positive roots g. Define elements of 4, g by
+ + + + + +
Xﬁl —_—Xil, Xﬂ2 =Tt1(X’2), ey XﬁN =Ti1Ti2...TiN—1(X‘iN -

These elements depend on the choice of the reduced decomposition. They are analogues of
the elements Xz and X_g in {g which are given in II (4.4).

(6.2) Poincaré-Birkhoff-Witt bases of {,n~, Unb, and Uyn*

Let g be a finite dimensional complex simple Lie algebra and let ,g be the cor-
responding quantum group as presented in V (1.6). Let Uzn~, Uph, and Upnt be the
subalgebras of {5, g defined in (1.1). The following bases of Uyn~, Uph, Upn™, and UUyg are
analogues of the Poincaré-Birkhoff-Witt bases of {in~, 4f, and Un*t which are given in II
(4.4).

Theorem. Let X i yeen X ;EN be the elements of g defined in (6.1). Then
{(ng)pl (X;a)m Tt (XEN)pN | P1,...,PN € Zzo} is a basis of Upnt,
{(Xg,)(Xp,)"2 - (X5, )™ | na,...,nN € Zyo} is a basis of Upn~,

{H{*H3*---H{" | s1,...,5N € Zxo} is a basis of Uz h.

(6.3) The PBW-bases of Uyn~ and Upnt are dual bases with respect to ()
(almost)

Recall the pairing between U,b~ and Unb* given in (2.1).
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Theorem. Let wy = s;, ---Siy be a reduced decomposition of the longest element of
the Weyl group and let ; and X;;_, 1 < j < N, be the elements defined in (6.1). Let
P1y---3PN, N1, -, N € Z>g. Then

. N :
<(X51)"1 (Xﬁ_z)m .. (XEN)nN’ (X;-l)m (ng)pz .. (X;‘N)PN> — H 5nj,p,-<(X,';)nj, (Xi-:)nj>’

where 6, p, is the Kronecker delta.

Furthermore, we have that, for each 1 <i <r,

[n]qdi !
(g% — g~ %)™’

h

(X)) (XHr) = (—1)ng~dnin-1)/2 where ¢ = e”.

7. The quantum group is a quantum double (almost)

(7.1) The identification of ({,b1)**°°P with {,b~

Let g be a finite dimensional complex simple Lie algebra and let {,g be the corresponding
quantum group as presented in V (1.6). Define

b~ = subalgebra of il,g generated by X7, X5 ,..., X and Hy,..., H,,

$1,b% = subalgebra of U g generated by X;, X;,..., X;} and Hy,..., H,,

except let us distinguish the elements H; which are in {b* from the elements H; which
are in U, b~ by writing H,.+ and H respectively, instead of just H; in both cases.

The nondegeneracy of the pairing {,) between 4,b* and U,b~ (see (2.1)) shows that
81, b~ is essentially the dual of Upb*. Furthermore, it follows from the conditions

(z172,y) = (21 ® T2, An(y)) and (z,y1y2) = (AP(z), 11 ® ¥2)

that the multiplication in {b~ is the adjoint of the comultiplication in b and the
opposite of the comultiplication in $;b~ is the adjoint of the multiplication in {{,b*. Thus
(here we are fudging a bit since U, b is infinite dimensional),

Upb™ ~ (UpbT)*coor as Hopf algebras,

where (8 b7)*°P is the Hopf algebra defined in I (5.2).
(7.2) Recalling the quantum double
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Recall, from I (5.3), that the quantum double D(A) of a finite dimensional Hopf algebra
A is the new Hopf algebra ‘

D(A)={aa | a€A, a€ A*OPY = A @ A*COOP
with multiplication determined by the forrﬁula.s
aa = 2(0(1): S~ aw))a@) a@))a@)ea), and
a,a

ac =Y (eq), au)eE), S a@))emae,

a,a

where, if A is the comultiplication in A and A*°°°P,

(A ® id) o A(a) = Za(l) ® a(2) ® as), and (A ® id) o A(a) = Z (1) D a(2) ® a(g).
a a

The comultiplication D(A) is determined by the formula

Afaa) = Z a(1)a(1) ® a(2)(z),
a,a
where A(a) = 3, a) ® agz) and A(a) =Y, o) ® agy).
(7.3) The relation between D(U;b") and Uxg

With the definition of the quantum double in mind it is natural that we should define the
quantum double of ;b to be the algebra

D(Upbt) = (Upb1)* P @ UUpb™ = b~ ® LU bT

with multiplication and comultiplication given by the formulas in (7.2). The following
theorem says that the quantum group {59 is almost the quantum double of 4 b*, in other
words, g is almost completely determined by pasting two copies of il,b* together.

Theorem. Let (B;;) = C~! be the inverse of the Cartan matrix corresponding to g and,
for each 1 <1 < r, define

.
H: = ZB,'J'HJ‘ € Upg.

=1

(a) There is a surjective homomorphism ¢: D(Ub*) — U g determined by

¢: D(UrbY) — tng
X — X +
HY — H; and thus Bglh—b) >~ $lrg.
X,  — X] er ¢
H-  +—» H?
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(Recall (7.1) that we distinguish the elements H; which are in 4,b™% from the elements H;
which are in 343, b~ by writing H,?L and H] respectively, instead of just H; in both cases.)
(b) The ideal ker ¢ is the ideal generated by the relations

r
H; - (ZBinf) , wherel<i<r.
j=1

(7.4) Using the R-matrix of D(U,b™") to get the R-matrix of Ug
Recall (7.2) that the double D(U;b*) comes with a natural universal R-matrix given by

72=Zbi®bi,
t

where the sum is over a basis {b;} of b1 and {b*} is the dual basis in {;b~ with respect
to the form (,) given in (2.1). We have used the notation R here to distinguish it from
the element R in Theorem (3.2). The element R is not exactly in the tensor product
D(Upb1) ® D(Ub1) but if we make the tensor product just a tiny bit bigger by taking
the h-adic completion D(UnbT)®D(Upb™) of D(U;bT) ® D(UpbT) then we do have

R € D(UpbT)®D(Uyb™).
The image of R under the homomorphism

¢®¢: D(URbN)QD(ULDT) — UpgRilsg

R — R

coincides with the element R given in Theorem (3.2). This means that we actually get the
element R in Theorem (3.2) for free by realising the quantum group as a quantum double
(almost).

8. The quantum Serre relations occur naturally

In this section we will see that the most complicated of the defining relations in
the quantum group can be obtained in quite a natural way. More specifically, the ideal
generated by them is the radical of a certain bilinear form.

(8.1) Definition of the algebras U,bt and Upb~

Let g be a finite dimensional complex simple Lie algebra and let C' = (o;(H;))1<i,j<r be
the corresponding Cartan matrix.
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Let Upb™ be the associative algebra over C[[h]] generated (as a complete C[[h]]-algebra
in the h-adic topology) by

Hy,Hy - Hy, X5, X}, -, X7,
with relations (,
[Hi,H;]=0, and [H;,X}]= oj(H) X}, foralll<i,j<r,
and define an algebra homomorphism Ay: Upbt — Upbt@ULbT by
Ap(H) =H; ®1+1Q H;, and Ap(X}) =X} @ 10X,

where Upbt®ULbT denotes the h-adic completion of the tensor product Upb™ ®cjin)
Upb™.

Let Up,b~ be the associative algebra over C[[h]] generated (as a complete C[[h]]-algebra
in the h-adic topology) by ;

X{,X5,---, X, Hy,H,,---, H,,
with relations
[Hi,H;] =0, and [H;,X[]=—o;(H;)X;, foralll<i,j<r,
and define an algebra homomorphism Ap: Upb~™ — Urb~®U,b~ by
An(H) =H;®1+1QH;, and An(X;)=X; ®1+e %rligXx,

where Upb~®@UpLb~ denotes the h-adic completion of the tensor product Uzpb~ Ac[n)]
Upb~—.
(8.2) The difference between the algebras U,b* and the algebras 1, 6%

The algebras Upbt are much larger than the algebras U b used in (2.1) since they have
fewer relations between the X generators.

(8.3) A pairing between U,bt and Upb~

In exactly the same way that we had a pairing between U4;b* and 4,b~ in (2.1), there is
a unique C[[Ah]]-bilinear pairing

(,) : Upb™ x Upb™ — C[[h]] which satisfies

(a) (L) =1,

(b) (H;, Hy) = 9,

d]
- h
(©) (X X5) = 05 —gn——am>
(d) (ab,c) = (a ® b, Ap(c)), for all a,b € Upb~ and c € Upb™,
(e) (a,bc) = (AP(a),b®c), foralla € Upb~ and b,c € Upbt.
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(8.4) The radical of (,) is generated by the quantum Serre relations

Let t and t+ be the left and right radicals, respectively, of the form (,) defined in (8.3),

ie.
t™ = {a € Upb~ | (a,b) =0 for all b€ Upb*}, and

vt = {be Upbt | (a,b) =0 for all a € Upb~}.
Theorem. Thesetst™ and t™ are the ideals of Upb~ and Upbt generated by the elements
1—qa; H,' - - — . .
Z (=1)° [ s]( )] (X; )SXj (X; ), for i # j,
s+t=1—a;(H;) edik
and
1—a;(H; .,
> [T ey, i
s+t=1—a;(H;) edih

respectively.

It follows from this theorem that the quantum group il,g is determined by the algebras
Upb*, Upb~ and the form (,). A construction of the quantum group along these lines
would be very similar to the standard construction of Kac-Moody Lie algebras (see [K]
§1.3).



