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VIII. Hall algebras

The results in §1 are outlined in [CP] §9.3D. The proof of Theorem (1.2) appears
in [BGP] Theorem 3.1 and the proof of Theorem (1.4) appears in [Lul] Prop. 5.7. The
material in §2 is a combination of [Lu2] and [Lu] Part II. In particular, Theorem (2.7)(1) is
proved in [Lu] 13.1.2, 12.3.2, and 9.2.7, Theorem (2.7)(2) is proved in [Lu] 13.1.5, 13.1.12e,
12.3.3, and 9.2.11, Theorem (2.7)(3) is proved in [Lu] 13.1.12d and 12.3.6. The statement
about the symmetric form given in (2.6) is proved in [Lu] 12.2.2, 9.2.9 and the references
given there. The proof of the isomorphism theorem in (2.8) is given in [Lu] 13.2.11 and
in [Lu2] Th. 10.17. The material in §3 appears in [Lul] §9. The isomorphism theorem in
(3.4) is stated in [Lul] 9.6.

1. Hall algebras

The Hall algebra is an algebra which has a basis labeled by representations of quivers
and for which the structure constants with respect to this basis reflect the structure of
these representations. The Hall algebra encodes a large amount of information about
the representations of the quiver. Amazingly, this algebra is almost isomorphic to the
nonnegative part of the quantum group.

(1.1) Quivers

A quiver is an oriented graph I', i.e. a set of vertices and directed edges. The following is
an example of a quiver.

Every Dynkin diagram if type A, D or F can be made into a quiver by orienting the edges.
Note that there are many possible ways of orienting the edges of a Dynkin diagram in
order to make a quiver. For example the quivers

R

are both obtained by orienting the edges of the Dynkin diagram of type Fg.

(1.2) Representations of a quiver
A representation R of a quiver I over a field % is a labeling of the graph I" such that
(1) Each vertex i € " is labeled by a vector space R; over k,
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(2) Each edge i — j in T is labeled by a (vector space) homomorphism ¢;;: R; — R;.
Define morphisms of representations of quivers in the natural way and make the category
of representations of the quiver I'. The dimension of a representation R is the vector
dim(R) = (d;) where, for each vertex 7 € I, d; = dim(R;). An irreducible representation
of T is a representation R of I such that the only subrepresentations of R are 0 and R.

A representation R of a quiver I' is indecomposable if it cannot be written as R = S&T
where S and T are nonzero representations of I'.

Theorem. Let I' be a quiver. /20 @ sy weal ko v
(a) There are a finite number of indecomposable representations of I' if and only if I
is an oriented Dynkin diagram of type A, D or E.

(b) IfT is an oriented Dynkin diagram of type A, D or E then the indecomposable
representations of I' are in 1-1 correspondence with the pOSItJVG roots for the Lie
algebra g corresponding to the Dynkin diagram.

(1.3) Definition of the Hall algebra

Let T be a quiver and let F; be a finite field with ¢ elements. The Hall algebra or
Grothendieck ring RI" of representations of I is the algebra over C with
(1) basis labeled by the isomorphism classes [R] of representations of I' over Fg, and
(2) multiplication of two isomorphism classes [R] and [S] given by

R]-[S]=) Cgs[T] where Chs=Card({PCT|P=R,T/P=S5}).
7 N Fa 1 ngrndi AT 4
A gt IME L
(1.4) Connecting Hall algebras to the quantum group 5 == g ﬂm,pwf’ AR

Let I' be a quiver which is obtained by orienting the edges of a Dynkin diagram of type A,
D, or E, and let F, be a finite field with g elements. Let us describe explicitly two types
of indecomposable representations of I'.

(1) Let ¢ be a vertex of I'. The representation

. _JFy, ifj=1;
e; given by VJ—{O, i j 2 6

is an irreducible representation of I'.

(2) Let ¢ — j be an edge of I'. The representation
Fq, iff=1dorl=j;

0, otherwise; and $ij = idw,,

eij givenby Vp= {

is an indecomposable (but not irreducible) representation of I'.
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The following relations hold in the Hall algebra RI,
€ij = €;€5 — €4€;, €i€i; = (€i;€4, €46 — ge€;cij, for each edge 1 -—)] inT.

It is easier to prove the first relation by writing it in the form e;e; = e;; +eje;. Combining
the first two of these relations and the first and last of these relations respectively, gives
the identities

eZe; — (g + l)e;eje; + geje? =0 and e,'ef — (g + 1)ejeie; + qejz-e,- =0, respectively.

We shall make the Hall algebra a bit bigger by adding the K ,-ils that are in the quan-
tum group Uzg. Let g be the finite dimensional complex simple Lie algebra corresponding
to the Dynkin diagram given by I" and let U,g be the rational version of the quantum group
with k = C and ¢ € C the number of elements in the field F,. Let U;h be the subalgebra
of U,g generated by K lﬂ, ...,KZ*'. Let ay,...,q, be the simple roots corresponding to
the Lie algebra g (see IT (2.6)). Define

—_

I' = algebra generated by R and KI!,... KZ! with the additional relations

Ki[RK['= q("‘"d(R))[R], for all 1 <4 < r and representations R of I',

where d(R) = _’_, dim(R;)c;, and the inner product in the exponent of ¢ is the inner
product on by given in IT (2.7).

Theorem. LetI" be a quiver which is obtained by orienting the edges of a Dynkin diagram
of type A, D or E. Let RT' be the Hall algebra of representations of I over the finite field
F, with q elements and let RT" be the extended Hall algebra defined above. Let Ugg be the
rational form of the quantum group with k = C which corresponds to the Dynkin diagram
I' and let

U,bt = subalgebra of U,g generated by Ki“, ...,K*' and E,...E,.

Choose elements z1,--+,2r € Z such that z; —z; = 1 if i = j is an edge in I". Then the
homomorphism of algebras determined by

Ubt — RT

K o K
E,' — Kf‘e,—

is an isomorphism.
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2. An algebra of perverse sheaves

In this section we shall construct an algebra K from a Dynkin diagram I'. There is a
strong relationship between this algebra and the quantum group U,g where g is the s1mp1e
complex Lie algebra corresponding to the Dynkin diagram T

The algebra K is graded,

K= K.,

veQt

in the same way that the quantum group U,n™ is graded, see VII (1.2). The vector space K
comes with natural shift maps [n] which correspond to multiplication by ¢™ in the quantum
group U,b*. The algebra K has a natural multiplication which comes from an induction
functor and a natural “pseudo-comultiplication” which comes from a restriction functor.
The multiplication and the pseudo-comultiplication turn out to be almost the same as the
multiplication and the comultiplication on the quantum group U,b*. Lastly, the algebra
K has a natural inner product {,} that is related to the inner product (,) pairing U,b™
and Ugdbt, (see VII (2.1)).

In Theorem (2.8) we shall see that if we extend the algebra K a little bit, by adding
the K f':l’s that are in the quantum group U,g then we get an algebra K such that

K ~ Upbt.

This last fact is very similar to the case of the Hall algebra (1.4) where after extending
the Hall algebra RI" by adding the Kiil’s that are in the quantum group U,g, we got an
algebra RI" which was also isomorphic to Uy,bt. We shall see in section 3 that this is not a
coincidence, there is a concrete connection between RI' and the algebra K. The advantage
of working with the algebra K instead of the Hall algebra RI is that X has more natural
structure than RI, it has:

(a) a natural pseudo-comultiplication : KX - K ® K,

(b) a natural inner product {, }: K x KX = Z((g)),

(¢) a mnatural involution D: K — K,

(d) a natural basis coming from simple perverse sheaves.

The natural basis coming from simple perverse sheaves is called the canonical basis.

(2.1) I'-graded vector spaces and the varieties Ey with Gy action

Let T’ be a quiver obtained by orienting the edges of a Dynkin diagram of type A, D or
E. For convenience we label the vertices by 1,2,...,7. Let g be the finite dimensional
complex simple Lie algebra corresponding to the Dynkin diagram given by I'.

Let p be a positive prime integer and let F,, be the algebraic closure of the finite field
F, with p elements. A I'-graded vector space V over F, is a labeling of the graph I’ such
that each vertex i is labeled by a vector space V; over F,. The dimension of a I'-graded
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vector space V is the r-tuple of nonnegative integers dim(V') = (dim(V;)). We shall identify
dimensions of I'-graded vector spaces with elements of :

,
Q* =) Noy sothat: dim(V) =) dim(Vi)a,
% =1

where ajy, ..., a, are the simple roots for g and N = Z3,.

Fix an element v € Q* and a I'-graded vector space V over F,, such that dim(V) = v.
Define

Gy =[[GL(V;}) and  Ey ={PHom(V;,Vj),
i

i—j
where the sum in the definition of Ey is over all edges of I'. There is a natural action of
Gy on Ey given by

g- (¢i5) = (g¢i;9; "), if (¢:;) € Ev and g = (g1,---,9r) € Gv.

Let z € Ey and let W be a I'-graded subspace of V, i.e. W; C V; for all vertices ¢ in I".
The subspace W is z-stable if xW; C W; for all edges ¢ — j in I'. We shall simply write
W CV if W is a I'-graded subspace of V and W C W if W is z-stable.

(2.2) Definition of the categories Qy and Or ® Qw

The reader may skip this definition if it looks like too much to swallow. The only important
thing at this stage is that Qv is a category of objects and it is contained in a category
called D3(Ey).

Let V be a I'-graded vector space over F,, and let Ey be the variety over F,, defined in
(2.1). Let D%(Ey) be the bounded derived category of Q;-(constructible) sheaves on Ey,
see IV (1.4). Recall that D%(Ey) comes endowed with shift functors IV (2.4),

[n]: D}(Bv) — D(Ev)
A —  Aln].
Define
Qv = the full subcategory of D2(Ey) consisting of finite direct sums of simple
perverse sheaves L such that some shift of L is a direct summand of L;

for some partition 7 of v = dim(V).

The complexes L; are defined in (2.7). Let T and W be I'-graded vector spaces over Fj,.
Define

8
Qr®Qw = the complexes L € D3(Er x Ew) such that L & @Ai ® B;,
i=1

for some A; € Qr, B; € Qw, and some positive integer s.
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This is a subcategory of DY(Er x Ew).

(2.3) The Grothendieck group K associated to the categories Qv

Let v € Q1 and let V be a I'-graded vector space of dimension v. Let Qy be as in (2.2).
The important thing about Qy at the moment is that it is a category related to Ey. A

The Grothendieck group K(Qy) of the category Qy is the C(g)-module generated by
the isomorphism classes of objects in Qy with the addition operation given by the relations

[Bl @& B2] = [Bl] + [B2]7 if Bl’ B2 € QV)
and multiplication by ¢ given by the relations
[B[n]] = ¢"[B], for B € Qv and n € Z,

where the map B — Bln] is the shift functor on D8(Ey), see IV (2.4). The structure of
K(Qy) depends only on the element v and so we shall often write X, in place of K(Qv).

Define
K= k..
veQt
The group K is graded in the same way that U,n* is graded, see VII (1.2).

(2.4) Definition of the multiplication in X
Let V be a I'-graded vector space. Let T" and W be I'-graded vector spaces such that

WCV and V/WXT.

If z € Ey such that zW C W then let zy be the linear transformation of W induced by
the action of z on W and let 7 be the linear transformation of 7' 2 V/W induced by the
action of z on V/W. Define

S={z€Ey|zW C W},
P={geGy |gW CW}, U={g€P|gw=idw,gr =idr}.

The groups P and U are subgroups of Gy. The group P is the stabilizer of W in Gy, it
is a parabolic subgroup of Gy. The group U is the unipotent radical of P.
Let Qr ® Qw be the subcategory of DS(Er ® Ew) which is defined in (2.2). The

diagram

ETXEW (p—l GVxUS —pi) vapS ﬁ) EV
(zr,zw) «— (9,2) +— (9,3) +r— gz

induces the diagram
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Or®Qw — DYErxEw) 25 DNGxyS) % DiGxpS) &3 DiEy)
where the first map is the inclusion map.

Theorem. LetV be aI'-graded vector space and let Ey be the variety with the Gy action
which is defined in (2.1). Let W and T be I'-graded vector spaces such that W C V and
V/W 2 T. Let Qr ® Qw and Qv be the categories of complexes of sheaves on Er X Ew
and Ey, respectively, which are defined in (2.2). There is a well defined functor

Ind¥,W: QrQw — Qv

A —  ((p3)1(p2)pp} A) [dim(p1) — dim(py)]

where p1, p2, and p3 are as defined in the diagram above, dim(p,) is the dimension of the
fibers of the map p,, and dim(p2) is the dimension of the fibers of the map ps.

The multiplication in K is defined by the formula
[A]-[B] = [Ind} w(A® B)], for A€ Qr and B € Qw.

With this multiplication X becomes an algebra. The strange shift by [dim(p;) — dim(p3)]
in the definition of Indg,w is there to make the multiplication in & match up with the
multiplication in the nonnegative part of the quantum group Ugb™, see Theorem (2.8)
below.

(2.5) Definition of the pseudo-comultiplication KX - K ® K

Let V be a I'-graded vector space. Let T and W be I'-graded vector spaces such that

WCVvV and V/W 2T.

If z € Ey such that zW C W then let 2w be the linear transformation of W induced by
the action of z on W and let z¢ be the linear transformation of T' &2 V/W induced by the
action of z on V/W.
Define
S={z€Ey|zW CW}

and let Qv be the subcategory of D3(Ey ) which is defined in (2.2). The diagram

EV (—L- S L) ETXEW
z +— z +— (zr,zwW)

induces the diagram

Qv — DiEy) 5 DYS) = DYEr x Ew)
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where the first map is the inclusion map.

Theorem. LetV be a I'-graded vector space and let Ey be the variety with the Gy action
which is defined in (2.1). Let W and T be.I'-graded vector spaces such that W C V and
V/W 2 T. Let Qr ® Qw and Qv be the categories of complexes of sheaves on ET X Ew
and Ey, respectively, which are defined in (2.2). There is a well defined functor

Resyy: Qv — Or ® Qw
B +— (ku*B)[dim(p,) — dim(pz) — 2dim(Gv/P)]

where p1, ps, k, and ¢ are as defined above, dim(p;) is the dimension of the fibers of the map
p1, dim(p2) is the dimension of the fibers of the map p2, and P is the parabolic subgroup
of Gy defined in (2.4).

The pseudo-comultiplication on K is the map r: X = K ® K defined by
r([A]) = [Resy w(A4)], ifA€Qy.

The strange shift by [dim(p1) — dim(pz) — 2dim(Gy /P)] in the definition of Res¥’w is
there to make the pseudo-comultiplication in X match up with the comultiplication in the
nonnegative part of the quantum group U,bt, see Theorem (2.8) below.

(2.6) The symmetric form on K

Recall that we write X, in place of K(Qy ) since the structure of X(Qy) depends only on
v. For each v € Q, define a bilinear form

{,}: Ky x K, = C(q) by defining

{[BIL [BZ] }V = Z q_jdim(’}{j-f-?dim(G\ﬂ) (U!(tbS*Bl ® tbS*Bz))),
J

for By, By € Qy. The vector spaces HIT2dm(G\D) (y,(¢,5* By @ t,5*By)) are defined in
(2.10) below. At this stage the important thing is that they depend only on By, B; and j.
Use the forms {, },, v € @™, to define a bilinear form

{L}hKkxK—22Z((g) on K= @ K. by setting
veQt

{K.. K.} =0, if p,v € Q% such that p # v, and
{z,y} = {z,9},, if 2,y € K,.
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Theorem. Let V be a I'-graded vector space and let T and W be I'-graded subspaces
such that W CV and T = V/W. Let A€ Qr ® Qw and let B € Qy. Then

{ A, Restw (B) }.= { Ind7,w(4) , B }

The result in this theorem is an analogue of the property of the bilinear form (,) on the
quantum group which is given in VII (2.1)(d).
(2.7) Definition of the elements L; € K

Let v € Q1 and let V be a I'-graded subspace of dimension v. A partition of v is a sequence
7= (v,...,v™) of elements of the root lattice Q such that

(1) each v, 1 < j < m, is a nonnegative integer multiple of a simple root, and
(2) v+ + v =0
For example we might have ¥ = (31, 2a3,0, 01, 2a1) if v = 6a1 + 2a3. A flag of type V in

V is a sequence
f=Wv=vOoylo . DV =)

of I'-graded subspaces of V such that dim(V ¢ /V®) = p¢ forall1 < £ < m.
Let z € Ey. A flag f is z-stable if zV® C V® for all 1 < £ < m. Define

Fs=A{(z,f) |z € Ey, f is an z-stable flag of type 7 in V'}.

The map

Fs =% Ey (
induces amap  D3(Fy) (o) DY(Ey).
(z,f) — =z
Let f(7) = dim(F;) and define

Ly = ((m5)11)[dim(Fz)], e

' dim(F;
(%) 3 pymy) 2% pyay)
1 — — Ly

where 1 is the constant sheaf on Fj and [dim(Fy)] is a shift, see IV (2.4).

Theorem. Let V be aI'-graded vector space of dimension v and let T and W be I'-graded
vector spaces such that W CV and T2 V/W.

(1) Let 7 and & be partitions of dim(T") and dim(W), respectively. Then

Indy, w (L7 ® La) = Lza,
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where, if 7= (71,7%,...,7°%) and @ = (wl,...,w?), then 70 = (71,...,7%,w},...,w}).

(2) Let v be a partition of dim(V'). Then

Resy, Ly & @(L? ® L) [M'(7,@)],
7,3

where the sum is over all 7, such that T is a partition of dim(T'), & is a partition of
dim(W) and 7+ & = 7. The positive integer M'(7, @) is defined in (2.9) below.

(3) Let v = a; be a simple root for g and let V' be a I'-graded subspace such that dim(V') =
«;. Define L; € K(Qv) by L; = L; where 7 = (o;). Then

{[Li]a [Li]} = l_lqz'

(2.8) The connection between K and the quantum group
We shall make the algebra
K= K.

vet

a bit bigger by adding the Kiﬂ’s that are in the quantum group U,g. Let g be the finite
dimensional complex simple Lie algebra corresponding to the Dynkin diagram given by
I' and let U,g be the rational version of the quantum group with £ = C(g) where ¢ is
an indeterminate. Let Ugh be the subalgebra of U,g generated by K {H, oo, KEL Let
a1, ..., 0, be the simple roots corresponding to the Lie algebra g. Define

K = algebra generated by K and K iﬂ, ..., K*! with the additional relations

K,-:z:K{l = q(""")x, foralll1<i<randalzek,,

where the inner product in the exponent of g is the inner product on by given in II (2.7).
Define a map j7: K@ K - K® K by

iT(z®y)=zK{*---K" ®y, ifzeKandyeKk,, where v =3, v;a;.

Use the map j+~and the pseudo-comultiplication r: X — K ® K defined in (2.5) to define
a coproduct on K by

A: K —_ /E@lz

K — KF K  for1<i<r,
z —  jtr(z) for z € K,
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where r: X = K ® K is the pseudo-comultiplication defined in (2.5). Then K is a Hopf
algebra! :

Theorem. Let L; be as defined in Theorem (2.7b). The algebra homomorphism deter-
mined by ,

I: K — Ugpt
L; — E,‘
K# — K

is an isomorphism of Hopf algebras.

(2.9) Dictionary between X and U b+

Let us make a small dictionary between the algebra X and the quantum group U,bt. Our
intent is to describe, conceptually, the correspondence between the structures inherent
in the algebra K and the structures in the quantum group U,b*. The map Z is the
isomorphism given in Theorem (2.8).
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K ’ is isomorphic to Ugbt.

K is the algebra Similarly, U,bt is the algebra
generated by generated by

K and the KFls. Ut and the Ks.
K is graded, Similarly, Ugnt is graded,

K= ®ueQ+ Ky Ui = ®ueQ+ (Ugn),.

The shift functor [n] which corresponds to multiplication by ¢™

gives rise to in Ugbt.

multiplication by ¢" in K

The functor Ind%w corresponds to the multiplication in Uyn't.
The functor Res¥’w corresponds to the comultiplication in Ugbt.
The inner product {, } corresponds to the bilinear form (,)
pairing U,b~ and U,bt.
A partition which maps, E,-(fl) e Ei(:")
7= (nty,. .., noey,) under Z, to where E,-(") = E?/[n].

indexes Lz

The Verdier duality corresponds to the C-algebra involution
functor D Ut = Ut
which sends ¢ — ¢~ ! and E; — E;.

The simple map, under Z, to a canonical basis in Ugn't.

perverse sheaves
in the various Qv

(2.10) Definition of the constant M'(7,w) which was used in (2.7)

Let V be a I'-graded vector space and let T and W be I'-graded subspaces such that
W CVand T2 V/W. If z € Ey such that tW C W then let zw be the linear transfor-
mation of W induced by the action of z on W and let z7 be the linear transformation of
T = V/W induced by the action of z on V/W. Let 7 be a partition of dim(V'). If

f=(V=V(0)QV(1)Q--~_D_V('")=O)
is a flag of type 7/ in V then define

fw=((Vnw)=V°nw)2(vWnw)2---2(V™NW)=0) and
fr=(p(V)= p(VO) D p(VIN) D ...Dp(VI™)=0) where p: V —» V/W
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is the canonical projection.
Let 7 be a partition of dim(T") and let & be a partition of dim(W), such that 7+ & = 7.
Define

oW C W, f is an z-stable flag of type 7 in V, } .

and fw is a flag of type & in W

Fﬁm={@n

Define a map .
a: F(7,0) — Fzx Fz

(z,f) — (@7, fr), (zw, fw))
and define

M'(1,w) = dim(p;) — dim(pz) — 2dim(Gy / P) + dim(Fy) — dim(Fz) — dim(Fz) — 2dim(a).

where p; and ps are the maps given in (2.4), P is the parabolic subgroup of Gy defined in
(2.4), and dim(p;), dim(p;) and dim(c) are the dimensions of the fibers of the maps py,
P2, and a, respectively.

(2.11) Definition of the vector spaces H/+29m(C\D) (y,(¢,5* B, ®t,5* By)) from (2.6)

Let 2 be a smooth irreducible algebraic variety with a free action of Gy such that the
@Q;-cohomology of €2 is zero in degrees 1,2,...,m where m is a large integer. Cousider the
diagram

Ev <& QxEy -5 G\(QxEy)

z — (wz) — Gy, and the diagram Gy \(Q x Fy) — {point}.

These diagrams induce diagrams

DY(Ey) -5 DY(Q x Ey) -2 DE(G\(Q x Ey))  and
D2(Gv \(Q x Ey)) — D}({point}).

With these notations one has that Hi+2dim(C\D) (y,(1,5* B; ® ty5*By)) is a sheaf on the
space {point}, i.e. a Qj-vector space.

(2.12) Some remarks on Part II of Lusztig’s book

The construction of the algebra K and the relationship between it and the quantum group
is detailed in Lusztig’s book [Lu]. Lusztig works in much more generality there.

(1) Lusztig allows I" to be an arbitrary quiver, rather than just a quiver gotten by orienting
a Dynkin diagram of type A, D or E. It does not require any more theory than what
we have already outlined in order to define the algebra K in this more general setting.

(2) Lusztig wants to construct algebras K which will be isomorphic to the nonnegative
parts of the quantum groups corresponding to general Dynkin diagrams. In order to
do this he must first consider only diagrams with single bonds and then ‘fold’ the
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diagram by analyzing the action of an automorphism of the diagram. The addition
of the folding automorphism into the theory is a nontrivial extension of what we have
developed in these notes.

(3) We have ignored the effect of the orientation of the quiver. If one wants to compare
the algebras K that are obtained by orienting the same quiver in different ways one
must analyze a Fourier-Deligne transform between these two different algebras. The
amazing thing is that, after one extends the algebras by adding the K iﬂs that are in
the quantum group, the two different algebras (from the different orientations) become
isomorphic!

3. The connection between representations of quivers and per-
verse sheaves

(3.1) Correspondence between orbits and isomorphism classes of representa-
tions of I'
Let T be a quiver obtained by orienting the edges of a Dynkin diagram of type A, D or
E. For convenience we label the vertices by 1,2,...,r. Let g be the finite dimensional
complex simple Lie algebra corresponding to the Dynkin diagram given by I'.

Let p be a positive prime integer and let F, be the algebraic closure of the finite field
F, with p elements. Fix an element v € Q% (see VII (1.2)) and a I'-graded vector space V
over F,, such that dim(V) = v. Define

Gy =[]GL(V;) and Ey=DHom(V;,V;),
i ioj
where the sum in the definition of Fy is over all edges of I'. The natural action of Gy on
FEy is given by
9 (¢i5) = (950i59; ), if (¢i;) € Ev and g = (g1,--+,9r) € Gv.

The group G is an algebraic group over F, and Ey is a variety over F,, with a Gy action.
Each element (¢;;) € Ey determines a representation of I' of dimension dim(V’). Each
Gy-orbit in Ey determines an isomorphism class of representations of I'. Let us make this
correspondence precise.

An orbit indez for V is a sequence of positive integers labeled by the positive roots

€= (Ca)acr+ such that Z cea = dim(V),
a€Rt

where Rt is the set of positive roots for g. For each orbit index ¢ for V define a represen-
tation of I' by

Rz = €B e9ce and let Oz = the Gy-orbit in Ey corresponding to Rg,
a€RT
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where e, is the indecomposable representation of I' indexed by the positive root «, see
Theorem (1.2b). Then we have a one-to-one correspondence

o 1-1 . . .
Gy orbits in Ey ¢— isomorphism classes of representations
of I' of dimension v

O¢z — [Rz]

(3.2) Realizing the structure constants of the Hall algebra in terms of orbits
Let ¢ be a power of the prime p. Since Ey is a variety over E there is an action of
the the gth power Frobenius map F on Ey, see [Ca] p. 503. If X is a subset of Ey then
let XF denote the set of points of X which are fixed under the action of the Frobenius
map F.
Let T and W be I'-graded vector spaces such that W C V and T = V/W. Recall the

diagram »
ETXEW (ﬂl— vaurs ~—p-2—) vaps —3-) EV

(zr,z2w) «— (9,7) +— (9,3) +—> gz

given in (2.4). Let a, 5, and ¢ be orbit indices for T, W and V, respectively. Then we have

ETXEW (p—l GV xUS -p—2) GV XPS ﬁ} EV
Oz x (95 “~ pl_l(O(i X 05) — pg(pfl(oa' X 03))
p3 " (06) +— Og

Let M = Rz, N = R; and P = R; be the representations of I given in (3.1). By a direct
count, we have

Chrv = Card (( P27 (02 x O)) [ p5"(00) )").

where Cﬂ, N are the structure coefficients of the Hall algebra RI" given in (1.3).

(3.3) Rewriting the Hall algebra in terms of functions constant on orbits

Let ¢ be a power of the prime p. On any variety Y over ]F_,, there is an action of the the gth
power Frobenius map F on Ey, see [Ca] p. 503. If X is a subset of Y then XF denotes
the set of points of X which are fixed under the action of the Frobenius map F.
Let I be a positive prime number, invertible in F,. Let @ be the algebraic closure of
the field of l-adic numbers. Define ‘
K, = the vector space of (4-valued functions on (Ey)F which are constant on the

orbits (Oz)F for all orbit indexes ¢ for V.

K= @K,,,

veQt

Define
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where Q% is as in VII (1.2).
Define a multiplication on K as follows. Let 7" and W be I'-graded vector spaces such
that W CV and T = V/W. Recall the diagram

ETXEW (—pL GVxUS _p_z) vap8 ﬁ) EV
(xr,2w) «—  (9,2) +— (9,3) r— gz

given in (2.4). Let 7 = dim(7) and w = dim(W). Given f; € K, and f; € K,, define a
function f; * f2 as follows:
If z € (Ey)¥ then

(fr*x f2)(z) = Z Ct.w fi(zr) f2(zw),

TT,TW

where the sum is over all zp € (Er)F and zw € (Ew)F, and

oV Card( {(y, f) € (Gv xp S)F | p1(y, f) = (z1,2w), p3(p2(y, f)) = =} )
w = Card((Gr)F)Card((Gw)F) '

Let ¢ be an orbit index and let xz be the characteristic function of the orbit O, i.e.

F . _ 1, 1fx € (Oé‘)Fa
for z € (Ev)”, xz(z) {0, otherwise.

Then it follows from the observation in (3.2) that the map

K — RT
xz +— [Re]

is an isomorphism of algebras, where RI is the Hall algebra defined in (1.3).

(3.4) The isomorphism between K and K

Let @ be an orbit index and let Oz be the corresponding Gy -orbit in Ey as defined in
(3.1). Let Fz be the constant sheaf Q; on the orbit Oz extended by 0 on the complement.
This sheaf can be viewed as the complex of sheaves A, for which A° = Fz and A* = 0,
for all ¢ # 0. In this way Fz can be viewed as an element of Qy, see IV (1.4), and the
isomorphism class [Fg] of F is an element of K.

Theorem. Let K be the algebra defined in §2 and let K be the algebra defined in (3.3).
For each orbit index € let Oz be the corresponding Gy orbit in Ey, as given in (3.1), and
let xz be the characteristic function of the orbit Oz. The map

XK — K
[Fe — Xz

is an isomorphism of algebras.
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This theorem is a consequence of an analogue of the Grothendieck trace formula. The
Grothendieck trace formula, [Ca] p. 504, is the formula :

2dim(X) ‘
XPl= Y (-1 TR HY(X, Q),

=0

which describes the number of points of X which are fixed under a Frobenius map F' in
terms of the trace of the action of the Frobenius map on the I-adic cohomology H:(X, Q)
of the variety X.

Theorems (3.4) and (2.8) together show that there is a natural connection between
the algebra K and the Hall algebra RT" which was introduced in (1.3).
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IX. Link invariants from quantum groups

The theorems of Alexander and Markov given in (1.4) and (1.5) are considered classi-
cal, they can be found in [Bi] Theorem 2.1 and Theorem 2.3, respectively. A sketch, with
further references, of the proof of Theorem (1.7) can be found in [CP] 15.2. See [J] Prop.
6.2 for the proof of Theorem (1.2) and [Stb] Lemma 2.5 for the proof of Proposition (1.6).

(1.1) Knots, links and isotopy

A knot is an imbedded circle in R3. By circle we mean an S and imbedded is in the sense
of differential geometry. A link is a disjoint union of imbedded circles in R3. A link is
oriented if each connected component is oriented. We shall identify a link with its “picture
in the plane”.

knot (unknot) knot (trefoil) link (Borromean rings)

The conceptual idea of when two links are the same is called ambient isotopy. More
precisely, two oriented links Ly and L9 are equivalent under ambient isotopy if there is an
orientation preserving diffeomorphism of R? which takes L; to Ls. In terms of pictures
in the plane L; and L, are equivalent under ambient isotopy if the picture for L; can be
transformed into the picture for L, by a sequence of Reidemeister moves:

(R1) ) — —_ — G

SN—————
N T A

(R3) N —> ”'l'/
~I= (]

These moves are applied locally to a region in the picture and all possible orientations of
the strings are allowed. The equivalence relation on pictures in the plane gotten by only
allowing moves (R2) and (R3) is called regular isotopy.

(1.2) Link invariants

Let S be a set. An oriented link invariant with values in S is a map

P.:L—S
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from the set £ of equivalence classes of oriented links under ambient isotopy to S.

Theorem. There exists a unique oriented link invariant P : L — Z[z,z~',y,y '] such
that

P (O) =1, and zP —zlp —yP

The unusual notation in the second relation indicates changes to the link in a local region.

The link invariant defined in the above Theorem is the HOMFLY polynomial. Other
famous link invariants can be obtained in a similar fashion by specializing £ and y, as
follows:

Jones polynomial z=t"! and y=tV2-¢t"1/2
Conway polynomial z=1 and y=y,

Alexander polynomial z=1 and y=tY2_-¢12

(1.3) Braids

A braid on m-strands consists of two rows of m dots each, one above the other, and m
strands in R3 such that

(1) each strand connects a dot in the top row to a dot in the bottom row,
(2) the strands do not intersect,
(3) every dot is incident to exactly one strand.

Composition of two braids by, by on m-strands is given by identifying the bottom points of
by with the top points of by. The following are braids on 6 strands,

]

and the product b1b; is the braid

1))
J-ﬁ.
(| rJ
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One should note that it is important to be careful in defining the word “strand” since the

A=

is not a legal braid.
The braid group B,, is the group of braids on m strands and it is a famous theorem

of E. Artin that B,,, has a presentation by generators

1 2 1—1 7 i1+1 142 m—1 m
g = H ,
for 1 <4< m — 1, and relations
9i9; = 93 9i; if |i—j]>1,
9i9i+19i = 9i+19i9i+1, for1<i<m-—2.

(1.4) Every link is the closure of a braid
It will be convenient to “orient” the strands of a braid so that they “travel” from top to

bottom. \} * y
KoK

The closure (3, m) of a braid B € By, on m-strands is the oriented link obtained by joining
together (identifying) each dot in the top row to the corresponding dot in the bottom row.

g = %,\} then (3,3) = C@)

\
<
B = 1\ , then (3,3) = Q‘Q
L/
N

and if
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Theorem. (Alexander) EVery oriented link is the closure (ﬁ, m) of a braid f € B,, for
some m. :

(1.5) Markov equivalence .
The braid group B,, can be embedded into the braid group By,+1 by adding a strand.

B

Bs —_— 7
BTN by R A by
Two braids 3, € B,, and B9 € B,, are Markov equivalent if they are equivalent under the
equivalence relation on L, B,, (disjoint union of B,,) which is defined by the relations

(M1) B ~ BB'B~1, forall 8,8 € By, and
(M2) B ~ Bgk ~ By if B € Bg;

where in the relation (M2) the products Bgs and Bg; ' are obtained by viewing 8 as an
element of Bg4; under the imbedding By C Bg4i.

Theorem. (Markov) Two braids 1 € B,, and f3; € B, have equivalent closures ($1,m)
and (f2,n) (under ambient isotopy) if and only if 51 and (33 are Markov equivalent.

(1.6) Quantum dimensions and quantum traces

Let g be a finite dimensional complex simple Lie algebra and let {,g be the corresponding
Drinfel’d-Jimbo quantum group. Let g be the element of § such that a;(p) = 1 for all
simple roots a;, see II (2.6).

Let V be a finite dimensional 41, g module. The guantum dimension of V' is
dimy(V) = Tr, (™).
If z € Endy, 4(V) then the quantum trace of z is
tr,(z) = Tr,(eM?z).

Proposition. Let L()) be the irreducible {5 g-module of highest weight A as given in
VI (1.3) and VI (2.3). Then

. 1 — gAt+pa)
dlmq(L(A)) = H —1_q(Ta)’ Where q = eh,
a>0 q
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p= %ana is the half sum of the positive roots, and the inner product (,) on by is as
given in II (2.7). ‘

(1.7) Quantum traces give us link invariants!

Recall that $l;g is a quasitriangular Hopf algebra and that therefore the category of
finite dimensional {5 g-modules is a braided SRMCwMFF. Let

-

Ryy : V®V — VRV

be the braiding isomorphism from V ® V to V ® V. It follows from the identity I (3.5)

that the map
o: B, — Endg, 4 (V®™)

g +— R' = id®(£—1) ® RVV X id®m—(i+1)
is well defined and that ®(8;,82) = ®(51)®(8:) for all braids S1, 52 € Bp,.

Theorem. Let g be a finite dimensional complex simple Lie algebra and let 8,g be the
correponding Drinfel’d-Jimbo quantum group. Let L(\) be an irreducible U, g-module of
highest weight X\ (see VI (1.3) and VI (2.3)). Let p be the half sum of the positive roots
and let (,) be the inner product on hr as given in II (2.7). For each braid  on m-strands

define
1

Pl = (o gmgmy) @0

where ¢ = eP. Then P is a well defined link invariant.

Remark. The above theorem gives the Jones polynomial when g = sly, the simple Lie
algebra corresponding to the Dynkin diagram A;, and L(A) is chosen to be the irreducible
representation of Uyg with highest weight A = w;.
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