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2. Calculating the Symmetry Set

Parameterize a smooth, rectifiable curve γ : R → R2 by arc length,
where γ is periodic, or consider γ as mapping S1 into R2. Then two
points on the curve can be viewed as a single point (t1, t2) in R2 or on
the torus—the phase space.

If γ(t1) and γ(t2) are bi-tangent points—or, we might say, (t1, t2) is a
bi-tangent point in phase space—then there is some nonzero radius, r,
such that

γ(t1) + rN1 = γ(t2) + rN2

⇔ γ(t1)− γ(t2) = −r(N1 −N2)

⇔ γ(t1)− γ(t2) is parallel to N1 −N2

⇔ γ(t1)− γ(t2) is perpendicular to T1 − T2

⇔ g(t1, t2) = (γ(t1)− γ(t2)) · (T1(t1)− T2(t2)) = 0.

where Ti and Ni are unit tangent and normal vectors to the curve and
where g : R2 → R. There is an issue concerning the orientation of
the curve and of its associated normal and tangent vectors that we are
going to shove under the rug until near the end.

Hence, g−1(0) gives the points in phase space corresponding to pairs
of points on the curve that share a tangent circle. We call the locus of
the centers of such pairs of points the symmetry set.
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Actually, there is a problem with this in that the points on the curve
needn’t be distinct. In fact, when t1 = t2, g(t1, t2) = 0, and the points
(being the same point) share a bi-tangent circle of any radius. Applying
the epsilon-neighborhood theorem, and using the fact that the curve is
a compact one-manifold (crossing itself is only a minor issue), and soWhat I say here

isn’t true; take a
circle for instance.
It is generically
true, though, but
for the wrong
reason. In any case,
how closely a point
on the curve makes
contact with it
osculating circle
enters in.

has bounded curvature (being rectifiable), we can see that the set

A = {(t, t) : t ∈ R} ,

is a component of g−1(0) that is bounded away from all points in phase
space corresponding to the symmetry set, so we don’t really have a
problem.

So in what follows, we should properly use g−1(0)\A in place of g−1(0).

Suppose we know that the point (t1, t2) ∈ g−1(0). Then at (t1, t2)

γ(t1)− γ(t2) = −r(N1 −N2),

and

∂g/∂t1 = γ′(t1) · (T1 − T2) + (γ(t1)− γ(t2)) · T ′
1(t1)

= T1 · T1 − T1 · T2 − r(N1 −N2)k1N1, since γ′(t1) = T1

= (1− T1 · T2)− rk1(N1 ·N1 −N2 ·N1)

= (1− T1 · T2)(1− rk1),

where k1 is the curvature of γ at t1 and where we used the fact that
T1 · T2 = N1 ·N2. A similar result for ∂g/∂t2 shows that

∂g/∂ti = (1− T1 · T2)(1− rki), i = 1, 2.

So g−1(0) is locally a smooth one-manifold as long as the differential
at (t1, t2) is nonzero—that is, as long as either 1 − rk1 or 1 − rk2 is
nonzero. It does not follow that the symmetry set is a smooth manifold
under the same conditions, an issue we discuss later. However, for a
“generic” curve, 0 is a regular value of g, and so g−1(0) is globally a
one-manifold.

Since

1− rki < 0 ⇒ bi-tangent circle contains osculating circle at ti,

1− rki > 0 ⇒ bi-tangent circle within osculating circle at ti,

1− rki = 0 ⇒ bi-tangent circle is osculating circle at ti,

g−1(0) is locally a one-manifold as long as the bi-tangent circle is not
simultaneously the osculating circle for both γ(t1) and γ(t2); when this
occurs, we will have an isolated point of g−1(0).
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These equations are sufficient to compute the symmetry set. For a
regularly spaced lattice in phase space we can determine numerically
(using bisection, say) any bi-tangent points lying near the lattice points.
Starting at each bi-tangent point we walk along a portion of the sym-
metry set by solving the differential equation

∂t2/∂t1 = −(∂g/∂t1)/(∂g/∂t2)

= −1− rk1

1− rk2

We walk first forward and then backward from the starting point. Some
care is required when either 1− rk1 or 1− rk2 is zero, and it is smart
to increment t1 when |1− rk1| ≥ |1− rk2| and increment t2 otherwise.

From the sign of ∂t2/∂t1 and ∂2t2/∂
2t1, we can determine how t2

changes as a function of t1 locally.

3. Characterizing the Symmetry Set Locally

To better characterize the local properties of the symmetry set we need
to either come up with a new real-valued function whose inverse of a
point is the symmetry set, or we need to expand our phase space to
include the radius of the bi-tangent circle, and then project from phase
space to the symmetry set. We pursue the latter approach.

Let

f : R× R× R → R2,

f(t1, t2, r) = γ(t1)− γ(t2) + r(N1(t1)−N2(t2))

and let

c : R3 → R2,

c(t1, t2, r) = γ1(t1) + rN1(t1).

Then f−1(0) is the set of all values (t1, t2, r) such that there is a circle
bi-tangent to two points on the curve, where γ(t1) and γ(t2) are the
points and r is the radius of the bi-tangent circle. Then c(t1, t2, r) gives
the position of the center of this bi-tangent circle—that is, a point on
the symmetry set.

A problem with this is that the points on the curve needn’t be distinct.
In fact, when t1 = t2, all values of r give f(t1, t2, r) = 0, and so the



4 JIM KELLIHER

values of c(t1, t2, r) cover all points in the plane. So we must eliminate
t1 = t2 from the inverse image of f before applying c. Applying theWhat I say here is

also wrong; see the
margin comment in
the previous section
regarding the same
issue.

epsilon-neighborhood theorem, and using the fact that the curve is a
compact one-manifold (crossing itself is only a minor issue), and so has
bounded curvature (being rectifiable), we can see that the set

A = {(t, t, r) : t, r ∈ R} ,

is a component of f−1(0) such that c(A) contains no points of the
symmetry set. Thus, the set

c(f−1(0)) \ A

is the symmetry set.

Suppose that (t1, t2, r) ∈ f−1(0), t1 6= t2. Then f−1(0) will be a smooth
curve near (t1, t2, r) if f is locally a submersion—that is, if

dfp = ((1− k1r)T1 − (1− k2r)T2 N1 −N2)

(a 2× 3 matrix) is of full rank (rank 2). (Here we used that fact thatThe orientation of T
and N are
backwards from
what I now
generally prefer.

N ′
i = −kiTi.) This will occur exactly when the bi-tangent circle is the

osculating circle for at most one of the two bi-tangent points.

The symmetry set will be smooth when c is locally an immersion. If
we let p ∈ f−1(0), then c is an immersion at p if a nonzero tangent
vector in Tpf

−1(0) is mapped to a nonzero tangent vector under dcp.
Since Tpf

−1(0) = ker dfp, this is equivalent to requiring that

ker dfp ∩ ker dcp = {(0, 0, 0)} .

A simple calculation gives

dcp = ((1− k1r)T1 0 N1) .

Now, suppose the bi-tangent circle is the osculating circle at neither
γ(t1) nor γ(t2). Then ker dfp ∩ ker dcp is the solution for (a1, a2, b) to
the simultaneous equations:

a1(1− k1r)T1 − a2(1− k2r)T2 + b(N1 −N2) = 0,

a1(1− k1r)T1 + bN1 = 0.

From the second equation, ker dcp = {(0, a2, 0) : a2 ∈ R} since T1⊥N1

and so from the first equation, ker dfp ∩ ker dcp = {(0, 0, 0)} and so c is
locally an immersion and the symmetry set is locally smooth.

Now let (a1, a2, b) ∈ ker dfp. Then the first of the two equations above
still applies, while the LHS of the second equation gives us the tangent
vector, v, to the symmetry set at the point c(p). Thus,

v = a1(1− k1r)T1 + bN1 = a2(1− k2r)T2 + bN2.
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Taking the dot product of both sides by N2,

a1(1− k1r)T1 ·N2 + bN1 ·N2 = b,

since T2 and N2 are perpendicular and N2 is a unit vector. Since
N1 6= N2 (else they could not share a bi-tangent circle), 1−N1 ·N2 6= 0
and we can solve for b in terms of a1:

b =
a1(1− k1r)T1 ·N2

1−N1 ·N2

.

Then

v = a1(1− k1r)T1 +
a1(1− k1r)T1 ·N2

1−N1 ·N2

N1

=
a1(1− k1r)

1−N1 ·N2

[(1−N1 ·N2)T1 + (T1 ·N2)N1]

= C [(1−N1 ·N2)T1 + (T1 ·N2)N1]

= C [T1 − ((N1 ·N2)T1 − (T1 ·N2)N1)]

= C [T1 − ((T2 · T1)T1 + (T2 ·N1)N1)]

= C (T1 − T2) ,

where we used the following facts:

(i) N1 ·N2 = T1 · T2.
(ii) If θ is the angle between T1 and T2, then

T1 ·N2 = cos(θ + π/2) = − sin θ = − cos(π/2− θ) = −T2 ·N1.

(iii) {T1, T2} form an orthonormal basis in R2 and so (T2 · T1)T1 +
(T2 ·N1)N1 = T2.

Thus, the tangent line to the symmetry set has direction vector T1−T2.

More than this can be said about the nature of cusps of the symmetry
set. See section 6 of Giblin and Brassett for details.

4. How we shoved an orientation issue under the rug

Notice that in showing that T1·N2 = −T2·N1 and also in T1·T2 = N1·N2

in the previous section, we have assumed a consistent orientation to the
tangent vectors at both point. But the bi-tangent circle can be tangent
to the curve on the “inside” at one point and on the “outside” at the
other point: this would change the calculation of the direction vector
T1−T2 from T1+T2. This is the issue that we have ignored throughout.
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The main issue here is the difficultly of properly determining the ori-
entation in an algorithm. One possibility might be to consider the two
functions,

f+(t1, t2, r) = γ(t1)− γ(t2) + r(N1(t1)−N2(t2)), and

f−(t1, t2, r) = γ(t1)− γ(t2) + r(N1(t1) + N2(t2)).

Of course, this orientation issue will not occur for points for which the
bi-tangent circle is tangent to the closest points on the curve, because
the curve must cross the bi-tangent circle (or itself) to reverse the
orientation. And these points are of the greatest interest because they
lie on the boundary of the largest possible epsilon neighborhood of the
curve.

5. Characterizing the Symmetry Set Globally

If 0 is a regular value of g—the generic case—then g−1(0) is a one-
manifold, though most likely not connected. Each component of g−1(0)
maps to a connected subset of points on the curve via

π : R2 → R2,

π(t1, t2) = (γ(t1), γ(t2));

that is, to a portion of the curve. This curve then maps continuously to
points in the symmetry set via γ(t1)+rN1, where r is also a function of
t1 and t2. Thus each component in g−1(0) is mapped to a component
in the symmetry set.

Let C be a component of g−1(0). By the characterization of one-
manifolds, we know that C is (diffeomorphic to) either a circle or an
open line segment. Question: Will a circle produce four or more cusps
in the symmetry set? I believe this is true, but need to reconcile this
view of things with Giblen and Brassett’s argument on p. 694 con-
cerning how t2 can vary with a function of t1. Observe that the circle
cannot intersect the line t1 = t2 in phase space since (draw a picture)
that would require some point (t, t) to be on the circle, and the epsilon-
neighborhood theorem excludes such points.

If C is an open line segment, then its image will be an open curve,
which could intersect itself. Question: could it have cusps? I believe
so, for the same reason as a circle, and I think it must (in a generic
sense) have an even number of them. Transversality and intersection
theory could be brought in here.
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Question: is the symmetry set connected (when 0 is a regular value
of g)? I think so. I think the basic idea is to project the t1 and
t2 coordinates of each component of the one-manifold in phase space
onto the curve. This will cover the curve, since every point on the
curve has at least one bi-tangent point (the symmetry set having no
isolated points when 0 is a regular value). Then argue that overlapping
projections lead necessarily to overlapping portions of the symmetry set
because of tri-tangent points. Produce a path from any point on the
symmetry set to another this way.


