
The following is extracted from Emmanual Hebey’s 1999 book “Nonlinear
Analysis on Manifolds: Sobolev Spaces and Inequalities.” It spells out what
is going with the ∇ operator in more detail.

Let D be an affine connection on a Riemmanian manifold. (In the seminar
I was using ∇ for D to agree with Do Carmo, but D is Aubin’s and Hebey’s
and, I believe, Jerry’s notation.) Define ∇i by

∇i = D ∂

∂xi
,

so ∇i maps a vector field into a vector field. Define the Christoffel symbols,
{Γk

ij} by

∇i

(
∂

∂xj

)
= Γk

ij

∂

∂xk
.

If Y = Y j ∂
∂xj is a vector field, then by the Liebniz rule,

∇iY =
∂Y j

∂xi

∂

∂xj
+ Y j∇i

(
∂

∂xj

)

=
∂Y j

∂xi

∂

∂xj
+ Y jΓk

ij

∂

∂xk

=
(

∂Y j

∂xi
+ Γj

iαY α

)
∂

∂xj
,

where we re-indexed in the last step.
We can generalize the operation of ∇i to a (p, q)-tensor T (see my little

spiel on tensors below, if you like) by

(∇iT )j1···jq

i1···ip =
∂T

j1···jq

i1···ip
∂xi

−
p∑

k=1

Γα
iik

T
j1···jq

i1···ik−1αik+1···ip

+
q∑

k=1

Γjk
iαT

j1···jk−1αjk+1···jq

i1···ip .

Our calculation for Y = Y j ∂
∂xj was the special case of a (0, q)-tensor—a

vector (field).
We now define the ∇ operator in such a way that it maps a (p, q)-tensor

into a (p + 1, q) tensor (so it is really a series of operators, one for each
p). For a smooth function f on M (a (0, 0)-tensor), we define ∇f = df (a
(1, 0)-tensor). For a (p, q) tensor T , p ≥ 1, we define

(∇T )j1···jq

i1···ip+1
= (∇i1T )j1···jq

i2···ip+1
.

It makes sense to compose ∇ operators: ∇k = ∇· · ·∇ maps a (p, q)-tensor
to a (p + k, q)-tensor.

For instance, if f is a smooth function on a manifold,

(∇2f)ij =
∂2f

∂xi∂xj
− Γk

ij

∂f

∂xk
,

and is called the Hessian of f .
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Hebey defines the norm of ∇ku by

|∇ku| = gi1j1 · · · gikjk(∇ku)i1···ik(∇ku)j1···ik.

It appears, though, that this is actually |∇ku|2, which I will assume is the
case (I don’t think it would be a norm, otherwise). Note that this is a
definition, not a calculation, since ∇ku is a vector field only for k = 1.

Hebey’s |∇ku|2 (assuming I am right about the square), then, would be
the same as Aubin’s definition of |∇kϕ|2 on p. 32 (with ϕ in place of u) if
by ∇α1∇α2 · · · ∇αk

ϕ Aubin means what Hebey means by (∇kϕ)α1α2···αk
and

if Aubin means to have the indices raised after all the derivatives have been
performed (or if raising the indices somehow commutes with the derivatives).
Aubin’s terse definition 1.14 on p. 4 seems to indicate this may be the case.
If so, then Hebey’s definition of the Sobolev norm is identical to that of
Aubin’s.

In any case, when u is a real-valued function on the manifold—a (0, 0)-
tensor—∇ku is a (k, 0)-tensor. This looks a lot like a k-form, but is not
antisymetric; in any case, it is only its coefficients in a coordinate system
that enter into the Sobolev norms, and these coefficients contain all the
derivatives of order k along with lower-order derivatives. In the special case
of a connection with all of Γi

jk = 0, the coefficients would consist exactly
of all derivatives of order k, and in flat space, the definition of the Sobolev
space norm that Aubin gives would coincide with the usual definition.

Tensors

A (p, q)-tensor is a multilinear form that maps, for each x ∈ M the space

Tx(M)× · · · × Tx(M)× Tx(M)∗ × · · · × Tx(M)∗,

into R, where there are p products of Tx(M) and q products of Tx(M)∗. A
basis element for the space of (p, q)-tensors looks like

dxi1 ⊗ · · · ⊗ dxip ⊗ ∂

∂xj1
⊗ · · · ⊗ ∂

∂xjq
,

if that helps clear things up. We can write a (p, q)-tensor, T , in coordinates
as

T
j1···jq

i1···ip dxi1 ⊗ · · · ⊗ dxip ⊗ ∂

∂xj1
⊗ · · · ⊗ ∂

∂xjq
,

but we usually just write the coefficients T
j1···jq

i1···ip if the coordinate system is
understood.

A (p, q)-tensor transforms under changes of coordinates from x to y as
follows:

T̃
j1···jq

i1···ip = T
β1···βq
α1···αp

∂xα1

∂yi1
· · · ∂xαp

∂yip

∂yj1

∂xβ1
· · · ∂xjq

∂yβq
.
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