(1) Let $q(x)=\left(1+e^{-x}\right)^{-1}$
a) Calculate the derivative $q^{\prime}(x)$. No need to simplify.

Solution

$$
q^{\prime}(x)=(-1)\left(1+e^{-x}\right)^{-2}\left(-e^{-x}\right)=\frac{1}{e^{x}\left(1+e^{-x}\right)^{2}}
$$

b) Imagine inserting your answer from part a) into the integral below. What does the fundamental theorem of calculus tell you about the integral? You need not calculate a value.

$$
\int_{-1000}^{1000}(\text { answer from part a) } d x=
$$

Solution

Using the Fundamental Theorem of Calculus, we obtain

$$
\int_{-1000}^{1000} \frac{1}{e^{x}\left(1+e^{-x}\right)^{2}} d x=\int_{-1000}^{1000} q^{\prime}(x) d x=q(1000)-q(-1000)=\left(1+e^{-1000}\right)^{-1}-\left(1+e^{1000}\right)^{-1}
$$

(2) $\int_{3}^{9}(5-2 f(x)) d x=22$. Find $\int_{3}^{9} f(x) d x$.

Solution

We have

$$
\int_{3}^{9}(5-2 f(x)) d x=\int_{3}^{9} 5 d x-2 \int_{3}^{9} f(x) d x=30-2 \int_{3}^{9} f(x) d x .
$$

Then $30-2 \int_{3}^{9} f(x) d x=22$. We solve for $\int_{3}^{9} f(x) d x$, and we obtain

$$
\int_{3}^{9} f(x) d x=4
$$

