INSTRUCTIONS (Read carefully): This quiz has two independent questions. In order to get credit for your answers you must show all your work.
(1) Find all the eigenvalues of the matrix

$$
A=\left[\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right]
$$

Solution To find the eigenvalues of A the first step is to find the polynomial $\operatorname{det}(A-\lambda I)$ in the variable λ :

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\left[\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right]-\lambda \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=\operatorname{det}\left[\begin{array}{cc}
3-\lambda & 2 \\
2 & 3-\lambda
\end{array}\right]=(3-\lambda)^{2}-4=\lambda^{2}-6 \lambda+5
$$

Now, we find the eigenvalues as the zeroes of the polynomial $\operatorname{det}(A-\lambda I)=\lambda^{2}-6 \lambda+5$ (that is, we find the values of λ for which the polynomial takes the value zero). We will find the zeroes by factoring the polynomial (we could have instead used the formula for the zeroes of a quadratic polynomial):

$$
\lambda^{2}-6 \lambda+5=(\lambda-1)(\lambda-5)
$$

This expression is zero $(\lambda-1)(\lambda-5)=0$ exactly when λ is either equal to 1 or equal to 5 .
Therefore the eigenvalues of A are $\lambda_{1}=1$ and $\lambda_{2}=5$.
(2) Consider the following matrix

$$
A=\left[\begin{array}{ccc}
-1 & 0 & 2 \\
2 & -2 & 1 \\
1 & 3 & -3
\end{array}\right]
$$

The number $\lambda=1$ is an eigenvalue of this matrix. Find the eigenvectors of the matrix A that correspond to the eigenvalue $\lambda=1$.

Solution To find the eigenvectors corresponding to an eigenvalue λ one solves the homogeneous linear system $(A-\lambda I) \vec{x}=\overrightarrow{0}$. In this case $\lambda=1$ and:

$$
A-\lambda I=\left[\begin{array}{ccc}
-2 & 0 & 2 \\
2 & -3 & 1 \\
1 & 3 & -4
\end{array}\right], \quad \vec{x}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right], \quad \overrightarrow{0}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

So, the system to solve is

$$
\left[\begin{array}{ccc}
-2 & 0 & 2 \\
2 & -3 & 1 \\
1 & 3 & -4
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

We solve the sytem $(A-\lambda I) \vec{x}=\overrightarrow{0}$ using Gaussian Elimination:

$$
\left[\begin{array}{ccc}
-2 & 0 & 2 \\
2 & -3 & 1 \\
1 & 3 & -4
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 3 & -4 \\
2 & -3 & 1 \\
-2 & 0 & 2
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 3 & -4 \\
0 & -9 & 9 \\
0 & 6 & -6
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 3 & -4 \\
0 & 1 & -1 \\
0 & 6 & -6
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 3 & -4 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

The basic variables are x and y. The variable z is free. Now, we express the basic variables in terms of the free variables. From the last matrix we get the equations

$$
x=z \quad \text { and } \quad y=z
$$

Therefore, the eigenvectors of the matrix A that correspond to the eigenvalue $\lambda=1$ are exactly the vectors of the form

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
z \\
z \\
z
\end{array}\right]=z \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

where z can be any real number (or any complex number if you want to work over the complex numbers).

