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cal connection is mediated by algebras of (possibly quite generalized)
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representing it in other algebraic objects of the same type.
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8  Functorial Knot Theory

Another feature of these recent developments is the difference be-
tween the role categories and functors have usually played since their
discovery and the role they now play in quantum topology. Rather
than serving a foundational role, as a clean way of encoding “natural”
constructions of one kind of mathematical object from another, cat-
egories in quantum topology stand as algebraic objects in their own
right. This difference has not always been generally understood, even
by quite brilliant mathematicians working in related areas, as the follow-
ing personal anecdote involving the late Moshé Flato illustrates. One
evening at a Joint Summer Research Conference in the early 1990
Nicholai Reshetikhin and I button-holed Flato, and explained at length
Shum’s coherence theorem and the role of categories in “quantum knot
invariants”™. Flato was persistently dismissive of categories as a “mere
language”. I retired for the evening, leaving Reshetikhin and Flato to
the discussion. At the next morning’s session, Flato tapped me on the
shoulder, and, giving a thumbs-up sign, whispered, “Hey! Viva les cat-
egories! These new ones, the braided monoidal ones.”

It is the purpose of this book to lay out clearly and in one place much
of the scattered lore concerning the categories most intimately related
with classical knot theory, and to relate these categories both to knot
polynomials, which were the original motivation for their study, and to
the theory of Vassiliev invariants. No claim is made that this treatment
is exhaustive of the current state of knowledge, but it is the author's
hope that it will prove useful to students and established researchers
alike. One area specifically not touched in this work (though some of
the requisite definitions are mentioned as examples) is the connection
between the theory of monoidal categories and the known algebraic con-
structions of topological quantum field theories, We have also steered
clear of any areas in which the universal constructions charateristic of
category theory in its foundational role are needed, as for example lim-
its or colimits of diagrams. By doing this, we emphasize the algebraic
nature of the subject at hand.

Part I lays out the fundamentals of “functorial knot theory”, recall-
ing the necessary facts and theorems from both category theory and
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knot theory, and even providing proofs of some “folk theorems” which
are universally assumed. Part Il shows that Vassiliev theory, at least in
its combinatorial guise, falls within the scope of functorial knot theory,
and thus understood can be viewed as a species of algebraic deformation
theory. Part I is intended to be fairly self-contained, with only standard
topics in first year graduate courses as prerequisites. Part II assumes
some familiarity with algebraic deformation theory (in particular, Ger-
stenhaber [23, 24] and Gerstenhaber and Schack [25]) and homological
algebra (see, for example, Weibel [57]).



Chapter 2

Basic Concepts

In this chapter we introduce basic concepts from low-dimensional topol-
ogy and category theory which will be required in this study. We will
begin with concepts from classical knot theory, and then turn to cat-
egorical structures. Whenever possible, we will illustrate categorical
notions with both of classically known “categories-as-foundations” ex-
amples, and with more recent “categories-as-algebra” examples, these
latter being chosen to emphasize the close connection between the cat-
eporical concept and low-dimensional topology.

Throughout this study, unless otherwise specified, terms like “man-
ifold”, “map”, “embedding” and “homotopy” will refer to the piecewise
linear (PL) version of the concept. Due to various classical smoothing
and triangulation theorems, it would generally be a matter of indiffer-
ence if the smooth versions were being used. Although there are some
concepts, such as framed links, which are more natural in the smooth
setting, we prefer the PL setting to avoid some niceties involving restric-
tions on germs near boundaries which are needed to develop the theory
of smooth tangles. We will address these in Chapter 8. In the earlier
chapters we will attempt to point out the adjustments which would be
needed in the smooth setting, either in asides or in footnotes.

Throughout this work the unit interval [0, 1] C R is denoted I.

13



14  Functorial Knot Theory

2.1 Knots, Links and Tangles

Knots and links, that is to say, compact 1-submanifolds of B® or 83,
play a remarkably important role in the theory of smooth or piecewise
linear 3- and 4-manifolds, and in a variety of other parts of mathematics
and the sciences.

When equipped with a framing (or in the presence of orientations, a
smooth field of normal vectors), they provide the data for the attaching
of 2-handles to B'. Theorems of Kirby [35] show that every compact
oriented 3-manifold-arises as the boundary of a 4-dimensional handle-
body with only 0- and 2-handles, and provides a caleulus of “moves” to
relate any two presentations of the same (diffeomorphic) 3-manifold(s).
Similarly, the 2-handle structure turns out to be central to the properties
of smooth 4-manifolds,

Many properties of singularities of complex plane curves are inti-
mately related to the “link” of the singularity, that is, the intersection
of the curve with the bounding S® of a sufficiently small ball about
the singularity. Finite families of closed trajectories of 3-dimensional
dynamical systems can form links of arbitrary complexity.

Bacterial DNA forms a closed loop, and is thus reasonably modeled
by a knot. Certain enzyme actions lead to very complex knots. More
remarkable still, knots and links arise naturally from considerations in
the quantization of general relativity.

For all of these reasons, the study of knots and links is of great
interest, and it behooves us to consider precise definitions:

Definition 2.1 A (classical) knot is an embedding of S' into 8% for
R3).

A (classical) link is an embedding of [I"., 8! into S® (or %), for
some n € M. (Note: we include 0, so that there is an “empty link”).

In all of the applications noted above, and whenever knots and links
are studied topologically, the important thing is not the embedding
itself, but its class under a suitable notion of equivalence defined in terms
of geometric deformations. The naive notions of geometric deformation,
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homotopy, or even isotopy (that is, homotopy through embeddings) turn
out to be unsuitable. Therefore we make

Definition 2.2 Two knots or links Iy, Ky are ambient isotopic or sim-
ply equivalent if there is an isofopy H : 8% x 1 — 8% (or similarly for
22 instead of 8%) which carries one to the other.

More precisely, H is @ PL map, satisfying H(—,0) = Idgs; H(—,1)
is a PL-homeomorphism for each t; and

H (K (2),1) = Ka(z)
fusing K; to denote the mapping, with implied domain.)

In this study, it is important to consider also a “relative” or local
version of knots and links confined to a rectangular solid:

Definition 2.3 A tangle is an embedding T : X = I? of a I-manifold
with boundary into the rectangular solid 1% satisfying

T(@X)=T(X)nar = T(X)n (1* x {0,1}).
The relevant notion of equivalence for tangles is then given by

Definition 2.4 Two tangles Ty : X; — I® and T3 : X3 — 1° are
equivalent or isotopic rel boundary if there exist a PL homeomorphism
®: X, = X3 and a map H : 1* x 1 — I° satisfying

1. H|apy1 = pare

2. H(-,t) is a PL homeomorphism for all |

...__._. .-.u«ﬁ'._ﬁ_“_ = .-.._.._muu

4. H(T, 1) = Th(®): Xy = I3

The following lemma about ambient isotopies in I? will be useful in
what follows:
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Lemma 2.5 Given an isotopy H of a closed set F' = [¢,1 — ¢]* ¢ I®,
there is an isotopy H of 1 to itself whose restriction to F is H, and
whose restriction to 91° is the trivial isotopy Paps ¢ 12 x 1 = 915,

proof: Consider triangulations of ' x I and F on which the H is given
by linear maps of the simplexes. Now, choose triangulations of 81% x I
and J1? subordinate to which the projection is given by linear maps of
simplexes. Subdivide these triangulations so that the triangulation of
dF and the triangulation of @1° are isomorphic by the map given by
radial projection from the center of I3,

Now, I3\ F is PL roamau_cuﬁ_:n to [@F] x I. Choose a PL homeo-

morphism ¢, X ¢; = ¢ : B\ F — [0F] x I with the property that
ﬁuﬁm::_ 1 and ﬁm.,_.m.mm“_ 0. Then there is a piecewise mEcaE isotopy
§:I3\ FxI— I3\ F given by S(x,t) = ¢~ (H(¢(z), $s(z t), d2(x))

whose restrictions to 8F and 81 are linear. Now, let & _um a PL ap-
proximation to S agreeing with S on @F and 81°. The desired isotopy
is then given by

H(z,t) ifz € F

Rt e e el 5 Pl

O

There are two particularly important auxiliary structures with which
knots, links and tangles may be equipped: orientations and framings.
The first may be defined either homologically or combinatorially in the
PL setting.! We prefer the combinatorial approach:

Definition 2.6 A knot, link or tangle is oriented if cvery edge is equip-
ped with a choice of one of ils vertices as “first”, in such a way that
no verter is chosen as “first” for both edges with which it is incident.
We encode this choice diagrammatically by equipping each edge with an
arrow pointing from the first vertexr to the other (last) vertex.

._. - - - . -
Of course in the smooth setting, we could also define orientations in terms of
orientation on the tangent bundle,
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Observe that it suffices to equip one arrow in each connected com-
ponent of a knot, link, or tangle with an arrow to specify completely an
orientation on it.

The second notion, that of framing, exists most naturally in the
smooth setting as a choice of a framing for the normal bundle of the
(smooth) knot, link, or tangle. We may, however, easily translate it into
the PL setting as follows: in the presence of the standard orientation on
the ambient B2, S* or 1%, and an orientation on the knot, link or tangle,
the specification of a framing on the normal bundle can be reduced to the
specification of a field of normal vectors, since a second normal vector
may be obtained as the cross-product of the unit tangent vector with
the given normal vector. Using the exponential map of the standard
metric, we can replace this normal vector field with a thin ribbon, one
edge of which is the knot, link, or tangle. We can then take this *ribbon”
version of framed links and translate them into the PL setting:

Definition 2.7 A framing of a (PL) knot, link, or tangle is an exten-
sion of the embedding T : M* = X° (for X® = 8%, R® or I?) defining
the knot, link, or tangle to an embedding Ty : M' = 1 — X3 such
that Ty(z,0) = T(xz), and (in the case of tangles) if x € X', then
Ty(z,t) € I* x {0,1} for all t € L.

In Chapter 8 we will consider the smooth approach in more detail.

We can also encode a framing by attaching an integer to each com-
ponent of the knot, link, or tangle. In the case of knots and links, this
integer is simply the linking number of the two boundaries of the ribbon
(with the orientation on the opposite boundary reversed).

In the case of tangles, an encoding of framings by integers can be
given, but either it will be non-canonical and involve a choice of which
framing is the 0-framing for each interval component, or it will involve
further restrictions on the intersections of the tangle with 91%

In cases where we consider the tangles to be oriented or framed, we
require that the ambient isotopy in the definition of equivalence respect
the orientation or framing in the obvious sense.
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In all cases, of knots, links, or tangles, with or without orientations or
framings, the abuse of language which ignores the distinction between
a thing and its equivalence class is commonplace. For example, “the
unknot™ refers to the equivalence class of a planar circle.

Although the fundamental topological notion of equivalence is that
of ambient isotopy, or ambient isotopy rel boundary, it is convenient
in practice to replace this notion with a more combinatorial notion.
The relevant notion was given in the classic treatise on knot theory,
Knottentheorie, by K. Reidemeister [44]:

Definition 2.8 Two PL knots, links, or tangles are isotopic by moves
if they can be related by a sequence of moves of the following form:

Let A be a closed triangle (in some triangulation in the PL
structure on %, 8%, or 1? as relevant) such that the inter-
section of the knot, link or tangle, T, is eractly one or two
of the closed edges of A. Replace A UT with the closure of
the edges of A not contained in T,

We then have

Proposition 2.9 Two knots (resp. links, tangles) Ty and Ty are equiv-
alent if and only if they are isotopic by moves.

In the case of knots and links, the proof is given in Reidemeister
[44]. For tangles, Reidemeister’s proof together with Lemma 2.5 give
the desired result.

One important fact about knots, links and tangles is that they can be
completely characterized up to equivalence by certain planar drawings,
called “diagrams”. A sequence of propositions and definitions make this
precise:

Proposition 2.10 Almost every (orthogonal) projection of a knot or
link K onto a plane is “af-most-two-to-one”, in the sense that the in-
verse image of any point of the plane contains zero, one or two points
of K, with only (isolated} transverse double points. We eall such a
projection a regular projection.
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proof: The PL proof may be found in detail in [44]. We sketch it here.
Observe that the (orthogonal) projections in R® are parameterized by
S%. “Almost every” then indicates all except a set of measure zero in S2,
in particular, all projections except a family parameterized by a curve
(perhaps with isolated points) in S%.

One must avoid the directions of the edges (a finite set of points) so
that many-to-one image points do not arise by the projection of an edge
to a point. For each pair of edges, the directions of secant lines joining a
point of one edge to a point of the other form two (topological) disks or
arcs on S°. In the case where they form arcs, we must avoid these ares
to ensure transversality of double points, and we must likewise avoid
directions of secant lines from any vertex to any point for the same
reason (a finite set of arcs and points). For each pair of edges, one
must avoid directions of secant lines from a point on one edge to a point
on the other which also hit other points, to avoid image points with
multiplicity greater than two. The secant lines themselves fill a closed
region of B? in such a way that every point of the region, except those
on the two edges, lies on exactly one secant line. We must thus avoid
a curve of directions described by the intersection of the other edges of
K with the region. O

In the case of tangles, an analogous result holds, though here we
wish to consider only projections onto the “back wall”® of the cube I
Therefore we consider non-orthogonal projections onto the plane of the
“back wall” followed by linear scaling into a standard square.

Of course, information is lost in the process of projection: one no
longer knows the height of the points above or below the plane of pro-
jection. Since we are concerned with knots, links and tangles only up
to equivalence, most of the lost information is irrelevant: there are am-
bient isotopies (or isotopies by moves) which preserve the projection,
but change the height of the points. What cannot be changed by an
ambient isotopy that preserves the projection is which of the preimage
points of a double point lies above the other.

In fact, it is the case that this information about the preimages of
each double point is enough to recover the knot or link up to equivalence.
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Figure 2.1: Examples of Knot Diagrams

By convention, the information is given by a knot {or link) diagram:
a drawing of the projection in which the arc containing the lower of
the two preimages is broken on either side of the double point, as, for
example, in Figure 2.1. As is standard practice, we refer to these as
knot diagrams, or simply diagrams, even in the case of links, and refer
to the double points with the lower preimage indicated by the broken
arc as crossings.

We then have

-Theorem 2.11 A knot or link is determined up to equivalence by any
of its diagrams.

The double points of a link diagram are called crossings. In the
case where the link is oriented, we can distinguish two different types
of crossings:

Definition 2.12 Crossings in an oriented link diagram are positive or
negative if the over- and under-crossing ares are oriented as in Figure
2.8

Mnemonically, a crossing is positive if the right-hand rule curling
from the out-bound over-crossing arc to the out-bound under-crossing
arc gives a vector pointing up out of the plane of projection.

This then raises the question of when two diagrams determine the
same equivalence class of knot of links. The answer is given by the
classical theorem of Reidemeister [44]:
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Ay AN

positive crossing negative crossing

Figure 2.2: Crossing Signs

Theorem 2.13 Two knot diagrams determine equivalent links if and
only if they are related by a sequence of moves of the forms given in
Figure 2.3.

Before giving the proof of Theorem 2.13 we should comment on the
fact that our set of moves is the original, larger set of combinatorial
moves given in [44] rather than the smaller set, £1.1, £2.2 and £2.3, which
is usually given under the name “Reidemeister moves” (cf. for example
Burde and Zieschang [11]). The moves A.w.1 and A.7.2 are usually
collected together in the phrase “isotopies of the plane of projection”.
Their inclusion, however, is both a convenience in the proof and, once
the categorical structure of tangles is considered, a necessity for this
study.

proof of Theorem 2.13:

The key to the proof is Reidemeister’s other result: that ambient isotopy
is equivalent to isotopy by moves. Consider a move across a triangle: if
the projection of the triangle is an arc, the projection is unchanged by
the move; otherwise, the projection of the triangle is itsell a triangle.
To see that equivalence of diagrams under the diagrammatic moves
implies isotopy by moves of the links is quite easy: each diagram-
matic move becomes an isotopy-by-moves of the following form—use
moves across triangles perpendicular to the plane of projection to ad-
just heights until the diagrammatic move can be realized as a single
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Figure 2.3: Reidemeister’s Moves

2. Basic Concepts 23

Figure 2.4: Subdivisions Useful to Avoid Non-regular Projections

move across a triangle parallel to the plane of projection.

‘or the converse, we would like to proceed by simply considering the
effect of isotopy by a single move across a triangle on the projection.
However, before doing so, we must show that we may assume, without
loss of generality, that each move not only begins, but ends, with a
regular projection.

Now, if we subdivide any triangle into smaller triangles, the move
across the triangle can be realized instead as a sequence of moves across
the smaller triangles. This observation is the key both to the remainder
of the proof, and to solving the difficulty just mentioned.

If a move results in a non-regular projection, we can replace it with
three moves across smaller triangles as in Figure 2.4. The subdivision
point must be chosen so that the move across the large triangle(s) results
in regular projections, and near enough to the new arc. Near enough,
here, means

1. within a neighborhood bounding the new arc away from the tri-
angles of later moves, if the non-regularity is removed by moves
not involving the new arc, or

2, so that the convex hull of the triangle of the move removing the
non-regularity and the image of the nearest-neighbor projection
of its starting arc across the thin triangle(s) does not intersect the
remainder of the link, if the non-regularity is removed by a move
involving the new arc.

In either case, we replace the sequence of moves with a sequence in which
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the move introducing the non-regularity is replaced by the move(s)
across the large triangle(s). In the first case, the move(s) across the
small triangle(s) is (are) made just after the move which removed the
non-regularity in the original sequence. In the second case, the move
which removed the non-regularity in the original sequence is replace by
moves across the other faces of the convex hull of item 2, and subdivi-
sions of the thin triangle(s).

Now, we may assume that all of our moves begin and end with links
whose projection onto a given plane are regular. Let the complexity of
a move to be given by the number of edges, vertices and crossings of the
link whose projection intersect the projection of the interior triangle of
the move. If the move has a complexity greater than three, or if there
are no vertices or crossings whose projection lies in the interior of the
triangle and the move has a complexity greater than one, we can replace
the move with a sequence of less complex moves across a subdivision of
the triangle.

It therefore suffices to show that the result holds for moves of mini-
mal complexity: those of complexity 0 and 1 with no vertices or crossings
in the projection of the interior of the triangle, and those of com plexity
3 involving a vertex or crossing.

Now, a move of complexity 0 is immediately seen to be one of type
A.m.1. A move of complexity 1 is of type €.1 in the case where the edge
whose projection is interior to the projected triangle is incident with
the arc being moved, of type A.x.2 in the case where it crosses the are
being moved on the boundary, and of type Q.2 otherwise.

A move of complexity 3 involving a vertex is of type 9.2 if the arc
including the vertex does not cross the edge being moved, and of type
A.m.21if it does.

Finally, 2 move of complexity 3 involving a crossing is plainly of type
2.3.0

It is easy to incorporate orientation data into a knot diagram: one
need only equip the projection of each component of the link with an
arrow on one of its arcs I

Using crossing signs, itt is now possible to give a combinatorial def-
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inition of linking number:

Definition 2.14 Given two components Ky, Kz of a link L, the linking
number [k(Kq, K3) is m_ﬂn+ —c_), where c; (resp. c_) is the number of
posilive (resp. negative) crossings involving one arc of K; and one arc
of K3 in some diagram of the link.

It can be easily verified that this number is invariant under the
Reidemeister moves, and is thus independent of the choice of diagram.

What is slightly less clear is that one can incorporate the framing
information for an oriented framed link in the knot diagram as well:
perform an ambient isotopy which is trivial outside of a tubular neigh-
borhood of the link to make the ribbon parallel to the plane of pro-
jection, and pointing right with respect to the orientation vectors. In
doing this, one may have to introduce kinks into the diagram (by moves
of the form .1}).

The ambient isotopy class of the oriented framed link can then be
recovered from the resulting knot diagram by mapping the ribbon in
such a way that it lies to the right of the curve when traversing it in
the direction determined by the orientation. The framing determined
in this way from a diagram is called the blackboard framing (cf. [36]).
This process of introducing kinks to “flatten” the ribbon makes clear
that the move .1 does not preserve the ambient isotopy type of the
framed link which is recovered from the diagram.

All of the other Reidemeister moves may readily be seen to pre-
serve the equivalence class of oriented links with the blackboard framing,
Omitting Q.1 from the Reidemeister moves give a combinatorial notion
of equivalence called “regular isotopy” which was used by Kauffman
[32] in his formulation of the Jones polynomial, the so-called “Kauff-
man bracket” (cf. also [29]).

For our purposes, this combinatorial notion is less useful than a
reduction to diagrams of ambient isotopy of framed oriented links. For
this, we need to replace £2.1 with a substitute move which does respect
the framing. To do this, we need to examine how the various cases of
(1.1 change the blackboard framing. Observe that those which introduce
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of an arrow denoted fg or g(f), called the composition of f nam. P.E_
each pair of arrows f, g for which target( f) = source(g), and satisfying

. o

Figure 2.5: The Framed First Reidemeister Move

positive crossings change the framing (thought of as an integer) by +1,
while those with negative crossings change it by —1. It therefore follows
that any combinations of moves of type Q.1 which change the f raming
by 0 must be admitted as moves,

Now any such sequence of Reidemeister moves which preserves the
framing can be modified by moves of the types other than 0.1 (by sliding
curls along the component of the link) in such a way that moves of type
€2.1 which increase the framing are paired with moves of type 2.1 which
decrease the framing in small balls (or disks in the projection). By use of
the simplest “Whitney trick”—the fact that moves of types Q.2 and 0.3
suffice to remove a pair of loops, provided they have opposite crossings,
and lie on opposite sides of the arc in the projection, all of the various
cases can be reduced to the single move in Figure 2.5.

2.2 Categories, Functors, Natural
Transformations

We now turn to the basic notions from category theory needed for this
study. The reader interested in a more thorough treatment is referred
to Mac Lane [40], which contains most of the standard elementary defi-
nitions and theorems. We repeat those of particular importance for this
study in this section and the next chapter.

Definition 2.15 (objects-and-arrows) A category C consists of fwo
collections Ob(C) and Arr(C), whose elements are called, respectively,
the objects and arrows of C together with assignments of objects target( f)
and source(f) to each arrow f; of an arrow Idy to each object X : and

source(fdy) = X
target(Idy) = X
ldsouee(nyf = f
Hldggeiy = f
h(g(f)) = hig)(f).

The arrows of a category are also, particularly in concrete mmﬁ.:..mﬁmu
referred to at morphisms or maps. At first, we will adhere to calling
them “arrows”, but as we move to setting where the other names are
common, we will begin to use them interchangeably.

The coyness of not describing source(—), target(—), Jd_ and compo-
sition as functions is traditional (and to some minds necessary) because
the collections involved are often proper classes.* The reader who dis-
likes bothering about the niceties of set theory may proceed mw_.m_“..: all
of the categories which will occur in this book, outside of some illus-
trative examples in this section, are either small (that is, both Ob(C)
and Arr(C) are sets) or essentially small (that is nqzm:n__miu.mm mmmum.m
below—to a small category). One other notion connected with size in
the set-theoretic sense should be mentioned: if for every pair of objects
X, Y, the collection of arrows with source(f) = X and target(f) =Y
is a set, we say the category is loeally small. All categories considered
herein are locally small.

?Many categorists object to the habit of mind which tries to place all of mathemat-
ics on a set-theoretic foundation. After all, when is the last time anyone ever mnn:EE_
eared about the e-tree defining an element of a smooth manifold? For the _EW.E.EE,
set-theory minded, we will dispense with the problems E:wzqq raiscd nn_.ﬁnq.ﬂ:_m sizes
of categories by using a sufficiently strong large-cardinal wx.uh=|ﬂ..3_.5=_.m._nr m.}.ﬂ.
iom of Universe. Those size problems which do not collapse in the face of this axiom,
and there are some, do not arise in this study.
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H.”nm_u#mcﬁ 2.168 For a locally small category C, the set of all arrows
___“_.:___h source(f) = X and target(f) = Y is denoted Home(X,Y) or
simply C(X,Y), and called the hom-set from X to V.

If we do write the structure given in Definition 2.15 in terms of sets
and functions we have

source : Arr(C) — Ob(C)

target : Arr(C) — Ob(C)
Id: Ob(C) — Arr(C)
—(=) : Arr(C) % opiey Arr(C) — OB(C)

satisfying the functional equations given element-wise in the definition.
: It will be observed that both source and target split Id, and thus Id
is a bijection between Ob(C) and its image. As we are concerned only
with the structure of the category, not with the identity of its objects or
arrow in some external ideal universe, this bijection allows us to forget
the objects entirely: we can consider the identity maps themselves as
mrm objects. Doing so gives an alternative definition of category which
15 sometimes more convenient.:

Definition 2.17 (arrows-only) A category C is a collection ¢ whose
elements are called “arrows”, equipped with two unary operations source
n,zm target and a partially defined operation denoted by the null in-
fiz, with the property that fg is defined if and only if target(f) =
source(g), and satisfying

source(source(f)) = source( f)

target(source(f)) = source(f)
source(target(f)) = target(f)
target(target(f)) = target(f )

source(f)f = f
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ftarget(f) if
[fglh = flgh]

Example 2.18 Sets: Objects are all sets in your favorite model of
your favorite set-theory; arrows are all sel-functions; source is domain;
target is codomain; Idy for any set X is the identity function on X;
and composition is compoesition of sel-functions.

Example 2.19 Esp: Objects are all topological spaces; arrows are all
continuous maps; source is domain; target is codomain; Idx for any
space X is the identity function on X; and composition is composition
of continuous maps.

Example 2.20 K — mod: Fiz a ring K. Objects are all K modules;
arrows are all K -linear maps; source is domain; target is codomain; Idy
is the identity map on X ; and composition is composition of K-linear
maps.

Examples of this sort can be multiplied ad infinitum: take as objects
all examples of some mathematical structure, and as arrows all maps
preserving (some part of) the structure, .... In these cases it is most
convenient to use the objects-and-arrows definition. This is not always
the case. Consider

Example 2.21 G: Fiz a group (or monoid) G. Consider its elements
as arrows with composition defined by the group law, and source and
target given by the the constant map lo e, the identity element.

More important for this study are:

Example 2.22 Tang (resp. Otang, Frtang): Consider as arrows all
equivalence classes of tangles (resp. oriented tangles, framed oriented
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tangles). source(T) (resp. target(T)) is the linear embedding of a dis-
Joint union of copies of I which is constant in the first two codrdinates
and intersects T at each point of 1* x {0} (resp. I* x {1}) in the same
set of points as T with (resp. the same set with the same orientation,
the same set with the same orientation and framing). The composition
of two tangles Ty, Ty has as underlying 1-manifold the union of the un-
derlying I-manifolds of Ty and Ty with the poinis of the boundary lying
in the face containing the common source/target identified. The com-
position Ty T, is then defined by the map on this underlying 1-manifold
given as a composition of Ty [[ Ty, with the map v3 : I*[J1# — I¥ given

by

(z,y,2) = (x,y, W_,. for elements of the first summand

z41
2

with the connecled components PL homeomorphic to I reparameterized
to preserve the condition at the boundary.

(z,y,2) = (z,y, ) for elements of the second summand,

It requires a little work to verify that this actually gives rise to
a category. The conditions involving only source and target, but not
composition, are immediate. To verify the other conditions, observe first
that the two sides of the equations are certainly not equal by construc-
tion until we pass to equivalence classes. [t is necessary to construct a
PL (smooth) ambient isotopy rel boundary to verify the equations.

The required isotopies are constant in the first two cobrdinates of 12
and in all coordinates in a neighborhood of d1° In the third codrdinate
they are given in aset # of the form [¢, 1—€]? by (smoothings of ) the PL
maps shown schematically in Figure 2.6. The extension of this isotopy
given by Lemma 2.5 then gives an isotopy which preserves the condition
on the boundary.

Example 2.23 n-Cobord: As objects, take oriented smooth (n — 1)-
manifolds. As arrows, let Hom,_cobord(M, N) be the set of all equiv-
alence classes of oriented n-manifolds with boundary X equipped with
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associativity

right identity

left identity

Figure 2.6: Isotopies Giving Identity and Associativity Conditions in
Categories of Tangles



