(1) Solve for a :

$$
m \cdot 3^{a b}=k \cdot e^{a}
$$

(Here, b, k and m are constants.)

Solution

To solve for a, we take a logarithm of both sides. We'll use the natural logarithm because there's a factor of e^{a} on the right hand side of the equation. We get

$$
\begin{aligned}
\ln \left(m \cdot 3^{a b}\right) & =\ln \left(k \cdot e^{a}\right), \quad \text { or } \\
\ln (m)+a b \ln (3) & =\ln (k)+a .
\end{aligned}
$$

To solve for a, we subtract $a+\ln (m)$ from both sides, to get $a b \ln (3)-a=\ln (k)-\ln (m)$. Factoring out the a on the left hand side, $a(b \ln (3)-1)=\ln (k)-\ln (m)$, so

$$
a=\frac{\ln (k)-\ln (m)}{b \ln (3)-1}
$$

(2) Suppose that the temperature of an office is given by $Q(t)=Q_{0}+a \sin \left(\frac{\pi}{6} t\right)$, where Q is in ${ }^{\circ} \mathrm{F}$ and t in hours after 8AM. What are the meaning of Q_{0} and a ? What is the period of this function?.

Solution

The parameter Q_{0} is the midline, or average, temperature in the office. The maximum temperature deviation from this is $a^{\circ} \mathrm{F}$. The period of this function is $\frac{2 \pi}{\frac{\pi}{6}}=12$ hours.

