Instructions: Please solve the exercises below. To get any credit you must provide a complete explanation.
(1) (5 points) Determine if the following series converges or diverges: $\quad \sum_{n=1}^{\infty} \frac{1}{n^{2}+1}$
(2) (5 points) Determine the exact value of the series: $\quad \sum_{n=0}^{\infty} \frac{4 \cdot 2^{n}}{3 \cdot 3^{n}}$
(3) (5 points) Determine if the following series converges or diverges:

$$
\sum_{n=2}^{\infty} \frac{1}{n \cdot \ln (n)}
$$

## Solution (1)

We have that $n^{2} \leq n^{2}+1$ for all $n$, so $0 \leq \frac{1}{n^{2}+1} \leq \frac{1}{n^{2}}$ for all $n$. Since the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges as it is a $p$-series with $p=2>1$, then by comparison test the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}$ converges as well.

## Solution (2)

The given series is a geometric series with ratio $r=\frac{2}{3}$, and since $|r|=\frac{2}{3}<1$ it converges. Its initial value is $a=\frac{4}{3}$. Then the value of the series is $\sum_{n=0}^{\infty} \frac{4 \cdot 2^{n}}{3 \cdot 3^{n}}=\frac{a}{1-r}=\frac{4 / 3}{1-2 / 3}=4$.

## Solution (3)

Let $f(x)=\frac{1}{x \cdot \ln (x)}$. Since $x \cdot \ln (x)$ is positive, continuous and increasing for $x>1$, then $f(x)$ is positive, continuous and decreasing for $x>1$, so we can apply integral test. We compute the corresponding improper integral:

$$
\int_{2}^{\infty} f(x) d x=\int_{2}^{\infty} \frac{1}{x \cdot \ln (x)} d x=\lim _{t \rightarrow \infty} \int_{2}^{t} \frac{1}{x \cdot \ln (x)} d x=\left.\lim _{t \rightarrow \infty} \ln (\ln (x))\right|_{2} ^{t}=\lim _{t \rightarrow \infty}(\ln (\ln (t))-\ln (\ln (2)))=+\infty
$$

The improper integral diverges, so by the integral test the series $\sum_{n=2}^{\infty} \frac{1}{n \cdot \ln (n)}$ diverges as well.

