(1) (8pts) The function $f(x)$ is given by the following graph.

a) (2pts) What are the critical points of $f(x)$ on the interval $(0,7)$?

Solution $x=2,4,5,6$.
b) (2pts) What are the local maxima of $f(x)$ on the interval $(0,7)$?

Solution $x=4,6$.
c) $(2 \mathrm{pts})$ What are the local minima of $f(x)$ on the interval $(0,7)$?

Solution $x=2,5$.
d) (2pts) What are the absolute maxima and absolute minima of $f(x)$ on the interval $[0,7]$?

Solution Absolute maximum $f(4)=4$ and absolute minimum at $f(7)=0$.
(2) (6 pts) For the function $f(x)=x^{4}-4 x^{3}+4 x^{2}-4=\left(x^{2}-2 x+2\right)\left(x^{2}-2 x-2\right)$ one can easily see that $f^{\prime}(x)=4 x^{3}-12 x^{2}+8 x=4 x(x-1)(x-2)$ and $f^{\prime \prime}(x)=4\left(3 x^{2}-3 x+2\right)$. Find the absolute maximum and the absolute minimum of $f(x)$ on the interval $[-2,3]$.

Solution The critical points are $x=0,1,2$. Since $f(x)$ is a continuous function on the finite closed interval $[-2,3]$, the candidates to absolute maximum and the absolute minimum are the critical points and the end points. We have that $f(0)=-4, f(1)=-3, f(2)=-4, f(-2)=60$ and $f(3)=5$. Therefore, the required absolute maximum is $f(-2)=60$ and the required absolute minimum is $f(0)=f(2)=-4$.
(3) (12pts) For the function $g(x)=x e^{-6 x^{2}}$ one can easily see that $g^{\prime}(x)=\left(1-12 x^{2}\right) e^{-6 x^{2}}$ and $g^{\prime \prime}(x)=36 x(2 x-1)(2 x+1) e^{-6 x^{2}}$.
a) (3pts) Find the critical points of $g(x)$.

Solution The function $g^{\prime}(x)$ is defined everywhere. If $g^{\prime}(x)=0$, then $\left(1-12 x^{2}\right) e^{-6 x^{2}}=0$, so $1-12 x^{2}=0$. Solving for x we find: $x=1 / \sqrt{12}$ or $x=-1 / \sqrt{12}$, and these are the only two critical points of $g(x)$.
b) (3pts) Find the intervals where $g(x)$ is increasing and the intervals where $g(x)$ is decreasing.

Solution The function $g^{\prime}(x)$ is continuous, so it cannot change sign except possibly at $x=$ $1 / \sqrt{12}$ and $x=-1 / \sqrt{12}$. We see that $g^{\prime}(x)$ is positive on $(-1 / \sqrt{12}, 1 / \sqrt{12})$ and negative on $(-\infty,-1 / \sqrt{12})$ and $(1 / \sqrt{12}, \infty)$. Therefore, $g(x)$ is increasing on $(-1 / \sqrt{12}, 1 / \sqrt{12})$ and decreasing on $(-\infty,-1 / \sqrt{12})$ and $(1 / \sqrt{12}, \infty)$.
c) (3pts) Find the intervals where $g(x)$ is concave up and the intervals where $g(x)$ is concave down.

Solution The function $g^{\prime \prime}(x)$ is defined everywhere. If $g^{\prime \prime}(x)=0$, then $6 x(2 x-1)(2 x+1) e^{-6 x^{2}}=0$, so $6 x(2 x-1)(2 x+1)=0$. Solving for x we find: $x=-1 / 2, x=0$ or $x=1 / 2$.

The function $g^{\prime \prime}(x)$ is continuous, so it cannot change sign except possibly at $x=-1 / 2, x=0$ and $x=1 / 2$. We see that $g^{\prime}(x)$ is positive on $(-1 / 2,0)$ and $(1 / 2, \infty)$ and negative on $(-\infty,-1 / 2)$ and $(0,1 / 2)$. Therefore, $g(x)$ is concave up on $(-1 / 2,0)$ and $(1 / 2, \infty)$ and concave down on $(-\infty,-1 / 2)$ and $(0,1 / 2)$.
d) (3pts) Find the inflection points of $g(x)$.

Solution From part c) the inflection points of $g(x)$ are $x=-1 / 2, x=0$ or $x=1 / 2$.
(4) (14pts) Solve the following exercises for the function $f(x)$ and its derivatives given below.

$$
f(x)=\frac{x^{3}+x^{2}-2 x-3}{x^{2}-3} \quad f^{\prime}(x)=\frac{\left(x^{2}-1\right)\left(x^{2}-6\right)}{\left(x^{2}-3\right)^{2}} \quad f^{\prime \prime}(x)=\frac{2 x\left(x^{2}+9\right)}{\left(x^{2}-3\right)^{3}}
$$

a) (3pts) Find all x where $f^{\prime}(x)$ is zero or does not exist.

Solution $f^{\prime}(x)=0$: Then $\left(x^{2}-1\right)\left(x^{2}-6\right)=0$; hence $(x+1)(x-1)(x+\sqrt{6})(x-\sqrt{6})=0$; and therefore $x=1, x=-1, x=\sqrt{6}$, or $x=-\sqrt{6}$.

b) (3pts) Find all x where $f^{\prime \prime}(x)$ is zero or does not exist.

Solution $\underline{f^{\prime \prime}(x)=0}$: Then $2 x\left(x^{2}+9\right)=0$; but $x^{2}+9>0$ for all x; and therefore $x=0$.

c) (8pts) Find the coordinates of all local maxima, local minima and inflection points of the function $f(x)$. Show all your work. [Hint: Classify the points obtained in a) and b). But, discard those points where $f(x)$ is not defined.]

Solution We use the points in a) to find the intervals where $f^{\prime}(x)$ is positive or negative, as $f^{\prime}(x)$ is defined and continuous in the intervals between those points.
The function $f^{\prime}(x)$ is positive on the intervals $(\infty,-\sqrt{6}),(-1,1)$ and $(\sqrt{6}, \infty)$, and negative on the intervals $(-\sqrt{6},-1)$ and $(1, \sqrt{6})$. Therefore $x=-\sqrt{6}$ and $x=1$ are local maxima, and $x=-1$ and $x=\sqrt{6}$ are local minima.
Now, we use the points in b) to find the intervals where $g^{\prime \prime}(x)$ is positive or negative, as $f^{\prime}(x)$ is defined and continuous in the intervals between those points.
The function $f^{\prime \prime}(x)$ is positive on the intervals $(-\sqrt{3}, 0)$ and $(\sqrt{3}, \infty)$, and negative on the intervals $(-\infty,-\sqrt{3})$ and $(0, \sqrt{3})$. But $f(x)$ is not defined when $x=\sqrt{3}$ or $x=-\sqrt{3}$. Therefore the only inflection point of $f(x)$ is $x=0$.

