Linear Algebra to Quantum Cohomology:
The Story of Alfred Horn’s Inequalities

Rajendra Bhat—i;F

We want first an overview of the aim and of the road; we want to understand the idea of the
proof, the decper context. A modern mathematical proof is not very different from a modern
machine, or a modern test setup: the simple fundamental principles are hidden and almost
invisible under a mass of technical details.

Hermann Weyl

A long-standing problem in linear algebra—Alfred Horm'’s conjecture on eigenval-
ues of sums of Herritian matrices—has been solved recently. The solution appeared
in two papers, one by Alexander Klyachko [20] in 1998 and the other by Allen Knut-
son and Terence Tao [23] in 1999. This has becn followed by a flurry of activity that
has brought to the mathematical centre-stage what for many years had been somewhat
of a side-show. The aim of this article is to describe the problem, its origins, some of
the early work on it, and some ideas that have gone into its solution.

A substantial part of this article should be accessible to anyone who has had a sec-
ond course on linear algebra. The reader who wants to know more will find it rewarding
to read the comprehensive and advanced account [11] by William Fulton.

1. LINEARITY, QUASILINEARITY, AND CONVEXITY The principal charac-
ters in our story are n x # Hermitian matrices A and B, theirsum C = A + B, and the
cigenvalues of A, B, and C enumerated asa; > a2 > --- >, 1 =2 B = - = By,
and yy = 3y = - - = ¥, respectively. Sometimes we would like to emphasize the de-
pendence of the eigenvalues on the matrix. We then use the notation l}(A) for the
Jtheigenvalue of A when the eigenvalues are arranged in a (weakly) decreasing order.
Thus a; = A}(A). This n-tuple of eigenvalues of A as a whole is denoted by a or
At(A).

The story begins with a simple question: what are the relationships between «, 8,
and y?

Now, the eigenvalues are not linear functions of A and no simple relation between
o, B, and y is apparent, except one. The trace of A, denoted tr A is the sum of the

diagonal entries of A and also of the eigenvalues of A. So, tC =tuw A +tr B and
hence

Dvi=d o+ 8 (1)
=1 j=1 i=1

We can think of A as a linear operator on the complex Euclidean space C" equipped
with its usual inner product {x, y), written also as x*y and the associated norm ||x|| =
(x*x)'/2. The Spectral Theorem tells us that every Hermitian operator A can be diago-
nalised in some orthonormal basis; or equivalently, there exists a unitary matrix U such
that UAU* = diag(a,, . . ., o), a diagonal matrix with diagonal entries ay, ..., o).
If u; are the orthonormal eigenvectors corresponding to its eigenvalues o, we write
A =) a;u;u}, and call this the spectral resolution of A. Using this, it is easy to
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see that the set {{x, Ax) : ||x|| = 1} (called the numerical range of A) is equal to the
interval [a,, o1 ]. In particular, we have

o) = max {x, Ax), 2)
fxfi=1
o, = Ir:’:i;ll {x, Ax}. (3)

For each fixed vector x, the quantity {x, Ax) depends linearly on A. Equations (2)
and (3) express o), &, as a maximum or minimum over these linear functions. Such
expressions are called guasilinear. Very often, they lead to interesting inequalities.
Thus, from (2) and (3) we have

n <o+ b, )]
yﬂzan+ﬂ"' (5)

in this way, we begin to get linear inequalities between a, 8, and y . There is another
way of looking at (4). The set of n x n Hermitian matrices is a real vector space. The
inequality (4) says Af(A) is a convex function on this space; the inequality (5) says
that A} (A) is concave.

The inequalities (4) and (5) are not independent. Note that the eigenvalues of —A

are the same as the negatives of the eigenvalues of A. But taking negatives reverses
order; sofor1 < j <n,

A(=A) = =), (A) = —2](A), (6)

where the notation A'(A) indicates that we are now enumerating the eigenvalues of
A in increasing order. Using this observation we can see that (2) and (3) are equiva-
lent, as are (4) and (5). Many of the inequalities stated below lead to complementary
inequalities by this argument.

2. THE MINMAX PRINCIPLE AND WEYL'S INEQUALITIES The relations
(2) and (3) are subsumed in a variational principle called the minmax principle. It says
thatforalll < j <n

oj = max min{x, Ax) = min max({x, Ax) @)
Vet xeV vcct xeV
dimV=j kxi=1 dimV=n-j+1 lxl=1

Here dim V stands for the dimension of a linear space V contained in C”. This princi-
ple was first mentioned in a 1905 paper of E. Fischer. Its proof is easy. Use the spectral
resolution A = Zaju_,-u;. Let W be the space spanned by the vectors uj, ..., u,.
Then dim W = n ~ j + 1. So, if V is any j-dimensional subspace of C", then V and
W have a nonzero intersection. If x is a unit vector in this intersection, then {x, Ax)
lies in the interval [a,, a;]. This shows that

min (x, Ax) < a;.
zeV
Ixi=1

If we choose V to be the subspace spanned by u«,, ..., u;, we obtain equality here.
This proves the first relation in (7). The second has a very similar proof.
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This principle has several very interesting consequences. Hermitian matrices can
be ordered in a natural way. We say that A < B if (x, Ax) < {x, Bx) forall x. One
sees at once from (7) thatif A < B, then A}(A) < A.f(B) for all j. This is called Weyl's
monotonicity principle. (The applied mathematics classic by Courant and Hilbert [8]
is full of applications of eigenvalue problems in physics. The Weyl monotonicity prin-
ciple has the following physical interpretation: If the system stiffens, the pitch of the
Jundamental tone and every overtone increases [8, p. 286, Theorem IV]. This indeed
is the experience of anyone tuning the wires of a musical instrument.)

Weyl’s monotonicity principle, and several other relations between eigenvalues of
A, B, and A + B were derived by H. Weyl in a famous paper in 1912 [33]. Particularly
important for our story is the family of inequalities

Yiejs1 S+ p; fori+j—1<n ®

These can be proved using the same idea as the one that gave us the min-
max principle. Let A, B, and A + B have spectral resolutions A = 3 or;u;u3,
B = 3 Bjvjv;, A+ B =} y;w;w}. Consider the three subspaces spanned by
(i ... unl {vs, ..., va), and {wy, ..., we). These spaces have dimensions n — i +
1,n— j+ 1, and k respectively. If k =i + j — 1, these numbers add up to 2n + 1.
This implies that these three subspaces of C” have a nontrivial intersection. Let x be
a unit vector in this intersection. Then {x, Ax) is in the interval [¢,, ¢;], {x, Bx) in
[Bx. 8], and {x, (A + B)x) in [, n]. Hence

Ve < {x, (A+ B)x) = (x, Ax} + (x, Bx) < o; + B;.
This proves (8).
Note that the inequality (4) is a very special case of (8). Another special conse-
quence of (8) is the inequality
a+pP<yi<e+p forl<i<n ©)]
The second inequality is derived from (8) simply by putting j = 1; the first by the sort
of argument indicated at the end of Section 1.

As an aside, let us mention the interest such results have for numerical analysts. For
any operator A on C" define

Al = l’Sl“}pl flAx|| (10)

If A is Hermitian, then it is easy to see that

Al = ISlllngx,Ax)I = max (|o], laal) . (11)

Using this, one can see from (9) that

o —|Bll = v <a; + B (12)

By a change of labels (replace B by B — A) this leads to the Wey! perturbation
theorem

mf-xlaj_ﬂjlqu_B"- (13)
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In numerical analysis one often replaces a matrix A by a nearby matrix B whose
eigenvalues might be easier to calculate. Inequalities like (13) then provide useful in-
formation on the error caused by such approximations.
Some of the inequalities in the following sections provide finer information of in-
terest to the numerical analyst. We do not discuss this further in this article; see [5].
Convexity properties of eigenvalues and intersection properties of eigenspaces are
closely related, as we have already seen. This is the leitmotif of our story.

3. THE CASE 7 = 2 When n = 2, the statement (8) contains three inequalities

n<ai+ b, ra+p, ra+hb. (14)

It turns out that, together with the trace equality (1), these three inequalities are suffi-
cient to characterise the possible eigenvalues of A, B, and C; i.e., if three pairs of real
numbers {o;, @z}, {81, B2}, {71, 1), each ordered decreasingly (o, > an, etc.), satisfy
the relations (1) and (14), then there exist 2 x 2 Hermitian matrices A and B such that
these pairs are the eigenvalues of A, B, and A + B.

Let us indicate why this is so. Choose two pairs «, 8, say

=4, =1, fi=3 po=-2
What are the y that satisfy (1) and (14)? The condition (1) says
n+v.=6.
This gives a line in the plane R2. The restriction y; >  gives half of this line—its

part in the half-plane y; > 4. One of the three inequalities in (14) is redundant; the
other two are

n<1 wmn=2

So, the set of y that satisfy (1) and (14) constitutes the line segment with end points
(4,2) and (7, —1); see Figure 1. We want to show that each point on this segment
corresponds to the two eigenvalues of a Hermitian matrix C = A + B, where A has
eigenvalues (4, 1) and B has eigenvalues (3, —2).

Start with the diagonal matrices

[80] w2 8]

Let Uy be the 2 x 2 rotation matrix

Us = cosf —sind
8= | sin6 cosf |’

and let
By =UgBylU;, Co= A+ By.

This gives a family of Hermitian matrices parametrised by the real number 8. Note

that
4 0 3 0 7 0
a=lo1]+[s 2]-[0 4]
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-2 -1 0 1 2 3 4 5 6 7 8
Figure 1. The line segment given by Weyl’s inequalities.

4 0 -2 0 20
ee=o 1]+ 3 5)-[0 8]
Thus the two end points of our line segment correspond to (Ai’ (Co), )..f, (Cg)) for the

values 8 = 0 and # = mr/2. It is a fact that kjf (Cy) is a continuous functions of 8;
see [5, p. 154)).

Condition (1) tells us that the eigenvalues of Cy must lie on the line y; + 3, = 6.
So, by the intermediate value theorem each point of the line segment beiween (7, —1)
and (4, 2) must be the pair of eigenvalues of Cy for some 0 <8 < x /2.

Figure 2 shows a plot of the two eigenvalues ).{(Cg) and A.%(Cg), 0<06 <n/2.The
two curves are symmetric about the line y = 3 because of the trace condition (1).

Some comments are in order here. We chose numerical values for «, 8 for concrete
illustrations. The same argument would work for any pairs. The matrices A and B
we got are not just Hermitian; they are real symmetric. The condition (1) brought us
down from the plane onto a line, the condition y; > ¥, to a part of this line, and the
inequalities (14) to a closed interval on it. We have proved the following theorem.

Theorem 1. Let A, B be two real symmetric 2 x 2 matrices with eigenvalues o, > a;
and By > B, respectively. Then the set of (decreasingly ordered) eigenvalues of the
family A + UBU?*, where U varies over rotation matrices, is a convex set (actually a
line segment). This convex set is described by Weyl's inequalities (14).

This is also a good opportunity to comment on two features of Figure 2. Neither the
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Figure 2. The two eigenvalues of the family Cy

smoothness of the two curves, nor their avoidance of crossing each other is fortuitous.
See the book [27, p. 113] (and the picture on its cover) for a discussion and explanation
of these phenomena.

4. MAJORISATION Before proceeding further, it would be helpful to introduce the
concept of majorisation of vectors. The theorems of Ky Fan, Lidskii-Wielandt, and
Schur are best understood in the language of majorisation.

Let x = (x1, X3, ..., X,) be an element of R". We write x} = (xl‘, le, ooy x)) for
the vector whose coordinates are obtained by rearranging the x; in decreasing order

4 { i
X Zxy ==,

Let x, y be two elements of R". If

k k
doxf<d y} forl<kzn, (15)
ji=1 j=l

then we say x is weakly majorised by y, and write x <, y. If, in addition to the
inequalities (15), we have

DX =2y (16)
j=1 i=l

then we say x is majorised by y and write x < y,
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As an example, let p = (py, ..., p,) be any probability vector; i.e, p; > 0 and
Y p; =1.Then

1 1
(—,...,;)-<(pl,...,p,,)-<(1,0,...,0).

n

The notion of majorisation is important. A good part of the classic [18] and all of the
more recent book [29] are concerned with majorisation. See also [5].

Among the several characterisations of majorisation the following two are espe-
cially useful and interesting; see [5, p. 33].

1. Let o be a permutation on r symbols. Given y € R”, let ¥, = (yoq1). .. ., ya(,,)).

Then x < y if and only if x is in the convex hull of the n! points y, .

2. x < yif and only if x = Sy for a doubly stochastic matrix .

Recall that a matrix S = [s;;] is doubly stochastic if s;; = 0, 3 ;8 = 1foralli,
and ), 5;; = 1 forall j.

Let us write xt = (JtlT , ..., x1) for the vector whose coordinates are obtained by
rearranging x; in increasing order: x| < ... < x1. Note that x} =x} j+1- Then x is
majorised by y if and only if

k k

Yoxl=dY'y! 1skzn a7

j=1 j=1

and the equality (16) holds.
One of the basic theorems about majorisation says that for any x, y in R”

4yt <x+y<xt+yh; (18)

see [5, p. 49]. This relation describes the effect of rearrangement on addition of vectors.
Some of the inequalities in the following sections have this form; the vectors involved
are n-tuples of eigenvalues of Hermitian matrices.

5. THE THEOREMS OF SCHUR AND FAN Return now to the Hermitian matrix
A with eigenvalues «. Let d = (a;1, ..., a.,) be the vector whose coordinates are the
diagonal entries of A. Since a;; = (e}, Ae;), the inequality

4 <a (19)

follows from (2). A famous theorem of Schur (1923), closely related to our main story,
extends this inequality. This theorem says that we have the majorisation

d < a. (20)

Here is an easy proof. By the speciral theorem, there exists a unitary matrix U/ such
that A = UDU*, where D = diag{o, ..., @,). From this one sees that

n
aii = Zlu;,-lzaj 1<i<n.
=i

This can be rewritten as d = Sa, where § is the matrix with entries s;; = {u;;|>. This
matrix is doubly stochastic since U is unitary. Hence, by one of the characterisations
in Section 4, we have the majorisation (20).
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The eigenvalues of A do not change under a change of orthonormal basis. So, from
the relation (20) we get the following extremal representation called Fan’s Maximum
Principle

k k
o; = max xi, Ax;), 1 <k <n. 21
; 7 orthonormal {x;] ;( ! Z @l
Here the maximum is taken over all orthonormal k-tuples xq, ..., x;. The sum-

mands on the right hand side of (21) are diagonal entries of a matrix representation
of A. So their sum is always less than or equal to E'J;} a; by (20). For the special
choice when x; are eigenvectors of A with Ax; = a;x;, we have equality here.

When k = 1, (21) reduces to (2), and when k = n both sides are equal to tr A. This
expression gives a quasilinear representation of the sum Y_ ;. Among other things it
tells us that for each k between 1 and n, Z;l Aﬁ(A) is a convex function of A. Thus

each Ajf (A) is a difference of two convex functions. Generalising (4) we now have
inequalities

k k k
Yovi = Yo+ 8. 1<ks<n, 22)
j=1 =1

j=1

proved by Ky Fan in 1949. Again, note that when k = 1, the inequality (22) reduces
to (4) and when k = n, this is just the equality (1). In terms of majorisation we can
express the family of inequalities (22) as

AMA + B) < AH(A) + A¥(B). (23)
This is a matrix analogue of the right hand side of (18).

6. INEQUALITIES OF LIDSKII AND WIELANDT The next event in our story
is quite dramatic. In 1950, V. B. Lidskii announced the following result: the vector y
lies in the convex hull of the n! points & + 8,, where o runs over all permutations o
of n indices. Lidskii, it would seem, was providing an elementary proof of this the-
orem that F. A. Berezin and 1. M. Gel'fand had discovered in connection with their
work on Lie groups. The paper of Berezin and Gel'fand appeared in 1956 and alludes
to this. Lidskii's elementary proof may have been clear to the members of Gel’fand’s
famous Moscow seminar. However, the published version did not give all the details
and it could not be understood by many others. H. Wielandt saw the connection be-
tween Lidskii’s theorem and Fan's inequalities (22) and provided another proof, very
different in method from the one sketched by Lidskai.

Letl <k <nandletl <i; <--- < ig <n. Then the assertion of Lidskii’s theo-
rem is equivalent to saying that for all such choices

stz%+2m. (24)

The equivalence is readily seen using the characterisations of majorisation given in
Section 4.
Note that Fan’s inequalities (22) are included in (24). To derive these inequalities

Wielandt proved a minmax principle that is far more general than (21). We return to
this later.
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Now several proofs of Lidskii’s theorem are known. Some of them are fairly easy
and are given in [5). The easiest proof, however, is the following one due to C.-K. Li
and R. Mathias [28]:

Fix k and the indices 1 < i, < --- < iz < n. We want to prove that

k

k
Y[+ B -a@w] <Y re). 25)
j=1

j=1

We can replace B by B ~ A,f(B)I, and thus may assume that Ai(B) =0.Let B =
B, — B_ be the decomposition of B into its positive and negative parts (if B has the
spectral resolution ¥~ B;u;u%, then By = Y, B u;u} where ] = max(8;, 0)). Since
B < B,, by Weyl’s monotonicity principle Afj (A+B) < ).,‘.Lj (A + B,). So, the left
hand side of (25) is not bigger than

k
Y [Ma+ ) -3 @)
j=1

By the same principle, this is not bigger than

n

Yo [ra+ By -w].

i=1

(All of the summands are nonnegative.) This sum is tr B;, and since we assumed
AL(B) =0, itis equal to 3_%_, A¥(B). This proves (25).

Using the observation (é), it'is not difficult to obtain from the Lidskii-Wielandt
inequalities (24} the relation

AHA) + AT(B)Y < A(A+ B). (26)

Together with (23), this gives a noncommutative analogue of (18): if A, B were com-
muting Hermitian matrices the relations (23) and (26) would reduce to (18).

7. THE CASE n = 3 Let us see what we have obtained so far when n = 3. We get
six relations from Weyl’s inequalities (8):

n<at+th, nsath, rn<ath
pBat+h, B=wt+th, n=mth. 27
One more follows from Fan's inequalities (22):
N+ratat+b+ b (28)
Four more relations can be read off from the Lidskii-Wielandt inequalities (24):
ntyatatht+hb,
it ataz+pi+ b,
nnt+y<a +ar+ B+ B3 and
ntrn<aetatp+ph. (29)
(Use the symmetry in A and B.)
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It was shown by Horn [16] that one more ineguality
rntyn<atat+fi+h (30)

is valid, and further, together with the trace equality (1), the twelve inequalities (27)—
(30) are sufficient to characterise all triples a, §, y that can be eigenvalues of A, B,
and A + B. The proof of this assertion is not as simple as the one we gave for the case
n = 2 in Section 3.

Where does the inequality (30) come from? Horn derived all inequalities that sums
like y; + y; satisfy for any dimension #n; the inequality (30) is one of them. For the
special case n = 3, one can derive this inequality from the majorisation (26), which is
a consequence of the Lidskii-Wielandt theorem. For n = 3, this says

(@1 + B3, a2+ By, a4+ B1) < (i, y2, 1)

Now using (17) one sees that the last three inequalities in (27) are hidden in this asser-
tion, (Only the first five inequalities in (27) can be derived from the Lidskii~Wielandt
inequalities in their raw form (24).) The inequality (30) too follows from this majori-
sation: if oy + B is larger than a + 85 and a3 + f4, this is clear from (17); if it is
smaller than one of them, this follows from (29).

Let us consider a simple example. Let

a = {4,3, -2}, ﬂ = {2, -1, —6}

Then the condition (1) says

n+r+y=0

-1
2 -2

Figure 3. Part of the plane {y1 + y2 + y3 = 0}; small hexagon = (|| < 1}
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=Y,

Bl 0 R e VR ST

A

Figured, y; = 2 > y3: the small hexagon = (] < 1}

This is a plane in R3; see Figure 3. For convenience rotate it to the x-y plane. The con-
dition y, = 2 = y; gives the part of the plane shown in Figure 4. The six inequalities
of Weyl in (27) give three restrictions

YI_<_6’ }‘253, }'3$—2.

This restricts y further to the pentagon shown in Figure 5. A new restriction is imposed
by Fan’s inequality {28):

n+py <8,

and this constrains y to be in the hexagon in Figure 6. Of the four inequalities (29) of
Lidskii-Wielandt, two are redundant. The remaining two are

n+m=<3 nr+ry<i

However, they do not impose any new constraint; see Figure 7. We have a new inequal-
ity from Horn’s condition (30). This says

“tr=<-2
and cuts down the set of permissible y to the heptagon shown in Figure 8.

Horn’s theorem says that each peint y in this set is the eigenvalue triple of a matrix
C = A + B, where A, B are Hermitian matrices with eigenvalues «, S.
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=1
73= -2
Figure 5. In the plane {y; + y2 + 3 = 0}; the Weyl pentagon
Y1=Y2 72;'3
1,+1,=8
2=

=6

\73= 2

Figure 6. In the plane {y| + 2 + y3 = 0}; the Ky Fan hexagon
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=Y,

¥,=0

or 12+13=0

e

Ty+15=3

\

L

i \Tf 2

Figure 7. Lidskii-Wielandt inequalities have no effect in this example

=Y

71 +Yz=8

Ty +75=3

1Y

Figure 8. The Horn hepiagon
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The majorisations (23) and (26) give in this example
(2,0,-2) <y < (6,2, -8).

In the plane y; + y2 + 33 = 0, the set of y satisfying y < (6, 2, —8) is shown in Fig-
ure 9; the set of y satisfying (2,0, —2) < y is shown in Figure 10. The intersection
of these two sets is a hexagon. The Weyl inequality y, < 3 imposes a constraint not
included in these two majorisations. This additional constraint gives us the heptagon
of Figure 8.

8. THE HORN CONJECTURE The Lidskii-Wielandt Theorem aroused a lot of
interest, and more inequalities connecting a, B, y were discovered. Some of these

looked very complicated. A particularly attractive one proved by R. C. Thompson and
L. Freede in 1971 says

k k k
JZ;Y:,-”,-_;- <Y a, +Zl‘8”i (1)
= =

i=1

for any choice of indices 1 < i} < --- <ix <n,1 < p| <+ < pp < n satisfying
iy + px — k < n. This includes the Lidskii-Wielandt inequalities (24) (choose p; = j)
and treats «, 8 more symmetrically.

But where does the story end? Can one go on finding more and more inequalities
like this? This question was considered, and an answer to it suggested, by A. Horn in
a remarkable paper in 1962 [16). This paper followed the ideas of Lidskii’s original
approach to the problem.

The inequalities (8), (22), (24), (31) all have a special form:

Y n<d e+ 8 (32)

keK iel jeJ

where I, J, K are certain subsets of {1, 2, ..., n} having the same cardinality. One
may raise here two questions:

(i) What are all triples (/, J, K) of subsets of {1,2, ..., n} for which inequali-
ties (32) are true? Let us call such triples admissible.

(ii) Are these inequalities, together with (1), sufficient to characterise the a, 8, ¥
that can be eigenvalues of Herinitian matrices A, B, and A + B?

Homn conjectured that the answer to the second question is in the affirmative and that
the set T of admissible triples (1, J, K) of cardinality r can be described by induction
on r as follows.

Let us write ] = {i; < iz < --- < i,} and likewise for J and K. Then forr =1,
(IL,J,K)isinT)' ifky =i+ ji— L Forr > 1, (1, J,K)isin T if

zi+2j=2k+(”5’), (33)

iel jeJ kek

and, foralll < p<r—1landall (U, V,W)eT,,

Ziu+2fu.<_zkw+(p;_1)- (34)

uel/ veV weW
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b ]

Figure 9. The quadrilateral containing all y majorised by (6, 2, —8)

Y=Y,

Figure 10. A part of the region containing y that majorise (2, 0, —2)
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Hom proved his conjecture for n = 3 and 4. When n = 2, these conditions just
reduce to the three Weyl inequalities (14). When n = 3, they reduce to the twelve
inequalities (27)—(30). When n = 7, there are 2062 inequalities given by these condi-
tions, nof all of which may be independent.

There is not much to explain about the conditions (33) and (34) themselves. The
striking features of the conjecture—now a theorem—are the following. It says three
things:

(i) Fix a, B and choose two Hermitian matrices A, B with eigenvalues a, g. Then
the set of y that are eigenvalues of A + U BU®, as U varies over unitary ma-
trices is a convex polyhedron in R".

(ii) This convex polyhedron is described by Horn’s inequalities.
(iii) These inequalities can be obtained by an inductive procedure.

We should emphasize that none of these is a statement of an obvious fact, and while

each of them has now been proved the decper reasons for their being true are still to
be understood.

9. THE SCHUR-HORN THEOREM AND CONVEXITY A simple theorem
like (20) is often an impetus for the development of several subjects. The theory
of majorisation, a good part of matrix theory, and some important work in Lie groups
and geometry, were inspired by this simple inequality.

In 1954 A. Horn [15] proved a converse to this theorem of Schur. Namely, if x and
y are two real n-vectors such that x < y, then there exists a Hermitian matrix A such
that the entries of x are the diagonal of A and the entries of y are the eigenvalues of A.

Using the properties of majorisation given in Section 4, we can state the theorem of
Schur and its converse due to Horn as follows.

Theorem 2. Let a be an n-tuple of real numbers and let O, be the set of Hermitian
matrices with eigenvalues a. Let ® : O, — R" be the map that takes a matrix to
its diagonal. Then the image of ® is a convex polyhedron, whose vertices are the n!
permutations of a.

Now, the set of skew-Hermitian matrices I/ (n) is the Lie algebra associated with the
compact Lie group U(n) consisting of n x n unitary matrices. The set of Hermitian
matrices is ild(n). The set O, is the orbit of the diagonal matrix with diagonal & under
the action of U (n): it consists of all matrices U diag(a)U* as U varies over U{n). This
led B. Kostant in 1970 to interpret Theorem 2 as a special case of a general theorem
for compact Lie groups. (The role of diagonal matrices is now played by a maximal
compact abelian subgroup, that of the permutation group by the Weyl group.) This
in turn led to a much wider generalisation in 1982 by M. Atiyah, and independently
by V. Guillemin and S. Sternberg. An explanation of these ideas is beyond our scope.
However, let us state the theorem of Atiyah et al. to give a flavour of the subject.

Theorem 3. Let M be a compact connected symplectic manifold, with an action of a
torus T. Let & : M — t* be a moment map for this action. Then the image of ® is a
convex polytope, whose vertices are the images of the T-fixed points on M.

The curious reader should see the article [22] by A. Knutson (from where we have
borrowed this formulation) for an explanation of the terms and the ideas. Another
informative article is one by Atiyah [2].
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For the present, we emphasize that the moment map and its convexity properties
are now a major theme in geometry. Especially interesting for our story is the fact that
the first part of Horn's conjecture stated at the end of Section 8 was proved in 1993

by A. H. Dooley, J. Repka, and N. J. Wildberger {91, using convexity properties of the
moment map.

10. SCHUBERT CALCULUS AND THE HEART OF THE MATTER
R. C. Thompson seems to have been the first one to realise that there are decp con-
nections between the spectral inequalities we have been talking about and a topic in
algebraic geometry cafled Schubert Calculus. Let us indicate these ideas briefly.

Start with the minmax principle {7]. For convenience we rewrite it as

o; = max min  trAxx”*. 35)
dimV=j xeV, ixj=1

Note that xx*, the orthogonal projection operator onto the 1-dimensional space
spanned by x, depends not on the vector x but on the space spanned by it.

The set of all 1-dimensional subspaces of C™*! is known as the complex projective
space CP,, of dimension m. These spaces are the basic objects studied by classical
algebraic geometers and it is perhaps worth explaining briefly the geometers’ nota-
tion of homogeneous coordinates in projective spaces. Any non-zero vector of C™+!

determines a point in CP,,; two points (zg, .. ., Zm), (z,’;,, ey z:,,) determine the same
1-dimensional subspace (i.e., point of CP,,) if and only if there is a non-zero ¢ € C
such that z; = cz; for each i = 0, ..., m. (The practice of using {0, ..., m} to index

the coordinates of C™*! ensures that in m-dimensional projective space the last coordi-
nate has index m rather than m + 1.) In view of this the point £ of CIP,, determined by
(20, ..., Zm) isdenoted by [zg : - - - : z,n] and these are called the homogeneous coordi-
nates of £. Note that the homogenous coordinates of a point in CIP,, are not uniquely
determined; they are defined only up to multiplication by non-zero complex numbers.

Now, if f is a nonconstant homogenous polynomial in 2o, ..., Z», then there is a
well-defined zero locus of f:

Zi={lzo:  :2m] € CPp: f(20,...,2m) = 0}

This is known as the projective hypersurface defined by f.If f is a linear polynomial,
Z; is called a hyperplane, if f is quadratic, Z; is called a quadric hypersurface and so
on. Projective varieties are intersections of a finite number of projective hypersurfaces.

These spaces enjoy interesting symmetry properties since it is easy to see that CP,,
is homeomorphic to U (m + 1)/(U (1) x U(m)), where U (1) x U(m) is the subgroup
of unitary matrices whose first row is (1,0, ..., 0).

A generalization of the notion of projective space is the Grassmannian, G(C"),
the set of k-dimensional subspaces of C. From our perspective of matrices it is easy
to get a model of these spaces. Associate with any k-dimensional subspace V of C*
the unitary operator Py — Py.1, where Py is the orthogonal projection onto the sub-
space W. This sets up a bijective correspondence between G (C") and the setof n x n
unitary matrices having trace equal to 2k — n.

These Grassmannians can be embedded in projective spaces as subvarieties in the
following way. Given a subspace V C C" of dimension k, choose a basis
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1 3

U Uy

1 k

uy uz

u) = . s Uy = .
1 k

u}l uﬂ

for V. Then the Pliicker coordinates of V are the (") numbers

k
1 1 1
uq uiz ' ulk
p,l,k(V)=det : : : forl<ij<iz<--- <z <n,
k
wi Ui, u;,
If we choose a different basis u}, ..., u} for V, then the Pliicker coordinates are all

multiplied by the same non-zero scalar factor (the determinant of the unitary transfor-
mation that takes each u; to u; and is the identity map when restricted to V+1). So once
an ordering has been chosen for the k-tuples | < iy < -+~ < iy < n,

Vi [ipia (V)]

yields an embedding of G,(C") in C]P(:)_l. In fact, the image of this embedding is a
projective variety and its defining equations are well known.

Let us now return to matrix inequalities.

Given any Hermitian operator A on C*, and a subspace L of C" (which we think of
as a point in G,(C")),let A, = PLAP,. NotethattrA; = tr PLAP, = trAPy.

To prove the inequality (24), Wielandt invented a most remarkable minmax
principle. This says that whenever 1 <i; < ... < i <n, then

k
E o;, = max min tré;. (36)
; 7 Vijc-c¥y LeGy(C™)
i=1 dimVj=i;  &mLAV)>f

When k = 1, this reduces to (12).
Another such principle was found by Hersch and Zwahlen. Let A have the spectral

resolution A = } a;v;vi. For 1 <m < n let V,, be the linear span of v, ..., Um.
Then

Xk:aiI.:LEr(r;tki(r}:n)[trAL :dim(LnV,-j) > j, j.—_l,...,k}. GD

=1

This can be proved using ideas familiar to us from Section 2. Let L be any k-
dimensional subspace of C" such that dim (L (| V;) > j. Since dim (LM V;) = 1,
we can find a unit vector x; in L ("} V;,. Since V;, is spanned by {v, ..., v;} we have
the inequality a;, < (x;, Ax;). Since dim (L N V,-Z) > 2, we can find a unit vector x;
in L (N V,, that is orthogonal to x;. Then &;, < {x2, Axz). Continuing in this way, we
obtain an orthonormal basis x;, ..., x; for L such that o < {xj, Axjyforl < j <k
Thus

k k
@, <Y (x;, Axj) = trAL.
=1 J=1

J
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For the special choice L = span{v;,, ..., v;,}, we have equality here. This proves the
Hersch-Zwahlen principle (37).

The minimum in (37) is taken over a special kind of subset of Gy (C™) studied by
geometers and topologists for many years.
A sequence of nested subspaces

M=VcvcVeC---CV,=C",

where dim V; = j, is called a complete flag. Given such a flag F, for each multiindex
I = {i; <--- < i} the subset

SU; F) = (W e GuC) :dim(W (|V;) 2 j. 1<j<n)

of the Grassmannian is called a Schubert variety.
The Hersch-Zwahlen principle says that the sum ), ; @; is the minimal value of

tr A, evaluated on the Schubert variety S(Z; F) corresponding to the flag constructed
from the eigenvectors of A.

Hersch and Zwahlen developed a technique for obtaining inequalities like (32) using

the principle (37). The essence of this technique can be described as follows. Consider
the spectral resolutions

A= Zajuju;, B = ZﬁjUjU;, C=A + B = Zy,w,w;
We find it convenient to write
—A-B+C=0. (38)
Recall that A} (—A) = —A}_,,,(A). Given an index set ] = {1 < iy < -+ < it < )

let I/ ={i :n—1i+1 ¢ I} and arrange the elements of I’ in increasing order. For
- 1 < j < n consider the three families of subspaces

Uj = span{u,., [P u,._j+1},
Vj = span{v,., ey v,,_,-+1},
W; = span{w,, ..., w;}.

Let F, G, H be the complete flags formed by these three families. Now suppose
our index sets 1, J, K (of the same cardinality) are such that the Schubert varieties
S F), $(UJ'; §), and S(X; H) have a nonempty intersection. Choose a point L in
this intersection. Then using (38) and (37) gives the inequality

0= tl'(—AL— BL+CL)
>3 MDY MER Y KO,

iel’ jet kek

In other words,

Y MO =3 M-I M EBY =) A (A + ) A(B).

kek iel jel’ iel jel

This is the kind of equality (32) we are looking for, and we have now touched the
heart of the matter. Whenever the Schubert varieties S(I’; F), S(J'; G), and S(K; H)
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have a nontrivial intersection, the triple (7, J, K) is admissible. The simplest instance
of this idea at work is the proof of Weyl’s inequalities (8) that we gave in Section 2.
Thetriple I = {i}, J = (j}, K = {k} is admissibleif k =i+ j — 1 <n.

The full significance of these ideas was grasped by R. C. Thompson; see especially
the Ph.D. thesis of his student S. Johnson [19], and his unpublished lecture notes [32];
see also [14]. Among other things, Thompson asked whether the admissibility of three
triples {1, J, K) in Hom’s inequalities was equivalent to the condition that Schubert
varieties S(I'; F), S(J'; G), and S(K; H) corresponding to any three complete flags
F, G, H (not necessarily constructed from eigenvectors of A, B, and A + B) have a
nontrivial intersection. This equivalence has now been proved by Klyachko [20].

Theorem 4. The triple (I, J, K) is admissible if and only if for any three complete
flags F, G, H, the intersection of the Schubert varieties S(I’; F), S(J'; G), and
S(K; H) is nonempty.

The study of intersection properties of Schubert varieties is the subject of Schubert
calculus. It reduces geometric questions about intersection of Schubert varieties to
algebraic questions about multiplication in a ring called the integral cohomology ring
H*(Gi (C™)) associated with the Grassmannian. Schubert cycles S; are equivalence
classes of Schubert varieties (the dependence on F is removed). They form a basis for
the ring H*(G, (C")). Given triples /, J, K, consider the product §; - §; in this ring
and expand it as

Si-8;=2 cf,Se (39)

where ¢7 ; are nonnegative integers. It turns out that the triple (I, J, K) is admissible
if and only if the coefficient c_{f ; in (39) is nonzero (i.e., Sx occurs in the expansion of
the product §; - S;.)

It can now be said that the proof of Weyl's inequalities given in Section 2, and
some others such as Wielandt’s proof of (24) and the Thompson—Freede proof of (31),
really amount to showing using ideas from linear algebra alone that certain Schubert
varieties always intersect.

We raised two questions in Section 8. Theorem 4 answers the first of these questions
by reformulating the problem of admissible triples in terms of Schubert calculus. Other
equivalent formulations have been found. For example, the problem is related also to
some important questions in the representation theory of the group GL(n). We explain
this connection briefly in Section 13. The answer to the second question—and the full
proof of Horn’s Conjecture~-—came partly from the work of Klyachko [20] on this
connection. The last crucial step was the solution by Knutson and Tao [23] of a related
problem in representation theory called the Saturation Conjecture. An exposition of
this may be found in [7].

The proofs need advanced facts from algebraic geometry and representation theory.
However, to quote from [22], “In fact the details of the proofs are not actually very
different from the hands-on techniques used e.g. by Horn himself.”

Other parts of the picture have been filled in since the appearance of the papers by
Klyachko [20] and Knutson and Tao [23]. Belkale [3] has shown that if cf_ ; > 1, then
the inequalities (32) that correspond to the triple (1, J, K) are redundant, that is, they
can be derived from other inequalities in the list. On the other hand, Knutson, Tao,
and Woodward {25] have shown that the inequalities in the list (32) that correspond to
those (1, J, K) for which ¢f, = 1 are independent.
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Together, these results give the smallest set of inequalities needed to completely
characterise the convex polyhedron whose points are eigenvalues of A + UBU*,
where A, B are given Hermitian matrices and U varies over unitaries.

11. SINGULAR VALUES OF PRODUCTS OF MATRICES In this section A, B,
etc. are arbitrary n X n matrices, not necessarily Hermitian any more.

The singular values of A are the nonnegative numbers 5;(A) > - - - > 5,(A) that are
the square roots of the eigenvalues of A*A. It is easy to see that 5,(A) = || A}, and that

51(AB) < 51(A)si(B). (40)

Compare this with (4) and a natural problem stares at us: are there counterparts of
inequalities for eigenvalues of sums of Hermitian matrices that are valid for products
of singular values of arbitrary matrices? This question too has been of great interest
and importance in linear algebra.

The k-fold antisymmetric tensor product /\" A has singular values s;, (A) - - - 5;,(A),
where 1 < i, < -+ < i < n. Since A*(AB) = A\*(4) A*(B), we get from (8) the
inequality

k k k
[TsiaB < []si ] ]s:B). @1
j=1 j=1 j=1

This is the singular value analogue of (22). (Incidentally, there is a perfect analogy
here. We have derived (41) by applying (40) to a tensor object. We can derive (22)
from (4) by a quite similar argument [4, p. 23].) The analogue of (24) is the following
inequality proved by Ge!l’fand and Naimark

k k k
[1s,aB) < ]sy @ []s:(8)- (42)
j=1 i=1 i=1

Once again, the theorem was proved in connection with questions about Lie groups, a
matrix-theoretic proof was given by V. B. Lidskii, the inequality was discussed and
proved in [5)], and the simplest proof was found by Li and Mathias [28] scon af-
terwards. More inequalities of this type had been discovered by others, notably by
R. C. Thompson and his students. The conjecture parallel to that of Horn was dis-
cussed by Thompson. Now it has been proved:

Theorem 5. Leta; > --- > ay by > -+ > by, ¢ = -+ - = ¢, be three triples of non-
negative real numbers. Then there exist matrices A, B with singular values s;(A) = aj;,
5;(B) = bj, s;(AB) = c;, ifand only if

nck < na;nbj

keK iel jelJ

for all admissible triples (I, J, K).

This is stated as Theorem 16 in [11]. The reason why it is true and the connection
with Horn’s problem are provided by the following theorem [21].

Theorem 6. Let a, b, ¢ be three n-tuples of decreasingly ordered real numbers. Then
the following statements are equivalent:
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(i) There exist nonsingular matrices A, B withs;(A) = a;, 5;(B) = bj, 5;(AB) =

C'j. .

(ii) There exist Hermitian matrices X, Y, with ).J*-(X) = loga;, lj.(Y) = logb;,
AHX +Y) =logc;.

12. EIGENVALUES OF PRODUCTS OF UNITARY MATRICES Eigenvalues of
two unitary matrices and their product are the next objects we consider. Here the for-
mulation of the problem is much more delicate and needs more advanced machinery.
We can indicate only somewhat vaguely what it involves.

To get rid of ambiguities arising from multiplication on the unit circle we restrict
ourselves to the set SU(n) of n x n unitary matrices with determinant one. For A €
SU (n) let Eig* (A) be the set of its eigenvalues exp(2mii;), labelled sothat A > --- >
A,.Since det A = 1, we musthave &, + - - - + &, = O(mod 1). Choose a normalisation
thathas A; + -+ + A, = 0and A; — A, < 1. With this normalisation, call the numbers
Aj occuring here )L} (A).

Our problem is to find relations between lﬁ (A), Aj(B), and Aﬁ(AB) for two ele-
ments A, B of SU (n).

The analogue of the Lidskii-Wielandt inequalities (24) in this context was discov-
ered in 1958 by A. Nudel’man and P. Svarcman. This has exactly the form (24). How-
ever, the analogue of Horn’s conjecture in this context involves some objects that arise
in the study of vector bundles, and are related to quantum Schubert calculus, a subject
of very recent origin.

In Section 10 we alluded to the cohomology ring H*(G ¢ (C")) and how multipli-
cation in this ring gives us information about intersection of Schubert cycles. Quantum
cohomology associates with the Grassmannian the object

gH*(Gx(C") = H* (G (C) ® Clig]],

where C [[g]] is the ring of formal power series. Multiplication §; * §; in this ring is
more complicated. Instead of (39) we have an expansion that looks like

S,' *Sj.= ZZ(CILJ)dquL' (43)
L

da=0

The new result on eigenvalues of unitary matrices is the following:
Let (I, J, K) be triples such that the coefficient (cf ,) d in the expansion (43) is
nonzero. Then for all A, B in SU (n)

SaHA) + 3 M B =d+ ) A(AB). (44)

iel jet kek

Further, these inequalities give a complete set of restrictions (in the same sense as in
Horn’s problem).

This theorem has been proved by S. Agnihotri and C. Woodward [1] and by P. Bel-
kale 3], with earlier contributions by I. Biswas [6]. A crucial component of the proof
is a 1980 theorem of V. B. Mehta and C. S. Seshadri [30] on vector bundles on the
projective space CPy. Let us explain, in bare outline, this theorem, and the fascinating
connection it has with our problem.

For brevity let ; denote the projective space CIP; introduced in Section 10. This
space can be identified with the two-dimensional sphere S?. This, in turn, can be
thought of as the Riemann sphere C U {00}, the one-point compactification of the com-
plex plane. The point oo is thought of as the north pole of the sphere and the point 0
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as the south pole. To points in the open set P\ {00} we assign the usual complex coor-
dinate z while on the open set P, \ {0} we define the complex coordinate w by putting
w=1/z.

This space is simply connected: its fundamental group m; (P,) is trivial. P, with one
puncture (i.e., one of its points removed) can be identified with C. This too is simply
connected, and its fundamental group is trivial. P, with two punctures is isomorphic to
the punctured plane C\{0}. The fundamental group of this space is Z, a group gener-
ated by one element. Carry out this construction further. Let S = {p;, ..., p:} be any
finite subset of ). Without loss of generality, think of p, as the point at co. To iden-
tify the fundamental group of this space, choose a base point p in P\ S. Loops, with
fixed base point p, can be composed in the usual way. With this law of composition
the product of the loops going counterclockwise around the points p;, 1 < j <k -1,
is the loop going clockwise around p; = oo; see Figure 11.

Figure 11. Computing the fundamental group of P;\S

Thus the fundamental group m, (P;\S) is the free group with generators gy, ..., g
with one relation g; = (g, - - gx—1)~"\.

A homomorphism of a group G into another group H is called a representation of
Gin H.

Let p be a representation of the fundamental group m;(IP;\S) in the group U(n)
or SU(n). If A; = p(g;), this gives unitary matrices A, ... A;, with their product
AAy-- Ay =1

In our original problem we are given three n-tuples of numbers and we want to know
when they can be the eigenvalues of matrices A, B, and AB in SU (n). Prescribing
eigenvalues means fixing the conjugacy class of A under unitary conjugations A >
U AU*. Thus our problem is to find conditions for the existence of three elements A,
B, C of SU (n) with prescribed conjugacy classes such that ABC = [I. Instead of three
matrices, we can equally well consider the same question for k matrices A,, ..., Ax.
In the preceding paragraph we saw how this problem is connected with representations
of the fundamental group of IP; with k punctures.

Next we recall the notion of a vector bundle. For simplicity, we make some re-
strictions in our definitions; see [31] for a splendid introduction. Let B be a compact
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connected Hausdorff topological space. A vector bundle over (the base space) B con-
sists of the following:

(i) atopological space £ called the total space,
(ii) a continuous map I : £ — B called the projection map,

(iii) on each set E, = [1"!(d), b € B, the structure of an n-dimensional real or
complex vector space. (The bundle is accordingly called real or complex.) The
vector space E, is called the fibre over b.

These objects are required to satisfy a restriction called local triviality: foreach b €
B there exists a neighbourhood U, and a homeomorphism # : U x K* — IT-Y(U),
such that for each @ € U the map x — h(a, x} from K" to E, is an isomorphism of
vector spaces. Here, K" is the space R” or C" depending on whether the bundle is real
or complex. The pair (U, h) is called a local trivialisation about b. If it is possible to
choose U equal to the entire base space B, then the bundle £ is called a trivial bundle.
In this case £ = B x K".

The number 7 is called the rank of the bundle £. If n = 1, the bundle is called a line
bundle.

If B is a contractible space, every vector bundle on it is trivial. On the base space
St (the unit circle) the cylinder is a trivial line bundle while the Moebius strip is a
nontrivial line bundle.

Let U be any open set in B. A section over U is a continuous map s : U — & such
thats(b) € E, forallb e U.

Let (U, h) be a local trivialisation. Let {x;} be the standard basis for K" and let
ej?(a) = h(a, x;),a € U. Then {ej.’(a)} is a basis for the vector space E,. The maps
e}’ are sections over U. The family {eﬁ’} is called a local basis for £ over U. Let
(e¥} and {e]} be two local bases for £ over open sets U and V. Then for each point
a € U NV, we can find an invertible matrix gy y (a) that carries the basis {e}’ (a)} onto
the basis {e}’ (a)} of E,. This is called a transition function. Note that a — gy y(a) is
a continuous map from U NV into GL(n).

If the spaces involved have more structure, we could define smooth bundles or holo-
morphic bundles by putting the appropriate conditions on the maps involved.

Let £ and F be two bundles over the same base space B such that (the total space)
F is contained in (the total space) £ and each fibre F, in the bundle F is a vector
subspace of the corresponding fibre E,. Then we say that F is a subbundle of €. A
trivial bundle may have nontrivial subbundles.

We are interested in complex vector bundles on the base space IP;. One more notion
that we necd is the degree of a vector bundle on IP,. We have identified P, with the
sphere $? = C U {oo}. The complement of the north pole oo is an open set U that can
be identified with the complex plane C with its coordinate z. This is a contractible
space; so any vector bundle £ on IP; admits a local trivialisation on U. Let {eV}) be the
corresponding local basis over U. Similarly, the set V = P;\{0}—the complement of
the south pole—is identified with the complex plane with coordinate w = 1/z. So €
admits a local trivialisation over V and a local basis {e}’}. The equator |z| = 1 lies in
U N V. Let gy y(z) be the transition function between the two bases. Identifying the
equator with S! with coordinate z, we get a map gy,y{(z) from S' into GL(n). Then
¥(z) = detgy y(z) is a map from S! into nonzero complex numbers. The winding
number of this map around 0 is called the degree of the vector bundle.

For example, consider the tautological line bundle on IP,. This associates with each
point of P, the complex line through that point. In the open set U = P\ {o0} we
associate with the point [z : 1] the line C(z, 1) in C2. In the open set V = P,\{0},
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we associate with the point [1 : 1/z] the line C(1, 1/z) in CZ. The total space for this
bundle is a subset of P, x C2. In the intersection U N V the transition from the basis
(z,1) to (1, 1/2) is given by multiplication by g(z) = 1/z. This function on S' has
winding number -1 around the origin. So this bundle has degree —1.

The slope of a vector bundle £ is defined as

slope(€) = d—:;k‘re‘z—é—?. (45)
The bundle £ is said to be stable if
slope(F) < slope(£) (46)
for every subbundle F of £, and semistable if
slope(F) < slope(£). 4N

The bundle £ is said to be polystable if it is isomorphic to a direct sum of stable
bundles of the same slope. Polystable bundles are semistable. Each semistable bundle
is equivalent to a canonical polystable bundle (under an equivalence relation that we
do not define here).

Let £ be a vector bundle of rank n on the space P;. Let § = {p:, ..., px} be a given
finite subset of Py. A parabolic structure on £ consists of the following objects given
at each point p € §:

(i) in each fibre E,, a complete flag
=V cVvPc...cv’=C" 48)
(i) an n-tuple of real numbers af , 1 < j < n satisfying
afza{’z---zaf>af—1. 49

The flag (48) is also called a filtrarion, and the sequence (49) is called a weight se-
quence. We should remark that in the original definition due to C. S. Seshadri, flags
in (i) were not required to be complete, and the weights were restricted to be in the
interval {0, 1).

Let F be a subbundle of £ with rank (F) = r. At each point p, the fibre F, is
an r-dimensional subspace of the n-dimensional space E,. For p € S, consider the
intersections F, [ Vj‘p , 0 < j <n, where the V; form the flag (48). If r < n, some
of these spaces coincide. Retain only the distinct members of this sequence and label
themas WP, 0 <i <r. Assign to the space W/ the highest possible weight allowed
by this intersection; i.e., the weight 87 = a}’ , where j is the smallest number satisfying
W/ = F, (| V/. Then the subbundle F with parabolic structure given by the filtration

=W cWc-..cwr=C (50
and weights
Bl >pl>---=pBF (51)

is called a parabolic subbundle of £. For brevity £ is called a parabolic bundle.
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The parabolic degree of £ is defined as

par degree(£) = degree(£) + Z Z of, (52)

peS j=1
and its parabolic slope as

par degree(&)
rank(£&)

The notions of stability, semistability, and polystability of a parabelic bundie are
defined by replacing the quantity “slope” in the inequalities (46) or (47) by “parabolic
slope™.

Now we have all the pieces needed to describe the theorem of Mehta and Seshadri
(as modified by Belkale and others to suit our needs).

We began by looking at SU(n) representations of the fundamental group my
(P\S), where § = {py,-.., pi}. We saw that this amounts to finding matrices
Ay, ..., Ay in SU(n) whose productis I. Fori =1,2,...,k,let aj. = Aj.(A,-), where
Aj (A) is as defined at the beginning of this section. For eachi = 1,2,...,k, let V,;;
be the m-dimensional space spanred by the eigenvectors u', ..., u! corresponding to

the eigenvalues Af(A,-), cey A}" (A;). Use these data to give a parabolic structure to the
trivial rank n bundie on P, as follows:

par slope(£) = (53)

(i) in each fibre E,, a filtration is givenby (0} = Vj C V{ Cc--- Cc Vi =C"
(ii) the numbers o} > -- - > &, give a weight sequence.

The theorem of Mehta and Seshadri says that the parabolic bundle obtained in this
way is polystable, and conversely every polystable bundle arises in this way.

Now to the denocuement: families of inequalities such as (43) are used by Agnihotri—
Woodward, Belkale, and Biswas to prove that certain vector bundles on P \{p1, pz. p1}
are semistable. {Semistability is defined by a family of inequalities.) To each semi-
stable parabolic bundle there corresponds a unique polystable parabolic bundle. The
Mehta-Seshadri Theorem then leads to the existence of unitary matrices whose eigen-
values are the given n-tuples.

The proof of Klyachko for the original Homn problem uses ideas similar to these,
but it involves bundles on IP; and a theorem of Donaldson.

13. REPRESENTATIONS OF GL(n) We began this story with Weyl’s inequalities.
It is befitting to end it with another subject in which Weyl was a pioneer—the theory
of representations of groups. A fascinating connection between the two subjects has
been discovered in recent years.

Let GL, be the group consisting of n x # complex invertible matrices. By the stan-
dard representation of GL, we mean the homomorphism from GL, into the space
GL(V) of all linear operators on the space V = C". If W is any m-dimensional com-
plex vector space, a homomorphism p : GL, - GL(W) is called a representation
of GL, in W. Such a representation is called an m-dimensional representation. For
example, the map det gives a 1-dimensional representation. For brevity we denote a
representation in W by W.

For simplicity, let us consider only polynomial representations, ones in which the
entries of p(A) are polynomials in the entries of A. The determinant representation is
an example of such a representation. Another example is the tensor product, in which
W=@V=V®-  -®V (ktimes), and p(4) = ®*A.

314 © THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 108




The space ®* V has several subspaces that are invariant under all the operators ®* 4,
A € GL(V). Two examples are the spaces /\" V and Sym*V of antisymmetric and
symmetric tensors, respectively. The restrictions of ®* A to these spaces are written as
/\" A and Sym"* A. The spaces /\'t V and Sym*V are examples of irreducible repre-
sentations of GL,; they have no proper subspace invariant under all operators /\" A
or Sym* A. These are subrepresentations of ®* V. All polynomial representations are
subrepresentations of ®*V for some k.

Let N, be the set of all upper triangular matrices with diagonal entries 1, N_ the set
of all lower triangular matrices with diagonal entries 1, and D the set of all nonsingular
diagonal matrices. Each of these sets is a subgroup of GL,. A matrix A is called
strongly nonsingular if all its leading principal minors are nonzero. (These are the
minors of the top left k x k blocks of A, 1 < k < n.) Itis a basic fact that every such
matrix can be factored as

A =LDR, (54)

where L, D, and R belong to N_, D, and N, respectively [17, pp. 158-165]. This
is used in the Gaussian elimination method in solving linear equations, and (54) is
called the Gauss decomposition of A. For representation theory, its significance lies
in the consequence that every irreducible representation of GL, is induced by a one-
dimensional unitary representation (character) of D. The set B consisting of all nonsin-
gular upper triangular matrices (or, equivalently, all products LR with L e D, R € N,)
is another subgroup of G L,. This is a solvable group. It is known that every irreducible
representation of such a group is 1-dimensional.

Let o be a representation of GL, in W. A vector v in W is called a weight vector if
it is a simultaneous eigenvector for p(D) for all D € D. If v is such a vector let

p(D)v=r(Dyv, DeD.
Then A is a complex-valued function on D such that
MDD = MD)AD').
So, if D = diag(d,, . ...d,), then
ADy=d"---d

for some nonnegative integers m,, . . ., m,, called the associated weights. For example,
if V is the standard representation, then the only weight vectors are the basis vectors ¢;,
and the associated weights are (0,0,...,1,0,...,0), l<i<aIfW= /\" (C",
then e; A ex A - -+ A ¢ is a weight vector with weight (1,1,...,1,0,...,0) where 1
occurs k times. If W = Sym*C", ¢; Ve, V- Ve, is a weight vector with weight
(k,0,...,0).

A weight vector is called a maximal weight vector if it is left fixed by all elements
of p (N,), or equivalently, if it is a simultaneous eigenvector for all elements of p(B).
Thus, for the standard representation the only such vector is e;. The associated weights
in this case are called highest weights.

A fundamental theorem of representation theory says that an irreducible represen-
tation p of GL, is determined completely by a unique maximal weight vector and
associated weights my > -.. > m,.

This is a bare-bones summary of a vast area; see [12] or [13] for details.
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Decomposing representations into their irreducible components is a central problem
in the theory of representations. In particular, the tensor product of two irreducible ep-
resentations is not always irreducible and one wants to find its irreducible components.
This is an intricate business. One important outcome of the recent work of Klyachko,
Knutson-Tao, and others is the following theorem:

Theorem 7. Let ay > - > a,, B1 = -+ = Bu, Y1 = -+ = ¥a be three n-tuples of
nonnegative integers. Let Vo, Vg, V, be the irreducible representations of GL(V)
with highest weights o, B, y. Then V,, is a component of V, ® V; if and only if there
exist Hermitian matrices A and B such thata = A(A), § = AM(B), y = A(A+ B).

The motivation for Gel’fand and Berezin in their study that led to the Lidskii—
Wielandt inequalities was to unravel properties of tensor products of representations.
This, in turn, led to Horn’s conjecture. So, the connection between these problems is
not new.

Let us show Theorem 7 in action in a simple example.

Consider irreducible representations of G L, with highest weights oo = (4,2) and
B = (3, 1). By results in Section 3, the admissible y (that can occur as eigenvalues of

C = A + B, where A, B are 2 x 2 Hermitian matrices with eigenvalues a, 8) are the
ones that satisfy the condition

(5,9) <y < (7.3).
If we restrict y to have integral entries, there are three possibilities
y=(.,%, 6,4, (1,3).
By the rules for calculations with highest weights, we write

a=@A42=2,2+2,00=2(1,1) + (2,0),
B=03,1=0,1)4+2,0).

The weights (1, 1) correspond to the representation /\2 V; 2(1, 1) to two copies of
this; (2, 0) to Sym*V. So,

Vo = (A'V)® @ Sym’V,
Vs = \'Vesym'v,
Ve ® V5 = (\*V)® @ (Sym’V @ Sym*V).

The last factor can be decomposed by using the Clebsch-Gordan formula (13, p. 306],
which gives in our particular situation

Sym’V @ Sym’V = Sym*V @ [/\ZV ® Symzv] ) (/\2V)®2 .
Thus, we have the direct sum decomposition
V,® V= [(/\zv)®3 ® Sym‘v] @ [(/\Zv)m ® Syszil ® (/\zv)st .
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The three direct summands here are irreducible representations corresponding to high-
est weights

31, 1) + 4,00 = (7,3)
4L1D+2,0=(64
5(1,1)=(5,5)

respectively. This is what Theorem 7 predicted.

It is not easy to write down irreducible components of representations; intricate
calculations with Young tableaux enter the picture. Theorem 7 gives another way of
making a list of such representations. Thus from results in Section 7 we know that
representations with highest weights (3, 2, 2), (3, 3, 1), and (4, 2, 1) are the irreducible
components of the two representations of GL3 with weights (2,1,0) and (2, 1, 1). It
is an interesting exercise to write this decomposition explicitly.

The general problem of finding irreducible components of tensor products of ir-
reducible representations of Lie groups (including GL,) has becn studied under the
name “PRV Conjecture” and solved [26]. Several proofs of this conjecture have been
given, and one more has come out of the recent work on Homn’s inequalities.
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