Instructions: Please solve the exercises below. To get any credit you must provide a complete explanation.
(1) (5 points) Determine if the following series converges or diverges: $\quad \sum_{n=1}^{\infty} \frac{1}{2 n-1}$
(2) (5 points) Determine the exact value of the series: $\quad \sum_{n=0}^{\infty} \frac{2 \cdot 3^{n}}{5 \cdot 5^{n}}$
(3) (5 points) Determine if the following series converges or diverges: $\quad \sum_{n=2}^{\infty} \frac{1}{n \cdot(\ln (n))^{2}}$

Solution (1)

We have that $0<2 n-1 \leq 2 n$ for all $n \geq 1$, so $0 \leq \frac{1}{2 n} \leq \frac{1}{2 n-1}$ for all $n \geq 1$. The series $\sum_{n=1}^{\infty} \frac{1}{2 n}=\frac{1}{2} \cdot \sum_{n=1}^{\infty} \frac{1}{n}$ diverges, because $\sum_{n=1}^{\infty} \frac{1}{n}$ is a p-series with $p=1$. Then by comparison test the series $\sum_{n=1}^{\infty} \frac{1}{2 n-1}$ diverges as well.

Solution (2)

The given series is a geometric series with ratio $r=\frac{3}{5}$, and since $|r|=\frac{3}{5}<1$ it converges. Its initial value is $a=\frac{2}{5}$. Then the value of the series is $\sum_{n=0}^{\infty} \frac{2 \cdot 3^{n}}{5 \cdot 5^{n}}=\frac{a}{1-r}=\frac{2 / 5}{1-3 / 5}=1$.

Solution (3)

Let $f(x)=\frac{1}{x \cdot(\ln (x))^{2}}$. Since $x \cdot(\ln (x))^{2}$ is positive, continuous and increasing for $x>1$, then $f(x)$ is positive, continuous and decreasing for $x>1$, so we can apply integral test. We compute the corresponding improper integral:

$$
\int_{2}^{\infty} f(x) d x=\int_{2}^{\infty} \frac{1}{x \cdot(\ln (x))^{2}} d x=\lim _{t \rightarrow \infty} \int_{2}^{t} \frac{1}{x \cdot(\ln (x))^{2}} d x=\lim _{t \rightarrow \infty}-\left.\frac{1}{\ln (x)}\right|_{2} ^{t}=\lim _{t \rightarrow \infty}\left(-\frac{1}{\ln (t)}+\frac{1}{\ln (2)}\right)=\frac{1}{\ln (2)}
$$

The improper integral converges, so by the integral test the series $\sum_{n=2}^{\infty} \frac{1}{n \cdot(\ln (n))^{2}}$ converges as well.

