(1) (5 points) Evaluate $\int(\ln (x))^{2} d x$.

$$
\begin{aligned}
& \quad \int(\ln x)^{2} d x=x \cdot(\ln x)^{2}-x \cdot \ln x-\int(\ln x-1) d x \\
& \frac{\text { By parts }}{u=\ln x \quad d v=\ln x}=x \cdot(\ln x)^{2}-2 x \cdot \ln x+2 x+C \\
& d u=\frac{1}{x} \quad v=x \cdot \ln x-x
\end{aligned}
$$

(2) (5 points) A leaky 10 kg bucket is lifted from the ground to a height of 12 m at a constant speed. Initially, the bucket contains 36 kg of water, but the water leaks at a constant rate and finishes draining just as the bucket reaches the 12 m level. Write an integral that computes the amount of work to lift the bucket and the water (in J). You do not need to evaluate the integral.

The work $d w$ to lift the bucket and the water from height y to height $y+d y$ is:

$$
\begin{aligned}
d w & =\text { Force } \cdot \text { Distance } \\
& =\text { Weight } \cdot \text { Distance } \\
& =\text { Mass } \cdot g \cdot \text { Distance } \\
& =(10+36-3 y) \cdot 9.8 \cdot d y
\end{aligned}
$$

Then, the total work is:

$$
W=\int_{0}^{12}(46-3 y) \cdot 9.8 d y
$$

