Section 101 - Spring 2011
Instructor: Jose Gonzalez Date: June 15 / 2011
(1) (10 pts.) Solve the two exercises presented below:
(a) (5 pts.) Three tables are given below. The function $h(x)$ is the composition of the functions $g(x)$ and $f(x)$. Specifically:

$$
h(x)=g(f(x))
$$

Complete the three tables. Assume that different values of x lead to different values of $g(x)$.

X	-2	-1	0	1	2
$f(x)$	4			5	1

x	1	2	3	4	5
$g(x)$		1	2	0	-1

x	-2	-1	0	1	2
$h(x)$		1	2		-2

Solution: We need to find $f(-1), f(0), g(1), h(-2)$ and $h(1)$. We can compute all of these using the information in the tables and the relation $h(x)=g(f(x))$. We have $g(f(-1))=$ $h(-1)=1=g(2)$, and then $f(-1)=2$. Similarly, $g(f(0))=h(0)=2=g(3)$, and then $f(0)=3$. We have $g(1)=g(f(2))=h(2)=-2$. We also have, $h(-2)=g(f(-2))=g(4)=0$ and similarly $h(1)=g(f(1))=g(5)=-1$.
(b) (5 pts.) Showing all your, find the formula for the inverse of the function

$$
k(x)=\frac{\sqrt{x}-1}{\sqrt{x}+1} .
$$

Solution: Let $y=k(x)$, so $x=k^{-1}(y)$. We have:

$$
\begin{gathered}
y=\frac{\sqrt{x}-1}{\sqrt{x}+1} \quad \Longrightarrow \quad(\sqrt{x}+1) y=\sqrt{x}-1 \quad \Longrightarrow \\
\sqrt{x} y+y=\sqrt{x}-1 \quad \Longrightarrow \quad \sqrt{x} y-\sqrt{x}=-y-1 \quad \Longrightarrow \\
\sqrt{x}(y-1)=-y-1 \quad \Longrightarrow \quad \sqrt{x}=\frac{-y-1}{y-1} \quad \Longrightarrow \\
x=\left(\frac{-y-1}{y-1}\right)^{2} \quad \Longrightarrow \quad k^{-1}(y)=\left(\frac{-y-1}{y-1}\right)^{2}
\end{gathered}
$$

(2) (10 pts.) Your ultimate goal in this question is to find an equation for the polynomial function $f(x)$ whose graph is shown below. The only letters that should appear in your final answer are $f(x)$ and x.

(a) (4 pts.) Find the ALL of the roots and some possible multiplicities of the function $f(x)$. Record your answers in the table shown below.

Root	Multiplicity

Answer: From the graph we see that the roots (a.k.a. the zeroes) are: $x=-1, x=0$, $x=2$ and $x=3$, and that some possible multiplicities are $2,1,3$ and 1 , respectively. Note: The multiplicity of $x=-1$ should be even and the other three multiplicities should be odd, and also, by the shape of the graph we see that the multiplicity of the zero $x=2$ should be at least 3 .
(b) (6 pts.) Use your answers to Part (a) of this problem to find a formula for the polynomial function $f(x)$.

Answer: From (a) there is an equation for $f(x)$ that has the form

$$
f(x)=a(x+1)^{2} x(x-2)^{3}(x-3)
$$

for some constant a. We use that the point $(1,1)$ is in the graph of $f(x)$ to find the constant a. We have:

$$
1=a(1+1)^{2} 1(1-2)^{3}(1-3) \Longrightarrow a=\frac{1}{8}
$$

Then a possible equation for the polynomial function $f(x)$ is

$$
f(x)=\frac{1}{8}(x+1)^{2} x(x-2)^{3}(x-3)
$$

(3) (10 pts.) Find a possible formula for the function $f(x)$ graphed below. The x-intercepts are marked with points located at $(5,0)$ and $(-6,0)$, while the y-intercept is marked with a point located at $\left(0,-\frac{30}{20}\right)$.

Solution Since the graph has vertical asymptotes at $\mathrm{x}=4$ and $\mathrm{x}=-5$, let the denominator be $(x-4)(x+5)$. Since the graph has zeros at $x=5$ and $x=-6$ let the numerator be $(x-5)(x+6)$. Since in the the long-run the rational function $f(x)$ tends toward $y=-1$ as $\mathrm{x} \rightarrow \pm \infty$, the ratio of the leading terms should be -1 .

So a possible formula is $y=f(x)=-\frac{(x-5)(x+6)}{(x-4)(x+5)}$. You can check that the y -intercept is $\mathrm{y}=-30 / 20$, as it should be.

