Homework 2
MATH 132

Prof. Janet Vassilev

January 10, 2007

1. Find a matrix C such that $C^{-1}AC = D$ for some diagonal matrix D if $A = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 3 \\ 1 & 1 & -1 \end{pmatrix}$.

2. Let $A = \begin{pmatrix} 5 & 6 \\ -2 & -2 \end{pmatrix}$. Find A^6.

3. Let A be a diagonalizable matrix whose eigenvalues are all either 1 or -1. Show that $A^{-1} = A$.

4. Let A be an $n \times n$ matrix with eigenvalue λ of multiplicity n. Show A is diagonalizable if and only if $A = \lambda I$.

5. Let $A = ST$ where S is invertible. Let $B = TS$. Show that B is similar to A.

January 12, 2007

6. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation that reflects about the line $y + 4x = 0$. Find a formula for the transformation T.

7. Let A be a diagonalizable matrix and suppose B is similar to A. Show that B is also diagonalizable.

8. Let A and B be $n \times n$ matrices with the same diagonalizing matrix C. Show that $AB = BA$.