(1) (5 points) Evaluate $\int \frac{\ln (3 x)}{x^{2}} d x$.

(2) (5 points) A hole in the ground with the form of an inverted pyramid is full of water. The base of the pyramid (which is the opening of the hole) is a square of side 10 m and its height (which is the depth of the hole) is 10 m . Find an integral computing the work required to pump the water out of the hole to ground level (in J). Recall that the density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$. You do not need to evaluate the integral.

Work $=$ Force \cdot Distance.

$$
\begin{aligned}
\text { Wslab } & =\text { Forceslab } \cdot \text { Distanceslab } \\
& =\text { Weight slab } \cdot \text { Distanceslat } \\
& =\text { Massilab } \cdot g \cdot \text { Distanceslat } \\
& =\underbrace{\text { Volume }_{\text {slab }} \cdot \text { Densitywater } \cdot g \cdot \text { Distanceslab. }}_{\text {Force }} \\
& =\underbrace{y^{2} \cdot d y \cdot 1000 \cdot 9.8}_{\text {Dis lance }} \cdot \underbrace{(10-y)}
\end{aligned}
$$

therefore:

$$
W=\int_{0}^{10} 9.8 \cdot 1000 \cdot y^{2}(10-y) d y
$$

