Homework 9
MATH 132
Prof. Janet Vassilev
February 26, 2007

1. Determine the conjugate transpose of the matrix
 \[
 \begin{pmatrix}
 1 + i & 2i & 3 - i \\
 2 + i & 4 & -1 + 2i \\
 2 & 4 + i & -5i
 \end{pmatrix}
 \]

2. What type of matrix is \[
 \begin{pmatrix}
 3 & 2 - i \\
 2 + i & 4
 \end{pmatrix}
 \]

3. What type of matrix is \[
 \begin{pmatrix}
 \frac{1}{\sqrt{2}}i & \frac{1}{\sqrt{2}} \\
 \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}i
 \end{pmatrix}
 \]

4. A matrix \(A\) with complex coefficients is skew Hermitian if \(A^* = -A\). If \(M\) and \(N\) are \(n \times n\) real matrices. Show \(A = M + iN\) is skew Hermitian if and only if \(M\) is skew symmetric and \(N\) is symmetric.

February 28, 2007

5. Find a unitary matrix \(U\) which diagonalizes \[
 \begin{pmatrix}
 2 & -i \\
 i & 0
 \end{pmatrix}
 \]

6. Find a unitary matrix \(U\) which diagonalizes \[
 \begin{pmatrix}
 0 & 1 - i & 4 \\
 1 + i & 0 & 0 \\
 4 & 0 & 1
 \end{pmatrix}
 \]

7. Show that every skew Hermitian matrix is unitarily diagonalizable.

March 2, 2007

8. If \(A\) is a normal matrix, show that the column space of \(A\) is the column space of \(A^*\).

9. Suppose \(A\) is a normal matrix satisfying \(A^9 = A^8\). Show that \(A\) is Hermitian and that \(A^2 = A\).

10. Show that every normal matrix \(A\) has a square root, i.e. there is a matrix \(B\) such that \(B^2 = A\).