Section 9 - Winter 2011
Instructor: Jose Gonzalez
Date: February 15 / 2011

Chain rule: $[f(g(x))]^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)$
Product rule: $[f(x) \cdot g(x)]^{\prime}=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)$
Quotient rule: $\left[\frac{f(x)}{g(x)}\right]^{\prime}=\frac{f^{\prime}(x) \cdot g(x)-f(x) \cdot g^{\prime}(x)}{g(x)^{2}}$
Some basic short-cuts: $[\sin (x)]^{\prime}=\cos (x) \quad[\cos (x)]^{\prime}=-\sin (x) \quad[\ln (x)]^{\prime}=\frac{1}{x} \quad\left[x^{n}\right]^{\prime}=n x^{n-1}$

$$
\left[a^{x}\right]^{\prime}=\ln (a) a^{x}, \quad \text { where } a \text { is a positive constant. }
$$

Using the basic properties and the short-cuts for differentiation, find the derivatives of the following functions. You do not need to simplify your answers.
(1) $f(x)=\cos \left(x^{4} 4^{x}+e^{-x}\right)$

Solution

$$
f^{\prime}(x)=-\sin \left(x^{4} 4^{x}+e^{-x}\right) \cdot\left(4 x^{3} \cdot 4^{x}+x^{4} \cdot \ln (4) 4^{x}-e^{-x}\right)
$$

(2) $g(x)=\frac{\ln (\sin (3 x))}{x^{2}+2^{x}}$

Solution

$$
g^{\prime}(x)=\frac{\frac{1}{\sin (3 x)} \cdot \cos (3 x) \cdot 3 \cdot\left(x^{2}+2^{x}\right)-\ln (\sin (3 x)) \cdot\left(2 x+\ln (2) \cdot 2^{x}\right)}{\left(x^{2}+2^{x}\right)^{2}}
$$

