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Abstract. We adapt methodology of Tosio Kato to establish necessary and sufficient condi-
tions for the solutions to the Navier-Stokes equations with Dirichlet boundary conditions to
converge in a strong sense to a solution to the Euler equations in the presence of a boundary
as the viscosity is taken to zero. We extend existing conditions for no-slip boundary con-
ditions to allow for nonhomogeneous Dirichlet boundary conditions and curved boundaries,
establishing several new conditions as well. We make some speculations on how the vanish-
ing viscosity limit might hold, and give a brief comparison of various correctors appearing
in the literature used for similar purposes.
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1. Introduction

In his seminal paper [26], Tosio Kato established necessary and sufficient conditions for
solutions to the Navier-Stokes equations with no-slip boundary conditions to converge as the
viscosity goes to zero to a solution to the Euler equations—the so-called vanishing viscosity
or inviscid limit. In the “generic” case in which no special symmetries or partial analyticity
of the initial data or geometry is assumed, whether or not this limit holds in even one instance
is not known. Most of what has been learned about the generic case fits neatly into Kato’s
original approach using his original corrector. There have been refinements, most notably
those of Xioaming Wang in [65] building on his work with Roger Temam in [60] (these two
papers seem to have revived interest in [26]). See also [6, 7, 9, 29, 30, 31, 32].

In this paper, we turn Kato’s energy argument, incorporating a fairly recent way of decom-
posing the nonlinear terms from [7], into a tool (Theorem 4.3) we then apply to obtain, using
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more uniform methodology, the various existing conditions in [65, 29, 30] for the vanishing
viscosity limit to hold. In the process, we develop several novel conditions as well.

The strong vanishing viscosity limit. Let Ω be a bounded domain in Rd, d ≥ 2, having
a C2 boundary, and define

Q := [0, T ]× Ω

for some fixed T > 0. We consider solutions to the Navier-Stokes equations,

(NSg)


∂tug + ug · ∇ug +∇pg = ν∆ug in Q,

div ug = 0 in Q,

ug(0) = u0 in Ω,

ug = g on [0, T ]× ∂Ω.

Here, ν > 0 is the constant viscosity and u0 is the divergence-free initial velocity with u0·n = 0
on the boundary, ∂Ω, where n is the outward unit normal vector. The function g is defined
on ∂Ω, with g · n = 0.

The vector field g induces a type of boundary forcing that influences the solution near
the boundary, its effects spreading over time through the body of the fluid. An example
is a constant-magnitude g that describes the rotation of a circular boundary, as analyzed
in [12, 13]. No-slip boundary conditions, g ≡ 0, yield the Navier-Stokes equations in their
classical form1,

(NS)


∂tu0 + u0 · ∇u0 +∇p0 = ν∆u0 in Q,

div u0 = 0 in Q,

u0(0) = u0 in Ω,

u0 = 0 on [0, T ]× ∂Ω.

Note that u0, like ug, depends upon ν, though, following Kato, we suppress ν in our notation.
When ν = 0, (NSg), for any g, formally reduces to the Euler equations with no-penetration

boundary conditions:

(E)


∂tu+ u · ∇u+∇p = 0 in Q,

div u = 0 in Q,

u(0) = u0 in Ω,

u · n = 0 on [0, T ]× ∂Ω.

A longstanding open question in incompressible fluid mechanics is whether u0 converges
to u as ν → 0 and, if so, in what manner. That u0 has some weak limit in L2(0, T ;L2(Ω))
is assured by the uniform-in-ν bound in the space of weak solutions (as in (1.6)). Recently,
the work of Constantin and Vicol in [11] and then in conjunction with Lopes Filho and
Nussenzveig Lopes in [10] has brought renewed interest in weak convergence to weak solutions.
In this paper, however, we will be restrict ourselves to the question of whether or not what
we will call the strong vanishing viscosity limit,

∥ug(t)− u(t)∥2 + ν

∫ t

0
∥∇(ug(s)− u(s))∥2 ds→ 0 as ν → 0, (1.1)

1Most of the literature that follows in the tradition of Kato assumes g ≡ 0. A notable exception is Xiaoming
Wang’s [65], whose setting is similar to the one we have here, though he assumes a flat boundary.
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holds for all t ∈ [0, T ]. Here and throughout,

f scalar-valued : ∥f∥ := ∥f∥L2(Ω) =

(∫
Ω
f2
) 1

2

,

v vector-valued : ∥v∥ := ∥|v|∥,
M matrix-valued : ∥M∥ := ∥|M |∥,

(1.2)

where |M |2 =
∑

ij M
2
ij . We will write (·, ·) for the corresponding inner-product.

We are most interested in (1.1) in the special case of no-slip boundary conditions, in which
g ≡ 0. It was shown by Tosio Kato in [26] that when u is sufficiently regular, (1.1) is
equivalent, for g ≡ 0, to the weaker condition,

u0 → u in L∞(0, T ;L2(Ω)) as ν → 0, (1.3)

which is often referred to as the classical vanishing viscosity limit. This equivalence comes
from the observation that if (1.3) holds it necessarily follows that

lim sup
ν→0

ν

∫ t

0
∥∇u0∥2 = 0. (1.4)

(If the limsup is positive, we say the sequence (u0)ν>0 has an energy defect.)
That (1.3) implies (1.4), and hence implies (when u is sufficiently regular) (1.1), is clear

when g ≡ 0: If (1.3) is to hold, then the energy for u0 must converge to the energy for u,
which is conserved over time. By the classical energy equality for (NS) ((1.6), below) this
can only happen if (1.4) holds. The situation for g ̸≡ 0 is more complicated, as we will see,
because of the more complicated energy bound in (1.8).

We require that the initial velocities be the same for all solutions, so that the vanishing
viscosity limit has some chance to hold. (It is also possible to allow ug(0) → u0 as ν → 0.)
As a consequence, unless u0|∂Ω = g(0), ug has an initial boundary layer in that there is an
immediate discrepancy in boundary values after the initial time.

Dimension 2. We restrict our arguments to dimension d = 2, which yields four related
simplifications. First, and most important, the well-posedness and regularity theory for
solutions to both the Euler and Navier-Stokes equations are more well-developed in two
dimensions than in higher dimensions. Solutions will be global in time, and we will be able
to give nearly minimal assumptions on the initial and boundary data required to obtain our
results. This also makes it easy to justify all of our energy arguments.

Second, the various energy equalities that we obtain would only be energy inequalities in
higher dimension, which would require additional work to properly treat (see Remark 1.6).
Third, for d ≥ 3, weak solutions would have only a type of weak continuity to time zero.
Fourth, the vorticity, ωg = curl(ug) := ∂1u

2
g−∂2u1g, is a scalar in 2D, which simplifies the form

of certain expressions. We do not use the vorticity formulation of the equations, however, so
this simplification is more cosmetic than fundamental, as vortex stretching would never be
(directly) encountered.

Nonetheless, most of our analyses and results would apply to all d ≥ 3 up to the time of
existence of smooth solutions to the Euler equations, with only minor, technical adaptations.

Well-posedness.

Theorem 1.1 (Theorem 4.1 of [40]). Assume that u0 ∈ Ck,α(Ω) ∩ H for some integer
k ≥ 1 and α ∈ (0, 1). There exists a unique solution to (E) with u ∈ C([0,∞);Ck,α(Ω)),
∂tu ∈ C([0,∞);Ck−1,α(Ω)), and

∥u(t)∥ = ∥u0∥. (1.5)
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We define the classical spaces of fluid mechanics,

H := {v ∈ L2(Ω)2 : div v = 0, v · n = 0},
V := {v ∈ H1

0 (Ω)
2 : div v = 0},

where u · n ∈ H− 1
2 (∂Ω) is defined in the sense of a trace.

Theorem 1.2. Assume that u0 ∈ H. There exists a unique solution to (NS) with

u ∈ C([0,∞);H) ∩ L2(0,∞;V ), ∂tu ∈ L2(0, T ;V ′),

and

∥u0(t)∥2 + 2ν

∫ t

0
∥∇u0∥2 = ∥u0∥2. (1.6)

Moreover, for any T > 0 and φ ∈ L2(0, T ;V ),∫ T

0
⟨∂tu, φ⟩V ′,V +

∫ T

0
(u · ∇u, φ) + ν

∫ T

0
(∇u,∇φ) = 0. (1.7)

Proof. See Theorem II.7.3 of [14], Theorem V.1.4 of [5], the discussion following (V.7) in [5],
and Proposition V.1.3 of [5]. □

Note that Theorem 1.1 continues to hold with forcing in L2(0, T ;H).
For (NSg), we have well-posedess as stated in Theorem 1.4. Its proof is fairly standard,

but we include it in Section 10 because of the specific form of the energy inequality that we
use. The energy bound in Theorem 1.4 is expressed in terms of the function g extended as
in Lemma 1.3, also proved in Section 10.

Lemma 1.3. Let g ∈ L2(0,∞;H
3
2 (∂Ω)), g·n = 0 on [0,∞)×∂Ω, with ∂tg ∈ L2(0,∞;H

1
2 (∂Ω)).

There exists a divergence-free extension of g to g ∈ L2(0,∞;H ∩H2(Ω)2) (which we continue
to call g) with ∂tg ∈ L2(0,∞;H ∩H1(Ω)2). If u0|∂Ω = g(0) then we can have g(0) = u0.

By adding g to V , we obtain the affine space V + g.

Theorem 1.4. Assume that u0 ∈ H and g is as in Lemma 1.3. There exists a unique
solution to (NSg) with

ug ∈ C([0,∞);H) ∩ L2(0,∞;V + g), ∂tug ∈ L2(0, T ;V ′),

and

∥ug(t)∥2 + 2ν

∫ t

0
∥∇ug∥2

≤ 2

(
∥g(t)∥2 + 2ν

∫ t

0
∥∇g∥2

)
+ 2

(
2∥u0∥2 + C(ν, t)

)
et+2

∫ t
0 (∥∇g∥L∞ ),

(1.8)

where

C(ν, t) := 2∥g(0)∥2 +
∫ t

0
∥Fg∥2, Fg := ν∆g − ∂tg − g · ∇g.

Moreover, (1.7) holds for any T > 0 and φ ∈ L2(0, T ;V ).

Because g is independent of ν, both (1.6) and (1.8) yield an energy bound that is in-
dependent of the viscosity (restricting to, say, ν ≤ 1 for (1.8)). When g ≡ 0, the energy
inequality in (1.8) reduces to the inequality arising from (1.6) with an additional factor of
4et. Hence, the bound is not optimal in terms of g, an issue that is closely connected to the
strong vanishing viscosity limit itself (see Section 11.3).
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For our results, we will make the following assumption on the data for k = 1 or 2:

(Assk)


g ∈ L2(0,∞;H

3
2 (∂Ω)) with g · n = 0 on [0,∞)× ∂Ω,

∂tg ∈ L2(0,∞;H
1
2 (∂Ω)),

u0 ∈ Ck,α(Ω) ∩H,
∂Ω is C2.

(1.9)

Remark 1.5. Because Ω is bounded, Ck,α(Ω) ⊆ H1(Ω)2, so if (Ass1) is satisfied then the
hypotheses on the data for Theorems 1.2 and 1.4 are also satisfied.

Remark 1.6. As pointed out in the discussion following (V.7) of [5], the ability to apply
a test function φ ∈ L2(0, T ;V ) in formulating the definition of a weak solution to (NS) as
in (1.7) is very much specific to 2D. (These same comments apply to solutions to (NSg).)
This will allow us to easily make the vanishing viscosity energy argument in the proof of
Proposition 4.1. In 3D, one avoids (1.7) by using the energy inequality and applying only the
corrected Euler velocity as the test function for (NSg), as Kato did in [26].

Although we treat a bounded domain in 2D, our results apply as well to a channel periodic
in the x1-direction and to a half-plane, {(x1, x2) : x2 > 0}. (In particular, note that our only
use of Poincaré’s inequality is through Lemma 2.6 in a boundary layer, which remains valid
in these settings.)

Related work. In [26], Kato employs a simple energy argument that almost anyone explor-
ing the vanishing viscosity limit for the first time would attempt. Hence, one cannot say
that the use of energy arguments in the vanishing viscosity limit or related singular limits,
natural as they are, necessarily means that the author is following in the tradition of Kato.
Indeed, some of the most striking results, which make assumptions on the initial data in-
volving some degree of analyticity, such as [47, 48, 43], make only secondary use of energy
arguments and do not follow Kato (one might say they follow Prandtl); see also the more
recent, [37, 36, 38, 3]. Nonetheless, there is by now a fairly sizeable literature going beyond
the study of the strong vanishing viscosity limit, the topic of this paper, that appear very
influenced by Kato’s approach, adapting his argument and philosophy to a greater or lesser
extent. This literature includes papers where the boundary condition is (directly or indi-
rectly) changed [66, 49], the domain is expanded to the whole space or shrunk to a point
or points [34, 22], there is some special symmetry to the geometry and initial data [45, 31],
or the argument is applied to slightly different equations with sometimes different boundary
conditions [42, 50, 67, 2, 39, 41].

Kato’s insight was to clearly identify the balance of the two, uncontrollable terms appearing
in his energy argument, and to understand that the only feasible thing to do was to create
from them a single necessary and sufficient condition to control them both. This balance does
not change as long as g · n = 0 on the boundary. If we drop this restriction, however, the
nature of the problem can change dramatically. This is most clearly seen in [53] (extended
in [17] to a bounded domain), in which the vanishing viscosity limit is obtained for inflow,
outflow boundary conditions in 3D, in which g · n < 0 on some components, g · n > 0 on
others. (We discuss this further in Section 12.2.)

Organization of this paper. We begin in Section 2 by defining the coordinate system
we will use in a boundary layer and give some lemmas we will find useful throughout the
paper. We define what we call a fully scalable corrector (our prime example being that of
Kato in [26]) in Section 3, using such a corrector in Section 4 to develop a tool we use in
subsequent sections to establish necessary and sufficient conditions for the strong vanishing
viscosity limit to hold. We argue in Section 5 that a boundary layer width proportional to
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the viscosity, as used by Kato in [26], along with an infinitesimally wider one employed by
Wang in [65], are the two most useful choices in the context of Kato’s argument.

In Sections 6 and 7, we apply, with Kato’s width, the tool developed in Section 4 to obtain
results in the spirit of Kato’s original [26]. We employ the infinitesimally wider layer of Wang
in Section 8 to obtain a few simple results. We also reproduce the result of Xiaoming Wang’s
[65]. We explain in Section 9 how the result from [30] on the formation of a vortex sheet on
the boundary continues to hold for nonhomogeneous boundary conditions. We give the proof
of Lemma 1.3 and Theorem 1.4 in Section 10.

In Section 11 we make a few speculations and conjectures on the strong vanishing viscosity
limit. In particular, we treat the case of zero initial data with g ̸≡ 0, demonstrating how
the strong vanishing viscosity limit is closely connected to optimizing the energy bound in
Theorem 1.4. We close in Section 12 with an overview of other correctors appearing in the
literature used to analyze the vanishing viscosity limit, most of them in the tradition of
Kato. Appendix A contains proofs some of the curvilinear coordinate expressions stated in
Section 2, which are, however, fairly standard. Appendix B proves the estimates on Kato’s
corrector stated in Section 3.

u = ug

For notational simplicity, until Section 10 we drop the g subscript, writing u for ug.

2. Coordinates

Let n, τ be the outward unit normal, tangent vectors to ∂Ω chosen so that (n, τ ) is in the
standard orientation of (e1, e2). Since ∂Ω is C∞, there exists a tubular neighborhood (in Ω)
of width δ > 0. For any δ > 0 we define

Γδ = {x ∈ Ω: dist(x, ∂Ω) < δ}.

Remark 2.1. Throughout this paper, we assume without comment that δ ∈ (0,min{δ/2, 1}).

Each component of ∂Ω has its own component of Γδ. We define coordinates on Γδ, and
hence on each Γδ, component-by-component. Fix an arbitrary point b in a given component
of ∂Ω and let a be any point in the corresponding component of Γδ, then let a′ be the closest
point to a on ∂Ω. We define coordinates (x1, x2) for the point a by

x1 = the arc length along ∂Ω from b to a′ in the τ direction,

x2 = |a− a′|.

Another way of expressing this is that (x1, x2) are coordinate values in the (τ ,−n) coordinate
frame with (τ ,−n) extended from ∂Ω to Γδ in the natural way—orthogonally to ∂Ω.

We will use coordinates and write vectors in component form only when working with
functions or vector fields supported in a tubular neighborhood. Hence, (x1, x2) never refers
to Cartesian coordinates, but always to the coordinates we just defined, and

∂j := ∂xj , j = 1, 2 where x1, x2 are defined on Γδ.

In these coordinates, the form of ∇, div, and ∆ are distorted because of the curvature of the
boundary, with div and ∆ also including lower-order terms. For most of our calculations,
these will have only a minor effect, but they will impact some of the more delicate estimates.
We give the form of these operators in Lemma 2.2. We give the proof of Lemma 2.2 in
Appendix A.

In Lemma 2.2, ∇⊥ is the operator ∇ rotated 90 degrees counterclockwise.
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Lemma 2.2. In Γδ, with coordinates defined as above, let f = f(x1, x2) be a scalar-valued
function and

v = (v1, v2) := v1τ + v2(−n) = v1τ − v2n,

a vector-valued function. Writing κ = κ(x1) for the curvature at (x1, 0),

v⊥ = (−v2, v1), ∇f = J∂1fτ − ∂2fn = (J∂1f, ∂2f),

∇⊥f = −∂2fτ − J∂1fn = (−∂2f, J∂1f), div v = J∂1v
1 + ∂2v

2 − κJv2,

curl v = J∂1v
2 − ∂2v

1 + κJv1, ∆f = J2∂21f + ∂22f − κJ∂2f + x2κ
′J3∂1f,

where

J = J(x1, x2) := (1− κx2)
−1 (2.1)

is the Jacobian determinant for the map from Cartesian coordinates to (x1, x2) coordinates.
If u = (u1, u2) is also vector-valued in Γδ then

u · v = ujvj ,

where we use implicit summation notation. Using (x1, x2) coordinates,

u · ∇v =
(
Ju1∂1v

1 + u2∂2v
1, Ju1∂1v

2 + u2∂2v
2
)
.

When integrating by parts in Γδ, we will use Lemma 2.3.

Lemma 2.3. Assume that f and g are smooth scalar-valued functions on Ω supported in Γδ.
Then for j = 1, and also for j = 2 if fg vanishes on ∂Ω,

(∂jf, g) = −(f, ∂jg) + (f, αjg),

where α1 = x2κ
′J , α2 = κJ (J being as in (2.1)) are smooth and independent of δ. Here, as

always, (·, ·) is the L2-inner product on Ω or, because of the supports, on Γδ.

Proof. Let Γk
δ be one of the finite number of components of Γδ, and let ℓ be the arc length of

the boundary. Then we can write∫
Γk
δ

∂1f g =

∫ ℓ

0

∫ δ

0
∂x1f(x1, x2)g(x1, x2)J(x1, x2) dx2 dx1.

Integrating by parts in x1, and noting that f and g are periodic in x1 so there is no
boundary term, we have∫

Γk
δ

∂1f g = −
∫ ℓ

0

∫ δ

0
f(x1, x2)∂x1(g(x1, x2)J(x1, x2)) dx2 dx1

= −
∫ ℓ

0

∫ δ

0
f(x1, x2)∂x1g(x1, x2)J(x1, x2) dx2 dx1

−
∫ ℓ

0

∫ δ

0
f(x1, x2)g(x1, x2)

∂x1J(x1, x2)

J(x1, x2)
J(x1, x2) dx2 dx1

= −
∫
Γk
δ

(f∂1g + fgα1) ,

where α1 = ∂x1J/J = x2Jκ
′. Summing this expression over each component Γk

δ gives the
result for j = 1. The argument for j = 2 is similar, using the vanishing of fg on ∂Γδ. □
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We will also integrate by parts over all of Ω in coordinate-free form. Since we are working
with smooth functions, the most basic form is

(u,∇f) + (div u, f) =

∫
Ω
(u · n)f. (2.2)

Here (f, g) =
∫
Ω fg is the L2-inner product; for vector fields u, v, the L2-inner product is

(u, v) :=
∫
Ω u · v. This form of integrating by parts leads to Lemmas 2.4 and 2.5.

Lemma 2.4. Let v1, v2 ∈ H ∩H2 and set ωj = curl vj, j = 1, 2. Then,

(∇v1,∇v2) = (ω1, ω2) +

∫
∂Ω

(ω2(v1 · τ )− κv1 · v2).

Proof. We have,

(∇v1,∇v2) = −(v1,∆v2) +

∫
∂Ω

(∇v2 · n) · v1 = −(v1,∇⊥ω2)−
∫
∂Ω
κv1 · v2,

where we used Lemma 4.1 of [28] for the boundary integrand. But,

−(v1,∇⊥ω2) = (v⊥1 ,∇ω2) = −(div v⊥1 , ω
2)−

∫
∂Ω

(v⊥1 · n)ω2 = (ω1, ω2) +

∫
∂Ω
ω2(v1 · τ ).□

The following is adapted from Lemma A.4 of [29]:

Lemma 2.5. For all vector fields, u ∈ H1(Ω), v ∈ H,

(u · ∇u, v) = (u⊥ curlu, v).

Proof. We have,

(u · ∇u, v) = (u · (∇u− (∇u)T ), v) + (u · (∇u)T , v).

But,

(u · (∇u)T ) · v = (ui∂ju
i, vj) =

1

2
(v,∇|u|2) = 0,

so

(v, u · ∇u) = (ui(∂iu
j − ∂ju

i), vj) = (u1(∂1u
2 − ∂2u

1), v2) + (u2(∂2u
1 − ∂1u

2), v1)

=

∫
Ω
(u1v2 − u2v1) curlu = (u⊥ curlu, v). □

Lemma 2.6 is the form of Poincaré’s inequality that applies to a domain of given width
vanishing on one component of the boundary:

Lemma 2.6. Fix p ∈ [1,∞] and assume that f ∈W 1,p(Γδ) with f = 0 on ∂Ω. Then

∥f∥Lp(Γδ) ≤ Cδ∥∂2f∥Lp(Γδ),

where the constant C = C(Ω) is independent of p and δ (recall Remark 2.1).

Corollary 2.7. For all p ∈ [1,∞],

∥u1∥Lp(Γδ) ≤ Cδ∥∂2u1∥Lp(Γδ) + C ′δ
1
p ,

∥u2∥Lp(Γδ) ≤ Cδ∥∂2u2∥Lp(Γδ),
(2.3)

where the constant C is as in Lemma 2.6 and C ′ = ∥g∥W 1,∞(Ω) is independent of p and δ.
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Proof. Since u2 = −g · n = 0 on ∂Ω, the inequality for ∥u2∥Lp(U) follows directly from
Lemma 2.6. For the other inequality, we have

∥u1∥Lp(Γδ) ≤ ∥u1 − g1∥Lp(Γδ) + ∥g1∥Lp(Γδ)

≤ Cδ∥∂2(u1 − g1)∥Lp(Γδ) + Cδ
1
p ∥g1∥L∞(Ω)

≤ Cδ∥∂2u1∥Lp(Γδ) + Cδ
1+ 1

p ∥∂2g1∥L∞(Γδ) + Cδ
1
p ∥g1∥L∞(Ω)

≤ Cδ∥∂2u1∥Lp(Γδ) + C∥g∥W 1,∞δ
1
p ,

where we again applied Lemma 2.6, and used that Ω has finite measure. □

Lemma 2.8 is a version of Hardy’s inequality, as in Lemma II.1.10 in [54], which we have
combined with Poincaré’s inequality.

Lemma 2.8. Assume that f ∈ H1(Γ2δ) with f = 0 on ∂Ω,

∥f/x2∥L2(Γδ) ≤ CH∥∂2f∥L2(Γ2δ),

where we recall that x2 is the distance from a point to the boundary.

Proof—for long version only. In this proof, we use the cutoff function φδ of Defini-
tion 3.1. The proof follows that of Lemma II.1.10 in [54]—we include the proof only to
show that we can introduce the cutoff function φδ without introducing a factor of δ or some
positive or negative power of it, and to stress that we only need ∂2f not the full gradient.
(Though we do not take advantage of that.) Letting Γk

δ be a component of Γδ and integrating
as in the proof of Lemma 2.3,

∥f/x2∥2L2(Γk
δ )

≤ ∥φ2δf/x2∥2L2(Γk
δ )

=

∫ ℓ

0

∫ 2δ

0

[(φ2δf
2J

1
2 )(x1, x2)]

2

x22
dx2 dx1

≤ 2

∫ ℓ

0

∫ 2δ

0
|∂x2 [(φ2δf

2J
1
2 )(x1, x2)]|2 dx2 dx1.

Here, we used the classical Hardy inequality in the form,∫ ∞

0

∣∣∣g(x2)
x2

∣∣∣2 dx2 ≤ 2

∫ ∞

0
|g′(x2)|2 dx2,

applied to g(x2) := (φ2δf
2J

1
2 )(x1, x2), which we can treat as zero for x2 ∈ [2δ,∞). Then,

g′(x2) = (φ2δ ∂2f + ∂2φ2δ f)J
1
2 + φ2δf

2∂2(J
1
2 ).

Since J is C∞ with ∂2J bounded above and below, we can write

∂2(J(x1, x2)
1
2 ) = h(x1, x2)J(x1, x2)

1
2 ,

where h is bounded above by a constant that depends only upon Ω. Hence,

|g′(x2)|2 ≤ 2[(φ2δ ∂2f + ∂2φ2δ f)
2 + (φ2δf h)

2]J

≤ [4(φ2δ ∂2f)
2 + 4(∂2φ2δ f)

2 + 2(φ2δf h)
2]J

≤ [4(∂2f)
2 + Cδ−2f2 + 2f2h2]J.

We conclude that

∥f/x2∥2L2(Γk
δ )

= 2

∫
Γ2δ

[4(∂2f)
2 + Cδ−2f2 + 2f2h2]

≤ 8∥∂2f∥2L2(Γ2δ)
+ C[1 + δ−2]∥f∥2L2(Γ2δ)

≤ C∥∂2f∥2L2(Γ2δ)
,

by Lemma 2.6. □
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Lemma 2.9. Let v ∈ H and let f be supported in Γδ, both v and f being smooth. With
α1(x1, x2) = x2κ

′(x1)J(x1, x2), as in Lemma 2.3,

|(v2, f)| ≤ Cδ∥v1∥L2(Γδ)∥∂1f − α1f∥L2(Γδ).

Proof. Because v ∈ H, it has a stream function ψ, meaning that v = ∇⊥ψ = (−∂2ψ, ∂1ψ),
with ψ constant on each boundary component. Write Σj , j = 1, . . . , N for the N components

of ∂Ω and Γj
δ for the component of Γδ whose outer boundary is Σj . Let cj be the value of ψ

on Σj . Define a smooth function ξ on Ω such that ξ ≡ cj on Γj
δ. Then on Γδ, v = ∇⊥(ψ− ξ),

so applying Lemmas 2.3 and 2.6,

|(v2, f)| = |(∂1(ψ − ξ), f)| = |(ψ − ξ, ∂1f − α1f)| ≤ ∥ψ − ξ∥L2(Γδ)∥∂1f − α1f∥L2(Γδ)

≤ Cδ∥∂2(ψ − ξ)∥L2(Γδ)∥∂1f − α1f∥L2(Γδ) = Cδ∥v1∥L2(Γδ)∥∂1f − α1f∥L2(Γδ).

In the second inequality we used the vanishing of ψ − ξ on ∂Ω and in the last equality we
used that ∂2ψ = −v1 while ∂2ξ = 0 in Γδ. □

3. Fully scalable correctors

Our model corrector is that used by Tosio Kato in [26], which is an example of what we will
call a fully scalable corrector. Before stating precisely what we mean by this phrase, let us
first describe Kato’s corrector and give its key properties. We leave the detailed derivation
of these estimates to Appendix B.

Kato’s corrector. Let g be as in Lemma 1.3. We define Kato’s corrector separately in each
component of Γδ. Let

v := g − u, (3.1)

so that div v = 0 and v ·n = 0 on ∂Ω; that is, v ∈ H. Then let ψ be the stream function for
v, meaning that v = ∇⊥ψ, choosing ψ so that ψ = 0 on the given component of Γδ. Finally,
define the corrector z as

z(x1, x2) = zδ(x1, x2) := ∇⊥(φδ(x2)ψ(x1, x2)), (3.2)

where φδ is as in Definition 3.1:

Definition 3.1. Define the cutoff function φ : [0,∞) → [0, 1] to be a C∞ function with φ ≡ 1
on [0, 1/2] and φ ≡ 0 on [1,∞]. Define φδ(·) = φ(·/δ).

Then z is supported in Γδ and

div z = 0, z = g − u on ∂Ω, z · n = 0 on ∂Ω. (3.3)

(Actually, in [26], Kato used a matrix-valued M for which v = divM , an approach that
easily extends to higher dimension as well, as in [27, 30, 33]. In 3D, one could equivalently
use v = curlψ, for a vector-valued stream function ψ vanishing on the boundary (for simply
connected Ω), as developed, for instance, in [4, 64].)

Boundary layer width. Kato defined his corrector to have a support of width δ that was
constant in time, shrinking only in viscosity. We will also allow δ to vary with time. For
clarity, we make an explicit definition:

Definition 3.2. Assume that either

(1) δ = δ(ν) is continuous at ν = 0 with δ(0) = 0 or
(2) δ = δ(t, ν) is continuous at ν = 0 with δ(t, 0) = 0 and δ increasing in ν.
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Remark 3.3. Definition 3.2 (2) is a generalization of (1), though only when we assume
that δ(0, ν) = 0 does it extend (1) in a meaningful way. Also, we do not assume in (2) any
regularity of δ beyond continuity at ν = 0. This will be sufficient to take time derivatives
of δ, however, as we note in the derivation of (3.6), below. Although in practice one would
typically choose δ to be increasing in ν, this is not strictly needed in (1).

Remark 3.4. As mentioned in Remark 2.1, we always assume that δ(ν) or δ(t, ν) lies in
(0,min{δ/2, 1}) without explicitly commenting on that fact. In practice, this means that ν
must be sufficiently small, how small depending upon the choice of the δ function.

Proposition 3.5. Assume that δ is independent of time (though it may depend upon viscosity,
for instance, as in Definition 3.2 (1)). We have the following estimates for the Kato corrector
as defined in (3.2):

∥∂j1∂
k
2∂

m
t z

1∥Lp(Ω) ≤ Cδ
1
p
−k
, ∥∂j1∂

k
2∂

m
t z

2∥Lp(Ω) ≤ Cδ
1
p
+1−k

,

∥z · ∇z∥Lp(Ω) ≤ Czδ
1
p

(3.4)

for any p ∈ [1,∞], j, k ≥ 0, m = 0, 1, any t ∈ [0, T ]. The constants are independent of p and
depend only upon the initial data, T , j, k, and m.

Let δ be as in Definition 3.2 (2). The estimates in (3.4) for m = 0 (no time derivative)
continue to hold. We also have, for all p ∈ [1,∞] and t ∈ [0, T ],

∥∂tz1∥Lp(Ω) ≤ Cδ
1
p + C∂tδ δ

1
p
−1
, ∥∂tz2∥Lp(Ω) ≤ Cδ

1
p
+1

+ C∂tδ δ
1
p ,

∥∂tz∥Lp(Ω) ≤ Cδ
1
p
−1

(δ + ∂tδ).
(3.5)

Each of the constants above depend upon Ω, v, and T ; in particular, they increase with T .

Proof. We defer the proof to Appendix B. □

Fully scalable corrector. We can now define what we mean by a fully scalable corrector,
of which Kato’s corrector is our prime example.

Definition 3.6. A corrector is a vector field satisfying (3.3). We call a corrector fully
scalable if it can be defined for any parameter δ > 0, has support lying in the closure of
Γcδ for c independent of δ, and satisfies the same bounds as those on the Kato corrector in
Proposition 3.5.

Remark 3.7. An even simpler fully scalable corrector can be defined by z = ∇⊥α, where

α = −δv1(t, x1, 0)f(x2/δ),
where f is any function in C∞([0,∞) chosen so that f(0) = 0, f ′(0) = 1, and f supported
in [0, 1]. Then div z = div∇⊥α = 0 and,

z = (−∂2α, ∂1α) = (v1(t, x1, 0)f
′(x2/δ),−J(x1, x2)∂1v1(t, x1, 0)f(x2/δ)).

Then z|∂Ω = (v1(t, x1, 0), 0) = v|∂Ω and z is supported in Γδ. Since α is product form (for
a flat boundary only, because of the J factor), the estimates in Proposition 3.5 are as easily
obtained as they for the Kato corrector. As we will see in Section 12.1, Wang employed this
type of corrector in [65].

This corrector is one derivative less regular than that of Kato, which has no effect on our
analysis, since we are assuming C∞ initial data.

A few observations regarding fully scalable correctors are in order, as they will help guide
our strategy in employing one:

(1) Because z is supported on a set of Lebesgue measure Cδ, the bounds in Lp for p <∞
would follow from bounds in L∞.
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(2) Because z2 vanishes on the boundary and grows linearly away from it, it is small
compared to z1, which is merely bounded.

(3) Derivatives in x1 (tangential direction) are benign, having no effect on the estimates
beyond changing values of constants, while each derivative in x2 (normal direction)
increases the bound by a factor of δ−1.

(4) Time derivatives have no effect when δ is independent of time, and even when δ varies,
they are benign as long as we integrate the estimates in time.

As an application of observation (4), the final bound in (3.5) gives∫ t

0
∥∂sz(s, ν) ds∥ ≤ C

∫ t

0
δ(s, ν)

1
2 ds+ C

∫ t

0
∂s(δ(s, ν)

1
2 ) ds

≤ Ctδ(t, ν)
1
2 + C

[
δ(t, ν)

1
2 − δ(0, ν)

1
2

]
≤ C(1 + t)δ(t, ν)

1
2 ,

(3.6)

where we used that δ(·, ν) is increasing. We also used that for any increasing function,
f : [a, b] → R, f ′ ≥ 0 exists almost everywhere, and∫ b

a
f ′(s) ds ≤ f(b)− f(a).

The bound in (3.6), which we apply in (4.8), is the only bound on ∂tz that we will need.

Boundary vortex sheet. Let M(Ω) be the space of finite Borel signed measures on Ω:
M(Ω) is the dual space of C(Ω). Let µ in M(Ω) be the measure supported on Γ for which
µ|Γ corresponds to Lebesgue measure on Γ (arc length, since d = 2). For any fully scalable
corrector, we have a kind of convergence to a vortex sheet on the boundary in H1(Ω)′, as we
show in Proposition 3.8. (Note that µ is also a member of H1(Ω)′.)

Proposition 3.8. Let z be any fully scalable corrector. Assuming that δ is time-independent
as in (1) of Definition 3.2,

curl z → ((g − u) · τ )µ in H1(Ω)′ uniformly on [0, T ] as ν → 0.

Proof. Let h ∈ H1(Ω). Then

(curl z, h) = −(div z⊥, h) = (z⊥,∇h)−
∫
∂Ω

(z⊥ · n)h = (z⊥,∇h) +
∫
∂Ω

(z · τ )h

→ ((g − u) · τ )µ, h),

since |(z⊥,∇h)| ≤ ∥z∥∥∇h∥ → 0 by (3.4) and z = g − u on ∂Ω. □

Remark 3.9. The space H1(Ω)′ is not a distribution space, so convergence in it must be
used cautiously. Though it requires more effort to show, Kato’s corrector also converges as a
measure supported on the boundary, in the sense that

curl z → ((g − u) · τ )µ in M(Ω) uniformly on [0, T ] as ν → 0.

Such convergence does not follow from being a fully scalable corrector, though it does hold
for the corrector of Remark 3.7. Having such convergence should probably be viewed more as
a limitation than an advantage of the corrector, for such strong convergence should not, in
general, be expected of the difference, u− u.

4. Kato’s energy argument

The starting point for almost all of our analysis will be the energy inequality we obtain in
Proposition 4.1 for

w := u− u.
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Proposition 4.1. Make the assumption (Ass1) of (1.9). Let δ be as in Definition 3.2 and
let z be a fully scalable corrector as in Definition 3.6. Then

1

2
∥w(t)∥2 + ν

2

∫ t

0
∥∇w∥2 = A(t, ν) +B(t, ν) + C

∫ t

0
∥w∥2, (4.1)

where

A(t, ν) := −
∫ t

0
(u1u2, ∂2z

1) + ν

∫ t

0
(∇u,∇z) (4.2)

and

B(t, ν) ≤ C(1 + t)δ
1
2 .

The constants C depend upon T , u0, and g, though not upon ν ≤ 1.

Proof. Recalling Remark 3.3, we will assume that δ = δ(t, ν) is time varying as in (2) of
Definition 3.2.

Let

w̃ := w − z = u− u− z,

and note that div w̃ = 0 with w̃ = 0 on ∂Ω. Observe that from (1.8) and Proposition 3.5, we
know up front that at least

∥w̃(t)∥, ∥w(t)∥ ≤ C(T )

for all t ∈ [0, T ].
Subtracting the Euler equations from the Navier-Stokes equations gives

∂tw +∇(p− p) = ν∆u− u · ∇w − w · ∇u. (4.3)

(Section 5.3 explains why we start with the equation for w rather than for w̃.)
By Theorems 1.1 and 1.4 with Remark 1.5, u and u (and so z) have sufficient regularity

that w̃ ∈ L2(0, T ;V ). Hence, we can use w̃ as a test function for (NSg) as in (1.7). This
allows us to pair (4.3) with w̃. Then, using

(∂tw, w̃) =
1

2

d

dt
∥w∥2 − (∂tw, z),

ν(∆u, w̃) = −ν(∇u,∇w̃) = −ν(∇u,∇w) + ν(∇u,∇z)
= −ν(∇w,∇w)− ν(∇u,∇w) + ν(∇u,∇z)

≤ −ν∥∇w∥2 + ν

2
∥∇u∥2 + ν

2
∥∇w∥2 + ν(∇u,∇z)

≤ Cν − ν

2
∥∇w∥2 + ν(∇u,∇z),

(∇(p− p), w̃) = 0,

−(u · ∇w, w̃) = −(u · ∇w,w) + (u · ∇w, z) = (u · ∇w, z)
= (u · ∇u, z)− (u · ∇u, z) = −(u · ∇z, u)− (u · ∇u, z)
≤ −(u · ∇z, u) + ∥∇u∥L∞∥u∥∥z∥

≤ −(u · ∇z, u) + C∥z∥ ≤ −(u · ∇z, u) + Cδ
1
2 ,

−(w · ∇u, w̃) = −(w · ∇u,w) + (w · ∇u, z)

≤ ∥∇u∥L∞
(
∥w∥2 + ∥w∥∥z∥

)
≤ C∥w∥2 + Cδ

1
2 ,

we have
1

2

d

dt
∥w∥2+ν

2
∥∇w∥2 ≤ (∂tw, z) + Cν + Cδ

1
2 + C∥w∥2 − (u · ∇z, u) + ν(∇u,∇z). (4.4)
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We now examine −(u · ∇z, u). By virtue of Lemma 2.2, we can divide −(u · ∇z, u) into
parts as in [7], writing

−(u · ∇z, u) = −((Ju1∂1z
1 + u2∂2z

1), u1)− ((Ju1∂1z
2 + u2∂2z

2), u2)

= −(J∂1z
1, (u1)2)− (∂2z

1, u1u2)− (J∂1z
2, u1u2)− (∂2z

2, (u2)2).
(4.5)

One term in (4.5) is easily bounded:

−(J∂1z
2, u1u2) ≤ C∥∂1z2∥L∞∥u∥2 ≤ Cδ.

For two of the other terms, we use that

wiwj = uiuj − uiuj − uiuj + uiuj (4.6)

so that

uiuj = wiwj + uiuj + uiuj − uiuj .

Hence,

−(J∂1z
1, (u1)2) ≤ ∥J∂1z1∥L∞∥w∥2 + 2∥u∥L∞∥J∂1z1∥∥u∥+ ∥u∥2L∞∥J∂1z1∥L1

≤ C∥w∥2 + Cδ
1
2 + Cδ ≤ Cδ

1
2 + C∥w∥2

and, since ∂2z
2 has the same bounds as those on ∂1z

1 above,

−(∂2z
2, (u2)2) ≤ Cδ

1
2 + C∥w∥2.

We see, then, that

−(u · ∇z, u) ≤ Cδ
1
2 + C∥w∥2 − (u1u2, ∂2z

1). (4.7)

Returning to (4.4), then, we have

1

2

d

dt
∥w∥2 + ν

2
∥∇w∥2 ≤ (∂tw, z) + Cν + Cδ

1
2 + C∥w∥2 − (u1u2, ∂2z

1) + ν(∇u,∇z).

Integrating in time and using (3.6), we have∫ t

0
(∂tw, z) =

∫
Ω

∫ t

0
∂tw · z =

∫
Ω

[
w(t) · z(t)−

∫ t

0
w∂tz

]
≤ ∥w(t)∥∥z(t)∥+

∫ t

0
∥w∥∥∂tz∥ ≤ C∥z(t)∥+ C

∫ t

0
∥∂tz∥ ≤ Cδ

1
2 .

(4.8)

Then,

1

2
∥w(t)∥2 + ν

2

∫ t

0
∥∇w∥2

≤ C(1 + t)δ
1
2 + Cνt−

∫ t

0
(u1u2, ∂2z

1) + ν

∫ t

0
(∇u,∇z) + C

∫ t

0
∥w∥2,

which can be re-expressed in the form of (4.1). We used here that∫ t

0
δ(s, ν)

1
2 ds ≤ δ(t, ν)

1
2 t = δ

1
2 t,

since δ(s, ν) is increasing in s. □

Proposition 4.1 leads to Theorem 4.3, which gives general necessary and sufficient criteria
for the vanishing viscosity limit to hold. But we will need first the following lemma, also
useful in its own right:
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Lemma 4.2. If g ≡ 0 and (1.3) holds then (1.1) holds. If (1.1) holds then

ν

∫ T

0
∥∇u∥2, ν

∫ T

0
∥∇w∥2 → 0 as ν → 0.

Proof. First assume g ≡ 0. That (1.3) implies (1.1) is proved in [26] using only the energy
inequality for the Navier-Stokes equations. The argument in 2D, where the energy equality
holds is slightly simpler: We have, from (1.6),

∥u(t)∥2 − ∥u(t)∥2 + 2ν

∫ T

0
∥∇u∥2 = 0.

If (1.3) then ∥u(t)∥2 − ∥u(t)∥2 → 0, hence, ν
∫ T
0 ∥∇u∥2 → 0. But also ν

∫ T
0 ∥∇u∥2 → 0, and

we conclude that ν
∫ T
0 ∥∇w∥2 → 0. From this, (1.1) follows.

Now assume that (1.1) holds. Then ν
∫ T
0 ∥∇w∥2 → 0 as ν → 0 follows directly, and then

ν

∫ T

0
∥∇u∥2 ≤ ν

∫ T

0
∥∇w∥2 + ν

∫ T

0
∥∇u∥2 → 0. □

Theorem 4.3. Make the assumption (Ass1) of (1.9). If there exists some δ as in Defini-
tion 3.2 (1) or (2) for which A(·, ν) → 0 in L∞([0, T ]) as ν → 0, with A as defined in (4.2),
then the strong vanishing viscosity limit as in (1.1) holds.

Conversely, if (1.1) holds (when g ≡ 0 we only require (1.3)) then A(·, ν) → 0 in L∞([0, T ])
as ν → 0 for any δ as in Definition 3.2 (1) or (2).

Furthermore, we can equivalently define A = Aj
1 +Ak

2, j, k ∈ {1, 2}, where

A1
1 := −

∫ t

0
(u1u2, ∂2z

1), A2
1 := −

∫ t

0
(u · ∇z, u)

A1
2 := ν

∫ t

0
(∇u,∇z), A2

2 := ν

∫ t

0
(curlu, curl z).

(4.9)

Finally, we can add to A either

a1ν

∫ t

0
∥∇u∥2 + a2ν∥w∥2 or a1ν

∫ t

0
∥∇w∥2 + a2ν∥w∥2 (4.10)

for any a1 <
1
2 and any a2 ∈ R without affecting the conclusions of the theorem.

Remark 4.4. The function δ appears implicitly in this theorem through A, which contains
the δ-dependent corrector, z.

Proof of Theorem 4.3. Assume that A(·, ν) → 0 in L∞([0, T ]) as ν → 0, with A as defined in
(4.2), for some choice of δ as in Definition 3.2. Applying Gronwall’s inequality to (4.1), we
conclude that

1

2
∥w(t)∥2 + ν

2

∫ t

0
∥∇w∥2 ≤

[
∥A(·, ν)L∞([0,T ])∥+ C(1 + t)tδ

1
2 + Cνt2

]
eCt,

which vanishes as ν → 0 since δ(ν) → 0 or δ(t, ν) → 0 as ν → 0. This gives (1.1).
Either of the terms in (4.10) can be added to A since they can be absorbed in the energy

inequality in (4.1).
Conversely, assume that the vanishing viscosity limit holds. Then by Lemma 4.2, we know

that
(
t 7→ ν

∫ t
0∥∇w∥

2
)
→ 0 in L∞([0, T ]) as ν → 0. For any δ as in Definition 3.2, B(·, ν) → 0

in L∞([0, T ]), with B as in Proposition 4.1, since δ(ν) → 0 or δ(t, ν) → 0 as ν → 0. This
leaves only the term A(·, ν) in (4.1), which therefore must vanish as ν → 0 as well.

Note also that the terms in (4.10) also vanish if (1.3) holds by Lemma 4.2.
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The equivalence of A1
1 and A2

1 follow from the bounds on the term −(u ·∇z, u) in the proof
of Proposition 4.1. For the equivalence of A1

2 and A2
2, we apply Lemma 2.4, which gives

ν(∇u,∇z) = ν(curlu, curl z) + ν

∫
∂Ω

(curl(z)(z · τ )− κz · u).

Then,

ν

∫
∂Ω

(curl(z)(z · τ )− κz · u) = −ν
∫
∂Ω

(curlu((g − u) · τ )− κ(g − u) · g),

which is bounded by Cν, since curlu, g, and u are each bounded independently of ν on the
boundary. Hence, A1

2 and A2
2 are interchangeable. □

Remark 4.5. Since the converse in Theorem 4.3 holds for any δ it follows that so, too, does
the forward direction of the theorem in the sense that if A(·, ν) → 0 in L∞([0, T ]) for one
choice of δ then A vanishes in the same manner for any other choice of δ. (All δ’s must
be as in Definition 3.2, of course.) A priori, however, the forward direction is stronger with
“there exists δ” rather than “for all δ.”

Remark 4.6. Lemma 2.2 gives curl z = J∂1z
2 − ∂2z

1 + κJz1. Now, ∥J∂1z2∥L∞ ≤ Cδ, and
when the boundary is flat, there is no κJz1 term (and J ≡ 1). We seen, then, that in a
half-plane or a periodic channel, A1

1 and A2
1 are also equivalent to

A3
1 := −

∫ t

0
(u1u2, curl z).

It is not clear how to effectively bound κJz1 with a curved boundary, however, making the
equivalence of A3

1 uncertain in that case.

5. Boundary layer widths

In applying Theorem 4.3, the key is the control of the two terms Aj
1 and Ak

2, as in (4.9), that

make up A, regardless of which form is used. The term Aj
1 originates in the convective or non-

linear terms in the Navier-Stokes and Euler equations, Ak
2 from the effect of the boundary on

the viscous term in the Navier-Stokes equations. Either term can be controlled individually:
Without the convective term we have the Stokes equation (the Euler equations becoming
steady) and the vanishing viscosity limit holds as shown, for instance, in [16]. Without the
boundary, the vanishing viscosity limit holds as shown in many contexts ([51, 24, 25, 8, 44],
for instance). Ideally, one could handle the combined effect of these terms, but no such
technique is currently available. We have little choice, then, but to handle the two terms
separately.

Thus, if we wish to establish a sufficient condition for the vanishing viscosity limit to hold,
we require that ∫ T

0
(u1u2, ∂2z

1) → 0 as ν → 0 and (5.1)

ν

∫ T

0
(∇u,∇z) → 0 as ν → 0. (5.2)

5.1. Kato layer. In his seminal paper [26], Tosio Kato chose to set (with g ≡ 0) δ = Cν. In
this case, (5.1) and (5.2) are both critical in the sense that they can be shown to be bounded
by the basic energy inequality for the Navier-Stokes equations, but the energy inequality is
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insufficient to show that these integrals vanish with viscosity. Kato shows that both of these
conditions can be replaced by

ν

∫ T

0
∥∇u∥2L2(Γν)

→ 0 as ν → 0.

Following in this same spirit, [29] gives two other ways to find a common condition that
applies to (5.1) and (5.2). These are the conditions in (6.1) and (6.2) that we discuss in
Section 6, along with an improvement that comes from dividing (u · ∇z, u) as in [7].

Definition 5.1. We call the boundary layer, ΓCν , the Kato (boundary) layer and Cν the
Kato width or scaling.

5.2. Wang layer. Alternately, we can allow δ to be infinitesimally larger than ν, though still
vanishing as ν → 0. This approach, in the full generality in which we will use it (except for
being time-independent), was first taken by Xiaoming Wang in [65] (see [60] for an earlier,
less general version of this idea). We define it as follows:

Definition 5.2. Let δ be as in Definition 3.2 (2) with the additional property that∫ T

0

ν

δ(s, ν)
ds→ 0 as ν → 0. (5.3)

The resulting boundary layer, Γδ, we call a Wang (boundary) layer and such a δ we call a
Wang width or scaling.

If, like a Wang layer, the corrector has width larger than that of Kato then (5.2) follows
very easily (see the proof of Theorem 8.1). This is because the factor of ν in (5.2) came
from the diffusion term in the Navier-Stokes equations, while the bound on ∇z improves as
δ increases. This leaves only the condition in (5.1) or an equivalent condition to be treated.
Alternately, if the width is narrower than that of Kato, then (5.1) is easily controlled; this
would seem to be of no advantage, however, since even for the linearized fluid equations, (5.2)
would not be controllable with such a width.

5.3. Using the corrected difference. In (4.1), as well as in (1.1), the gradient of the
uncorrected difference, w, appears, not the corrected difference, w̃. For the Kato layer, one
cannot obtain convergence with the corrected difference. This is because we know from Kato’s

original conditions in [26] (for no-slip conditions) that if (1.3) holds then ν
∫ t
0∥∇u∥

2 → 0.

Then because u ∈ C1(Q), we also have ν
∫ t
0∥∇u∥

2 → 0. But the inequality, ∥∇z∥ ≤ Cδ−
1
2 is

easily seen to be tight, serving also as a lower bound. Hence, if (1.3) holds then asymptotically
for small ν,

ν

∫ t

0
∥∇w̃∥2 ∼ C

ν

δ
t.

Hence, an energy inequality obtained using ∇w̃ in place of w̃ is not possible for the Kato
layer, where δ = Cν, or any smaller layer. It is possible, however, for a Wang layer, as is,
in fact, done in [65]. It is also possible for inflow, outflow boundary conditions, as we see in
[53, 17], though there other issues arise.

6. Using the Kato layer

The use of the Kato layer of width proportional to ν leads naturally to Theorem 6.1, the
result for (6.1) and (6.2) (for g ≡ 0) appearing in [29].
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Theorem 6.1. Make the assumption (Ass1) of (1.9). The strong vanishing viscosity limit
in (1.1) holds if

ν

∫ t

0
∥curlu∥2L2(Γν)

→ 0 as ν → 0 or (6.1)

1

ν

∫ t

0
∥u∥2L2(Γν)

→ 0 as ν → 0, or (6.2)

or, if (Ass2) of (1.9) holds,

1

ν

∫ t

0

∫
Γν

((u1)2 + |u1u2|) → 0 as ν → 0. (6.3)

As a partial converse, if (1.1) holds (or simply (1.3) when g ≡ 0) then (6.1) holds, as do

1

ν

∫ t

0
∥u− g∥2L2(Γν)

→ 0 as ν → 0,

1

ν

∫ t

0

∫
Γν

((u1 − g1)2 + |(u1 − g1)u2|) → 0 as ν → 0.
(6.4)

Proof. We prove first the partial converse. The simple bound,

ν

∫ t

0
∥curlu∥2L2(Γν)

≤ Cν

∫ t

0
∥∇u∥2L2(Γν)

≤ Cν

∫ t

0
∥∇u∥2,

shows the necessity of (6.1).
For the necessity of (6.4)1, we have

1

ν

∫ t

0
∥u− g∥2L2(Γν)

≤ 1

ν

∫ t

0
Cν2∥∂2(u− g)∥2L2(Γν)

≤ Cν

∫ t

0
∥∇u∥2 + Cν

∫ t

0
∥∇g∥2.

We applied Lemma 2.6, using that u− g vanishes on ∂Ω. The two terms on the right vanish
by Lemma 4.2 and by the independence of ∇g on ν.

For the necessity of (6.4)2, we write,

(u1 − g1)2+|(u1 − g1)u2| ≤ (u1 − g1)2 + |(u1 − g1)(u2 − g2)|+ |(u1 − g1)g2|

≤ 2|u− g|2 + (g2)2

2
,

where we used Young’s inequality. Then the necessity of (6.4)2 follows from the necessity of
(6.4)1 and the bound,

1

2ν

∫ t

0
∥g2∥2L2(Γν)

≤ 1

2ν

∫ t

0
Cν2∥∂2g2∥2L2(Γν)

≤ Cν.

Here, we were able to apply Lemma 2.6, because g2 vanishes on ∂Ω.
For the sufficiency of the conditions, it is clear that (6.2) implies (6.3). It remains, then,

to show the sufficiency of (6.1) and (6.3).
First assume (6.1). With A2

1, A
2
2 as in (4.9), we bound A2

1 by

|A2
1| =

∣∣∣∫ t

0
(u · ∇z, u)

∣∣∣ = ∣∣∣∫ t

0
(u · ∇u, z)

∣∣∣ = ∣∣∣∫ t

0
(u⊥ curlu, z)

∣∣∣
≤ ∥z∥L∞([0,T ]×Ω)

∫ t

0
∥u∥L2(Γν)∥curlu∥L2(Γν)

≤ Cν

∫ t

0
∥∇u∥L2(Γν)∥curlu∥L2(Γν) + Cν

1
2

∫ t

0
∥curlu∥L2(Γν).
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In the second equality we applied Lemma 2.5 to exchange ∇u for curlu, and in the last
inequality we applied Corollary 2.7.

For the first term,

Cν

∫ t

0
∥∇u∥L2(Γν)∥curlu∥L2(Γν) ≤ C

(
ν

∫ t

0
∥∇u∥2L2(Ω) ds

) 1
2
(
ν

∫ t

0
∥curlu∥2L2(Γν)

ds

) 1
2

≤ C(T )

(
ν

∫ t

0
∥curlu∥2L2(Γν)

ds

) 1
2

.

In the last inequality we applied the energy inequality in (1.8). Also,

Cν
1
2

∫ t

0
∥curlu∥L2(Γν) ≤ t

1
2

(
ν

∫ t

0
∥curlu∥2L2(Γν)

ds

) 1
2

,

so ∣∣∣∫ t

0
(u · ∇z, u)

∣∣∣ ≤ C(T )

(
ν

∫ t

0
∥curlu∥2L2(Γν)

ds

) 1
2

.

We then bound A2
2 by

|A2
2| = ν

∣∣∣∫ t

0
(curlu, curl z)

∣∣∣ ≤ ν

∫ t

0
∥∇z∥∥curlu∥L2(Γν)

≤ Cν
1
2

∫ t

0
∥curlu∥L2(Γν) ≤ Ct

1
2

(
ν

∫ t

0
∥curlu∥2L2(Γν)

) 1
2

.

Then (1.1) follows from Theorem 4.3.
Now assume (6.3). Integrating by parts using (2.2) and applying Lemma 2.2, we see that

(∇u,∇z) = −(u,∆z) +

∫
∂Ω

(∇z · n)g

= −(u, J2∂21z)− (u1, ∂22z
1)− (u2, ∂22z

2) + (u, κJ∂2z)

− (u, x2κ
′J3∂1z) +

∫
∂Ω

(∇z · n)g.

To bound ∆z, here, we required (Ass2). Using Proposition 3.5, we have

− ν(u, J2∂21z) ≤ Cν∥u∥∥∂21z∥ ≤ Cνν
1
2 = Cν

3
2 ,

− ν(u2, ∂22z
2) ≤ ν∥u∥∥∂22z2∥ ≤ Cνν−

1
2 = Cν

1
2 ,

ν (u, κJ∂2z) ≤ Cν∥u∥∥∂2z∥ ≤ Cνν−
1
2 = Cν

1
2 ,

− ν(u, x2κ
′J3∂1z) ≤ Cν∥u∥∥∂1z∥ ≤ Cνν

1
2 = Cν

3
2 .

ν

∫
∂Ω

(∇z · n)g ≤ Cν.

Therefore, we can write

A(t, ν) = f(t, ν)−
∫ t

0

(
(u1u2, ∂2z

1) + ν(u1, ∂22z
1)
)
,

where f(·, ν) → 0 in L∞(0, T ;L2(Ω)) as ν → 0. But, applying Proposition 3.5 with δ = ν,

−(u1u2, ∂2z
1) ≤

∫
Γν

∥∂2z1∥L∞ |u1u2| ≤
∫
Γν

C

ν
|u1u2| (6.5)
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and

ν
∣∣∣∫ t

0
(u1, ∂22z

1)
∣∣∣ ≤ Cν

∫ t

0
∥u1∥L2(Γν)∥∂

2
2z

1∥ ≤ C√
ν

∫ t

0
∥u1∥L2(Γν)

≤ C

(∫ t

0
1

) 1
2
(
1

ν

∫ t

0
∥u1∥2L2(Γν)

) 1
2

.

Then (1.1) follows from Theorem 4.3. □

We might hope to extend Kato’s conditions and the Kato-like conditions in Theorem 6.1
to use a layer of width νt. We should expect the effect of the initial layer of vorticity forming
at the boundary to take some time to move into the fluid, so the width of the layer should
increase with time. The heat equation solution depends only upon νt with simple geometries
for instance (though its weak boundary layer is of “width”

√
νt), so such a scaling would

seem reasonable. It is not, however, possible.
To see this, let us consider the condition,

ν

∫ t

0
∥curlu∥2L2(Γνs)

ds→ 0 as ν → 0 (6.6)

in place of (6.1). Certainly this is a necessary condition, being weaker than the condition in
(6.1). To adapt the proof of sufficiency of (6.1) above, we need only change the width of the
layer. Note that this brings powers of the time into the time integrals. For bounding the
convective term in A, we find (including only the key steps) that

∣∣∣∫ t

0
(u · ∇z, u)

∣∣∣ ≤ ∫ t

0
∥u∥L2(Γνs)∥curlu∥L2(Γνs)∥z∥L∞ ds

≤ C

∫ t

0
νs∥∇u∥L2(Γνs)∥curlu∥L2(Γνs) ds+ Cν

1
2

∫ t

0
s

1
2 ∥curlu∥L2(Γν)

≤ Ct

(
ν

∫ t

0
∥curlu∥2L2([0,T ];L2(Γνs))

ds

) 1
2

.

Here, Poincare’s inequality via Corollary 2.7 brings an additional factor of s into the integral,
which we bound above by t and bring outside the integral. The end result is a harmless
additional factor of t.

The boundary term, however, has a significant problem. To see this, let us treat this
term for a general δ as in Definition 3.2, a bound we will find useful later in the proof of
Theorem 8.1. We have, using A2

2,

|A2
2| = ν

∣∣∣∫ t

0
(curlu, curl z)

∣∣∣ ≤ ν

∫ t

0
∥curl z∥∥curlu∥L2(Γνs) ds

≤ Cν

∫ t

0

∥curlu∥L2(Γνs)

δ(s, ν)
1
2

ds ≤ C

(∫ t

0

ν

δ(s, ν)
ds

) 1
2
(
ν

∫ t

0
∥curlu∥2L2(Γνt)

) 1
2

.

(6.7)

So the first time integral above must at least be finite for A(t, ν) to have a chance to vanish
with ν. When δ(s, ν) = νs, however, the integral is infinite.

In estimating the convective term, we integrated by parts in the first step, removing the
gradient on z = zδ (δ = ν or νs, here). The estimate for ∥zδ∥L∞ is independent of δ, so
this simply leads to an additional factor of t in the estimate. There appears to be no way to
avoid leaving at least part of the derivative on z in estimating the boundary term, however;
in particular, ∂1z

2, which dominates ∇z, seems unavoidable.
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It is clear from these estimates that for any α ∈ [0, 1) we could use a boundary layer of
width νtα in (6.1), replacing that condition with

ν

∫ t

0
∥curlu∥2L2(Γνsα ) ds→ 0 as ν → 0,

in place of (6.1), though such a boundary layer would fail for (6.2) and (6.3).

7. A little more with Kato’s layer

In [65], Wang gives necessary and sufficient conditions for the vanishing viscosity limit to hold
based upon the magnitude of the tangential derivatives of either the tangential components
of the velocity or of the normal component of the velocity. The penalty is that the boundary
layer considered must be infinitesimally larger than that of Kato (as in (5.3)). We discuss
[65] in detail in Section 8, but first we derive in a simpler manner a result using Kato’s
original boundary layer. The conditions required are stronger (less satisfactory as a sufficient
condition) than those of [65] in that they each involve a derivative normal to the boundary.
They apply, however, to the thinner boundary layer of Kato.

Theorem 7.1. Make the assumption (Ass1) of (1.9). If

(1) ν

∫ T

0
∥∂2u∥2L2(Γν)

= ν

∫ T

0
∥∂2u1∥2L2(Γν)

+ ∥∂2u2∥2L2(Γν)
→ 0 as ν → 0

or

(2) ν

∫ T

0
∥∇u1∥2L2(Γν)

= ν

∫ T

0
∥∂1u1∥2L2(Γν)

+ ∥∂2u1∥2L2(Γν)
→ 0 as ν → 0

then the strong vanishing viscosity limit in (1.1) holds. Conversely, if (1.1) holds (or simply
(1.3) when g ≡ 0) then (1) and (2) hold.

Proof. First observe that (1) and (2) are equivalent since u is divergence-free, so by Lemma 2.2,
∂2u

2 = −J∂1u1 + κJu2, and ν∥κJu2∥L2(Γν) ≤ Cν.
That (1.3) =⇒ (1), (2) follows from Lemma 4.2.
For the forward implications, assume (1). We will apply Theorem 4.3 to A using A1

1.
Setting δ = ν, we have,

|A1
1| = |(u1u2, ∂2z1)| ≤ ∥∂2z1∥L∞∥u1∥L2(Γν)∥u

2∥L2(Γν)

≤ C

ν

(
ν∥∂2u1∥L2(Γν) + ν

1
2

)
ν∥∂2u2∥L2(Γν)

= Cν∥∂2u1∥L2(Γν)∥∂2u
2∥L2(Γν) + Cν

1
2 ∥∂2u2∥L2(Γν)

≤ Cν
(
∥∂2u1∥2L2(Γν)

+ ∥∂2u2∥2L2(Γν)

)
+ Cν

1
2 ∥∂2u2∥L2(Γν),

(7.1)

where we used Corollary 2.7.
Letting f1(x1, x2) = J , f2(x1, x2) = 1, we can use Lemma 2.2 to write

−ν(∇u,∇z) = −νfi∂izjfj∂iuj ≤ ν
∑

(i,j) ̸=(2,1)

∥fi∂izj∥∥fi∂iuj∥L2(Γν) + ν∥∂2z1∥∥∂2u1∥L2(Γν)

≤ Cνν
1
2 ∥∇u∥+ Cνν−

1
2 ∥∂2u1∥L2(Γν) ≤ Cν +

ν2

2
∥∇u∥2 + Cν

1
2 ∥∂2u1∥L2(Γν).

Integrating in time, we have

A(t, ν) ≤ Cν

∫ t

0

(
∥∂2u1∥2L2(Γν)

+ ∥∂2u2∥2L2(Γν)

)
+ Cν

1
2

∫ t

0
∥∂2u2∥L2(Γν)

+ Cνt+
ν

2

(
ν

∫ t

0
∥∇u∥2

)
+ Cν

1
2

∫ t

0
∥∂2u1∥L2(Γν)
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≤ Cν

∫ t

0

2∑
j=1

∥∂2uj∥2L2(Γν)
+ C(T )ν +

2∑
j=1

t
1
2

(
ν

∫ t

0
∥∂2uj∥2L2(Γν)

) 1
2

,

where we used (1.8). The assumption (1) insures that A(t, ν) → 0 as ν → 0, which gives
(1.1) by Theorem 4.3. □

8. Using a Wang layer

Theorem 4.3 applied to a Wang layer easily yields sufficient conditions for the vanishing
viscosity limit to hold for such a layer, leading to Theorem 8.1.

Theorem 8.1. Make the assumption (Ass1) of (1.9). Let δ be a Wang width as in Defini-
tion 5.2. If ∫ t

0

∫
Γδ

1

δ
|u1u2| → 0 or

∫ t

0
((u1u2, ∂2z

1) → 0 as ν → 0 (8.1)

then (1.1) holds.

Proof. Since (8.1) holds, it follows from (6.7) that ν
∫ t
0 |(curlu, curl z)| → 0 as ν → 0. (Note

that since δ(·, ν) is increasing, δ(·, ν) → 0 in L∞(0, T ).) Hence, by Theorem 4.3, if the
vanishing viscosity limit holds then the second condition in (8.1) holds. But (6.5) shows that
the second condition in (8.1) is bounded by the first condition; hence if either condition in
(8.1) holds then the vanishing viscosity limit holds. □

A simple and direct use of a Wang layer yields Theorem 8.2.

Theorem 8.2. Make the assumption (Ass1) of (1.9). Let δ be a Wang width as in Defini-
tion 5.2. If

1

ν

∫ t

0
∥u1∥2L2(Γδ)

→ 0 or
1

ν

∫ t

0
∥u2∥2L2(Γδ)

→ 0 as ν → 0 (8.2)

then (1.1) holds.

Proof. We have,

|(u1u2, ∂2z1)| ≤ ∥∂2z1∥L∞∥u1u2∥L1(Γδ) ≤
C

δ
∥u1u2∥L1(Γδ) ≤

C

δ
∥u1∥L2(Γδ)∥u

2∥L2(Γδ)

≤ C

δ
∥u1∥L2(Γδ)Cδ∥∂2u

2∥L2(Γδ) = C∥u1∥L2(Γδ)∥∂1u
1∥L2(Γδ),

where we used (2.3)2 of Corollary 2.7. Hence,∫ t

0
(u1u2, ∂2z

1) ≤ C

(∫ t

0
∥u1∥2L2(Γδ)

) 1
2
(∫ t

0
∥∂1u1∥2L2(Γδ)

) 1
2

= C

(
ν−1

∫ t

0
∥u1∥2L2(Γδ)

) 1
2
(
ν

∫ t

0
∥∂1u1∥2L2(Γδ)

) 1
2

.

The second factor on the right-hand side is bounded by (1.6) or (1.8). The result for the first
condition in (8.2) thus follows from Theorem 8.1.

For the second condition in (8.2), we interchange the roles of u1 and u2, which we see gives

|(u1u2, ∂2z1)| ≤
C

δ
∥u2∥L2(Γδ)C

(
δ∥∂2u1∥L2(Γδ) + δ

1
2

)
= C∥u2∥L2(Γδ)∥∂2u

1∥L2(Γδ) + Cδ−
1
2 ∥u2∥L2(Γδ).
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Hence,∫ t

0
(u1u2, ∂2z

1) ≤ C

(
ν−1

∫ t

0
∥u2∥2L2(Γδ)

) 1
2
(
ν

∫ t

0
∥∂1u2∥2L2(Γδ)

) 1
2

+ C

∫ t

0

∥u2∥L2(Γδ)

δ(s, ν)
1
2

ds

≤ C

(
1

ν

∫ t

0
∥u2∥2L2(Γδ)

) 1
2

+ C

(∫ t

0

ν

δ(s, ν)
ds

) 1
2
(
1

ν

∫ t

0
∥u2∥L2(Γδ) ds

) 1
2

,

which vanishes by the second condition in (8.2). □

Long version only: A more subtle use of the infinitesimally thicker boundary layer leads
to the result of Xiaoming Wang [65] in Theorem 8.4, below. Though we allow a time-varying
boundary layer, we restrict ourselves, as does Wang, to a 2D channel periodic in the x1
direction (cf. Remark 8.7.) Hence, x1 and x2 reduce to Cartesian coordinates (though with
opposite orientation), the usual formula for the divergence holds, and there is no lower-order
term when integrating by parts, as there is in Lemma 2.3.

The proof of Theorem 8.4 is based upon the following estimates:

Lemma 8.3. Assume that Ω is a 2D channel periodic in the x1 direction. Let δ as in
Definition 3.2 be a the width of a boundary layer. Then

|(u1u2, ∂2z1)| ≤
ν

4
∥∇u∥2L2(Γδ)

+
Cν

δ
+ C

(
δ

ν

)2 (
ν∥∂1u1∥2L2(Γδ)

)
(8.3)

and

|(u1u2, ∂2z1)| ≤
ν

4
∥∇u∥2L2(Γδ)

+ C∥w∥2 + Cδ
1
2 +

(
δ

ν
1
4

) 4
3

+ C

(
δ

ν

)4 (
ν∥∂1u2∥2L2(Γδ)

)
,

(8.4)

Proof. To prove (8.3), we start with (6.5):

|(u1u2, ∂2z1)| ≤
C

δ

∫
Γδ

|u1u2| ≤ Cδ−1∥u1∥L2(Γδ)∥u
2∥L2(Γδ)

≤ C

δ

(
δ∥∂2u1∥L2(Γδ) + δ

1
2

)
δ∥∂2u2∥L2(Γδ)

= Cν
1
2 ∥∂2u1∥L2(Γδ)

δ

ν
1
2

∥∂1u1∥L2(Γδ) + C
δ

ν
1
2

(ν
δ

) 1
2 ∥∂1u1∥L2(Γδ)

≤ ν

4
∥∂2u1∥2L2(Γδ)

+ C
δ2

ν
∥∂1u1∥2L2(Γδ)

+ C
ν

δ
,

where we paralleled the argument in (7.1), but using ∂2u
2 = −∂1u1 and applying Young’s

inequality asymmetrically.
The proof of (8.4) is more involved. We first make the decomposition,

−(u1u2, ∂2z
1) = (u1∂2u

2, z1) + (∂2u
1u2, z1),

where we integrated by parts, using that u2 = 0 on ∂Ω. For the first term in −(u1u2, ∂2z
1),

we use that div u = 0 to obtain

(u1∂2u
2, z1) = −(u1∂1u

1, z1) = −1

2
(∂1(u

1)2, z1) =
1

2
((u1)2, ∂1z

1)

=
1

2
((w1)2, ∂1z

1) + (u1u1, ∂1z
1)− 1

2
((u1)2, ∂1z

1),
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where, since we integrated by parts in the tangential variable, we needed no boundary con-
dition. Hence,

|(u1∂2u2, z1)| ≤
1

2
∥w∥2∥∂1z1∥L∞ + ∥u∥∥u∥L∞∥∂1z1∥+

1

2
∥u∥L∞∥u∥∥∂1z1∥

≤ C∥w∥2 + Cδ
1
2 .

For the second term in −(u1u2, ∂2z
1), we have

|(∂2u1u2, z1)| ≤ ∥∂2u1∥L2(Γδ)∥u
2z1∥. (8.5)

Defining β by

β(t, x1, x2) := −
∫ δ(t,ν)

x2

(z1(t, x1, y))
2 dy, (8.6)

we see that

∂2β = (z1)2

and

∥β∥L∞(Γδ) ≤ δ∥z1∥2L∞ ≤ Cδ,

∥∂1β∥L∞(Γδ) ≤ δ∥∂1z1∥2L∞ ≤ Cδ.

Then,

∥u2z1∥2 =
∫
Γδ

(u2)2(z1)2 =

∫
∂Ω

∫ δ

0
(u2(t, x1, x2))

2∂x2β(t, x1, y) dx2 dx1

= −
∫
∂Ω

∫ δ

0
∂x2(u

2(t, x1, x2))
2β(t, x1, x2) dx2 dx1

= −
∫
Γδ

∂2(u
2)2β = −2

∫
Γδ

u2∂2u
2β = 2

∫
Γδ

u2∂1u
1β

= −2

∫
Γδ

u1∂1(u
2β) = −2

∫
Γδ

u1∂1u
2β − 2

∫
Γδ

u1u2∂1β.

In both integrations by parts, we used that u2 = 0 on ∂Ω, the outer component of ∂Γδ, while
β = 0 on the inner component of ∂Γδ.

Proceeding,

−2

∫
Γδ

u1u2∂1β ≤ 2∥u1∥∥u2∥∥∂1β∥L∞(Γδ) ≤ Cδ2∥∂2u2∥L2(Γδ),

−2

∫
Γδ

u1∂1u
2β ≤ 2∥u1∥∥∂1u2∥L2(Γδ)∥β∥L∞(Γδ) ≤ Cδ2∥∂2u1∥L2(Γδ)∥∂1u

2∥L2(Γδ).

Thus,

∥u2z1∥ ≤ Cδ∥∇u∥
1
2

L2(Γδ)

(
∥∂1u2∥

1
2

L2(Γδ)
+ 1

)
≤ Cδ∥∇u∥

1
2

L2(Γδ)

(
∥∂1u2∥

1
2

L2(Γδ)
+ 1

)
and therefore,

|(∂2u1u2, z1)| ≤ ∥∂2u1∥L2(Γδ)∥u
2z1∥ ≤ Cδ∥∇u∥

3
2

L2(Γδ)

(
∥∂1u2∥

1
2

L2(Γδ)
+ 1

)
= Cδ∥∇u∥

3
2

L2(Γδ)
∥∂1u2∥

1
2

L2(Γδ)
+ Cδ∥∇u∥

3
2

L2(Γδ)
.
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Applying Young’s inequality,

Cδ∥∇u∥
3
2

L2(Γδ)
∥∂1u2∥

1
2

L2(Γδ)
= C

(
ν

3
4 ∥∇u∥

3
2

L2(Γδ)

)(
δ

ν
ν

1
4 ∥∂1u2∥

1
2

L2(Γδ)

)
≤ ν

8
∥∇u∥2L2(Γδ)

+
δ4

ν4

(
ν∥∂1u2∥2L2(Γδ)

)
and

Cδ∥∇u∥
3
2

L2(Γδ)
= C

δ

ν
1
4

ν
1
4 ∥∇u∥

3
2

L2(Γδ)
≤ ν

8
∥∇u∥2L2(Γδ)

+ C

(
δ

ν
1
4

) 4
3

.

Collecting these bounds gives (8.4). □

Theorem 8.4. [Wang [65]] Assume that Ω is a 2D channel periodic in the x1 direction. Let
δ be a Wang width as in Definition 5.2 with

ν

∫ T

0
∥∂1u1∥2L2(Γδ(s,ν))

ds→ 0 as ν → 0 (8.7)

or

ν

∫ T

0
∥∂1u2∥2L2(Γδ(s,ν))

ds→ 0 as ν → 0. (8.8)

Then the strong vanishing viscosity limit in (1.1) holds. Conversely, if (1.1) holds (or simply
(1.3) when g ≡ 0) then (8.7) and (8.8) hold for any Wang width.

Proof. For each of (8.7) and (8.8), the converse follows immediately from Lemma 4.2 or the
assumption in (1.1), which implies (1.4).

For the forward direction, we know that (5.2) holds simply because δ is a Wang width (see
the comment following Definition 5.2). It remains to show that (5.1) holds, for it will follow
that A→ 0 as in Theorem 4.3.

Assume, first, that (8.7) holds. Integrating (8.3) over time gives∫ T

0
|(∂2u1u2, z1)| ≤

ν

4

∫ t

0
∥∇u∥2L2(Γδ)

+ Cν

∫ t

0

ds

δ(s, ν)
+ C

δ2

ν2
Fν(δ) (8.9)

(we used here that δ(s, ν) ≤ δ(t, ν)), where

Fν(t, δ) := ν

∫ t

0
∥∂1u1∥2L2(Γδ)

.

Note that even in 2D, we cannot say that Fν(t, δ) is increasing in ν even for fixed δ; we would
be hard pressed even to show that it is continuous.

Let us agree to call the function δ for which the condition in (8.7) is assumed to hold, δ0;
this means that we are given that Fν(t, δ0(t, ν)) → 0 as ν → 0. We will show that there exists

a possibly smaller Wang width, which we will relabel δ, for which δ2(t,ν)
ν2

Fν(t, δ(t, ν)) → 0 as
ν → 0.

As long as δ ≤ δ0 (as functions of ν), we will have

δ2

ν2
Fν(t, δ) ≤

δ2

ν2
Fν(t, δ0).

So let

δ(t, ν) = min

{
δ0(t, ν), inf

s∈[t,T ]

ν

Fν(s, δ0(s, ν))
1
4

}
, (8.10)
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which we note is continuous at ν = 0 with δ(t, 0) = 0, and is increasing in t. Then,

ν

δ(t, ν)
≤ max

{
ν

δ0(t, ν)
, Fν(t, δ0(t, ν))

1
4

}
→ 0,

δ(t, ν)2

ν2
Fν(t, δ(t, ν)) ≤

δ(t, ν)2

ν2
Fν(t, δ0(t, ν)) ≤

ν2√
Fν(t,δ0(t,ν))

ν2
Fν(t, δ0(t, ν))

=
√
Fν(t, δ0(ν)) → 0

as ν → 0, and the convergence is uniform in time. Also,∫ T

0

ν

δ(t, ν)
dt ≤ max

{∫ T

0

ν

δ0(t, ν)
dt,

∫ T

0
Fν(δ0(t, ν))

1
4 dt

}
.

As ν → 0, the first integral on the right-hand side vanishes because δ0 is a Wang width, while
the second integral vanishes because Fν(δ0(t, ν)) ≤ Fν(δ0(T, ν)) → 0. Hence, we see that δ is
a Wang width, so we can apply Theorem 4.3 to the bound in (8.9) using (4.10) to conclude
that (1.1) holds.

Now assume that (8.8) holds. Integrating (8.4) over time, we have∫ T

0
|(∂2u1u2, z1)| ≤

ν

4

∫ T

0
∥∇u∥2L2(Γδ)

+ C

(
δ

ν
1
4

) 4
3

T + C
δ4

ν4

∫ T

0

(
ν∥∂1u2∥2L2(Γδ)

)
.

We can absorb the first term above by virtue of (4.10), and, if needed, we can always

decrease δ to be less than ν
1
4 while still keeping the conditions in (5.3) and in Definition 3.2

(2), insuring that the second term above vanishes with ν. The final term we treat in the same

manner as we treated the final term in (8.9), writing it in the form, C δ4

ν4
Fν(δ), where now

Fν(δ) := ν

∫ T

0
∥∂1u2∥2L2(Γδ)

.

Applying Theorem 4.3 using (4.10) to conclude that (1.1) holds, the proof of sufficiency of
(8.8) is complete. □

Remark 8.5. The construction in (8.10) is a little easier to understand when δ is time-
independent. We set

δ(ν) = min

{
δ0(ν),

ν

Fν(T, δ0(ν))
1
4

}
.

Then δ is continuous at zero with δ(0) = 0. Then since Fν(T, δ0(ν)) → 0 by assumption, δ(ν)
is a Wang width, and

δ(ν)2

ν2
Fν(t, δ(ν)) ≤

δ(ν)2

ν2
Fν(t, δ0(ν)) ≤

ν2√
Fν(t,δ0(ν))

ν2
Fν(t, δ0(ν))

=
√
Fν(t, δ0(ν)) ≤

√
Fν(T, δ0(ν)) → 0.

Remark 8.6. In [65], Wang uses an energy argument that starts with the equation for what
we are calling w̃ (rather than w, as we did) then multiplies by w̃ and integrates over time
and space. The introduction of Fν and the use of β, which are at the heart of the proof, are
adopted from [65]. Also, Wang uses a different corrector (see Section 12.1 and Remark 3.7),
though all the necessary estimates hold for the Kato corrector we are using.

Remark 8.7. If we allowed a curved boundary in Theorem 8.4, the lower-order terms in
Lemmas 2.2 and 2.3 would lead to the additional term,

I2 := 2(u1u2, (−κ(x2) + α2)β) + ((u2)2, α2β),
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in the estimate of ∥u2z1∥2 in the proof of Lemma 8.3. This, in turn would add the additional
term,

∥∂2u1∥L2(Γδ)|I2|
1
2

to the bound in (8.4). The “trick” of forcing w = u − u to appear in this estimate, as was
done to obtain (4.6), is of no use here, and the direct estimate,

|I2| ≤ C∥u∥2∥β∥L∞(Γδ) ≤ Cδ

is also insufficient. A more subtle definition of the function β in (8.6) perhaps might circum-
vent this difficulty, but that issue we leave unexplored.

9. Vortex sheet on the boundary

As in in Proposition 3.8, let µ be arc length measure. We have the following simple extension
of a result in [30]:

Theorem 9.1. Make the assumption (Ass1) of (1.9). Assume that Ω is simply connected and
δ is time-independent, as in (1) of Definition 3.2. The following conditions are equivalent:

(1) (1.1) holds,
(2) ω → ω + ((g − u) · τ )µ in (H1(Ω))′ uniformly on [0, T ],
(3) ω → ω in H−1(Ω) uniformly on [0, T ].

Proof. The proof of this theorem for g ≡ 0 is given in [30]. Its proof for a general g requires
only the trivial replacement of u by u− g in the arguments in [30]. Note that the presence or
absence of an energy defect as in (1.4) does not affect the arguments in [30]. (In some sense,
this is because a corrector is not employed in [30].) □

In [12, 13] it is shown that for radially symmetric initial vorticity in a disk, (2) of Theo-
rem 9.1 holds in the more classical sense of a vortex sheet, in that

ω → ω + ((g − u) · τ )µ in M(Ω) uniformly on [0, T ]. (9.1)

The following gives a simple condition for this type of convergence to hold:

Theorem 9.2. Make the assumption (Ass1) of (1.9). Let z be the Kato corrector. The
convergence in (9.1) holds if and only if ω−ω− curl z → 0 in M(Ω) uniformly on [0, T ], and
both hold if ω − curl z → ω in L∞(0, T ;L1(Ω)).

Proof. Let φ ∈ C(Ω). Then by Remark 3.9,

(curl z, φ) →
∫
∂Ω

((g − u) · τ )φ uniformly on [0, T ],

meaning that curl z → ((g − u) · τ )µ in M(Ω) uniformly on [0, T ]. Hence, convergence in
(9.1) holds if and only if ω − ω − curl z → 0 in M(Ω) uniformly on [0, T ].

Now assume that ω − ω − curl z → 0 in L∞(0, T ;L1(Ω)). Then

|(ω − ω − curl z, φ)| ≤ ∥ω − ω − curl z∥L1∥φ∥L∞ → 0

uniformly over time, meaning that ω − ω − curl z → 0 in M(Ω) uniformly on [0, T ]. □
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10. Well-posedness of (NSg)

We now give the proof of Lemma 1.3 and use it to prove the existence of solutions to (NSg),
Theorem 1.4. We return to writing ug rather than simply u, as we did in Sections 4 to 9.

Proof of Lemma 1.3. For any fixed time t ∈ [0,∞) let (g(t), q(t)) solve the stationary
Stokes problem, 

∆g(t) = ∇q(t) in Ω,

div g(t) = 0 in Ω,

g(t) = g(t) on ∂Ω.

It follows from Theorem IV.6.1 part (a) of [15] that g ∈ L2(0,∞;H∩H2(Ω)2). We see also that
∂tg satisfies the stationary Stokes problem, ∆∂tg(t) = ∇∂tq(t),div ∂tg(t) = 0 in Ω, ∂tg(t) =
∂tg(t) on ∂Ω, so from Theorem IV.6.1 part (b) of [15] we have ∂tg ∈ L2(0,∞;H ∩H1(Ω)2).

If, in addition, u0|∂Ω = g(0), then g+u0−g(0) ∈ C∞([0,∞)×Ω), is divergence-free, equals
g on ∂Ω and equals u0 at time zero.

Relabeling by setting g = g or g = g + u0 − g(0) completes the proof. □

Proof of Theorem 1.4. With g as in Lemma 1.3, we can rewrite (NSg) as

∂tr + ∂tg + r · ∇r + r · ∇g + g · ∇r + g · ∇g +∇pg = ν∆r + ν∆g, (10.1)

where r := ug − g, noting that r = 0 on ∂Ω. Hence, we look for a weak solution to
∂tr + r · ∇r + r · ∇g + g · ∇r +∇pg = ν∆r + Fg on Ω,

div r = 0 on Ω,

r(0) = u0 − g(0) on Ω,

r = 0 on ∂Ω.

(10.2)

We define the weak solution by pairing (10.2)1 with a test function φ ∈ V = V ∩ C∞
C (Ω)2.

As in the discussion following (V.7) in [5], and Proposition V.1.3 of [5], we can, equivalently,
use a test function in φ ∈ L2(0, T ;V ). Transforming back to ug = r + g leads to (1.7).

This is a linear perturbation of the Navier-Stokes equations with the forcing term, Fg. Exis-
tence and, in 2D, uniqueness, is standard (see, for instance, [23], where a similar perturbation
is worked out in detail). This leads to r ∈ C([0, T ];H) ∩ L2(0, T ;V ) with ∂tr ∈ L2(0, T ;V ′),
giving the stated membership in function spaces of ug = r + g and ∂tug = ∂tr + ∂tg.

Applying (1.7) with φ = r ∈ L2(0, T ;V ) is equivalent to pairing (10.2)1 with r. This give

1

2

d

dt
∥r∥2 + ν∥∇r∥2 = −(r · ∇g, r) + (Fg, r)

≤ ∥∇g∥L∞∥r∥2 + ∥Fg∥∥r∥ ≤ ∥Fg∥2

2
+

(
∥∇g∥L∞ +

1

2

)
∥r∥2

so that

d

dt
∥r∥2 + 2ν∥∇r∥2 ≤ ∥Fg∥2 + (2∥∇g∥L∞ + 1) ∥r∥2.

Integrating in time, we see that

∥r(t)∥2 + 2ν

∫ t

0
∥∇r∥2 ≤ ∥r(0)∥2 +

∫ t

0
∥Fg∥2 +

∫ t

0
(2∥∇g∥L∞ + 1) ∥r∥2.

Applying Gronwall’s lemma gives

∥r(t)∥2 + 2ν

∫ t

0
∥∇r∥2 ≤

(
∥r(0)∥2 +

∫ t

0
∥Fg∥2

)
e
∫ t
0 (2∥∇g∥L∞+1). (10.3)



VV WITH DIRICHLET BOUNDARY CONDITIONS 29

Using (10.3) with ∥r(0)∥2 ≤ 2∥u0∥2 + 2∥g0∥2 and

∥ug(t)∥2 + 2ν

∫ t

0
∥∇ug∥2 ≤ 2

(
∥r(t)∥2 + 2ν

∫ t

0
∥∇r∥2 + ∥g(t)∥2 + 2ν

∫ t

0
∥∇g∥2

)
yields the bound in (1.8). □

11. How might convergence happen?

11.1. A very special case. If we choose to set g = u|∂Ω, we see that ug = uu = u on
∂Ω. This eliminates the boundary term in the basic energy argument, giving uu → u as in
the boundary-free case (though only in the L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω))-norm, not in
higher norms, since there is still no control of vorticity production of uu on the boundary).
Thus, we easily obtain Theorem 11.1.

Theorem 11.1. We have

uu → u in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω))

with

∥uu(t)− u(t)∥ ≤ CνeCt,

∫ t

0
∥∇(uu(s)− u(s))∥2 ds ≤ Cνt

1
2 eCt.

Proof. We can use g = u on all of Ω in constructing the corrector z—this gives z ≡ 0, as
we can see from (3.2). But then any of various conditions in Theorem 4.3 give the vanishing
viscosity limit. (Or one can make a direct energy argument, since the boundary integral
disappears. It is easier to obtain the convergence rate that way.) □

A simple corollary of Theorem 11.1 is the following:

Corollary 11.2. We have,

ug → u in L∞(0, T ;L2(Ω)) as ν → 0

if and only if

ug − uu → 0 in L∞(0, T ;L2(Ω)) as ν → 0.

Proof. By the triangle inequality,

∥ug − u∥ ≤ ∥ug − uu∥+ ∥uu − u∥,
∥ug − uu∥ ≤ ∥ug − u∥+ ∥uu − u∥,

and the result follows from Theorem 11.1. □

Now consider the issue of the convergence of ug − uu to 0. Let w = ug − uu. Then

(∂tw,w) + (w · ∇uu, w) + (ug · ∇w,w) + (∇(p− q), w) = ν(∆w,w).

The third and fourth terms on the left-hand side vanish after integrating by parts. We
integrate the right-hand side by parts to obtain

1

2

d

dt
∥w∥2 + ν

∫ T

0
∥∇w∥2 = −(w · ∇uu, w) + ν

∫
∂Ω

(∇w · n) · w

= −(w · ∇uu, w)− ν

∫
∂Ω

(∇w · n) · (g − u).

Now, to obtain convergence we need control both on∇uu in something close to L1(0, T ;L∞),
as well as control on the boundary term. So proving ug − uu → 0 appears to be even more
difficult than proving ug → u.
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11.2. Speculations and a conjecture (long version only). Moving into the realm of
speculation, consider the following opposed possibilities:

• Positive: The vanishing viscosity limit in (1.1) holds for all smooth u0 and smooth g.
• Negative: The vanishing viscosity limit in (1.1) fails to hold for generic u0 and g.

The qualification “generic” is not meant in any precise technical way, but is to rule out,
for instance, initial data for which u vanishes on the boundary or which has some degree of
analyticity.

Whether one or the other of these possibilities holds (they are not exhaustive, so neither
may hold) is related to the question, “Is the solution to (NS) at low viscosity indifferent
to the boundary value g, or is it sensitive to it?” Indifference would support the positive
possibility, sensitivity would support the negative (or at least non-positive) possibility. We
can give some support for each position:

Indifferent : As ν → 0, the imposition of u = g on the boundary should become less
important, since as the fluid becomes less viscous, the boundary forcing should have
less effect on it, so less vorticity should be shed off the boundary and transported
into the bulk of the fluid. Nonetheless, there is enough shedding of vorticity for a
vortex sheet to form at the boundary. Indeed, this is shown to be the case for radially
symmetric solutions in [12, 13], and is likely the case for other scenarios in which the
non-linearity is weakened or eliminated (though such examples do not seem to have
been worked out explicitly in the literature, since g = 0 is generally assumed).

Sensitive: Theorem 9.1 tells us that when g = u|∂Ω, the shedding of vorticity off the
boundary is shut down, no vortex sheet forms on the boundary, and the vanishing
viscosity limit holds. On the other hand, if g ̸≡ u|∂Ω then a vortex sheet must form on
the boundary for the vanishing viscosity limit to hold. But perhaps as a vortex sheet
begins to form, there is an underlying physical mechanism that pushes back against
the convergence of the velocities, and hence also against the continued formation of
the vortex sheet.

The key difficulty with using Theorem 9.1 as evidence for or against the vanishing viscosity
limit is that its proof is simply a mathematical observation not based on any underlying
physical mechanism. And the convergence of the vortex sheet in Theorem 9.1 is weak-∗
in a non-distribution space, complicating even its mathematical interpretation. An avenue
of exploration here is to try to determine whether some stronger type of convergence is
compatible with the vanishing viscosity limit. We know that convergence of the vorticity as a
finite Borel measure is compatible in certain cases by [12, 13] and we know that convergence in
Lp for p > 1 is incompatible by [32]. But the former result is for very specialized initial data,
and the second result is simply based upon the need for the Lp norms of the Navier-Stokes
vorticity to blow up as ν → 0. Again, no (deep) physical mechanism is involved.

Weaker than either of the two positions is the following conjecture:

Conjecture 1. Generically, (1.1) holds for u0 if and only if (1.1) holds for any function
g ∈ (C∞([0, T ]× ∂Ω))d with g · n = 0 on ∂Ω.

This conjecture is saying, in effect, that except in very special circumstances, the vanishing
viscosity limit can hold only if the indifferent position is correct, though it takes no position on
whether the vanishing viscosity limit holds generically at all. A motivation for this conjecture
is that, as we have seen, the form of the Kato and Kato-like conditions are all indifferent to
the choice of g (for those involving derivatives of the velocity fields; for those involving the
velocity fields directly, we naturally subtract g).

11.3. An initial layer only. In studying the vanishing viscosity limit for no-slip boundary
conditions, one often assumes compatible initial data, meaning that (at least) u0 vanishes on
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the boundary. This eliminates the added complication of dealing with an initial layer due to
incompatible data, putting the focus on the nature of the development of layers for positive
time as vorticity is shred from the boundary.

But we can do just the opposite, working only with an initial layer by considering the
special case where u0 ≡ 0, so u ≡ 0 is a (steady) solution to the Euler equations. There is
an incompatibility in the boundary conditions for (NSg) at time zero when g ̸≡ 0, so the
solution to the Navier-Stokes equations does not vanish. This leads to a special case of the
vanishing viscosity limit not included in the classical setting (where g ≡ 0 would trivialize to
u0 ≡ u ≡ 0).

There are only two possibilities:

• Positive: ug → 0 as ν → 0 for all smooth g.
• Negative: there exists smooth g such that ug ̸→ 0 as ν → 0.

A route to a positive answer would be to find a more optimum bound on the energy of
ug than that in (1.8), one that would lead to ∥ug(t)∥ → 0 as ν → 0. But this is entirely
equivalent, as we can see from Theorem 4.3, to obtaining a bound on A(t, ν) that insures it
vanishes with ν. Even in simple geometries such as a disk with constant g ·τ , then, and even
in this simplified form, resolving the vanishing viscosity limit question seems out of reach.

To gain a little insight, though, let us consider a linearized version of (NSg) in which we
drop the term ug · ∇ug in (NSg): that is, the time-dependent Stokes problem, ∂tug +∇pg =
ν∆ug. We will assume, however, that g is time-independent.

We begin by making the same energy argument as in the proof above of Theorem 1.4, but
instead of using g itself, we use a “corrector,” z. We define z as in Section 3, using v = g in
place of (3.1), and with δ to be chosen below. (Hence, the corrector is “correcting” only the
boundary value of g.) We can see from Lemma 1.3 and Proposition 3.5 that

∥z∥ ≤ Cδ
1
2 , ν∥∇z∥2 ≤ C

ν

δ
.

Set r = ug − z and choose δ = ν1/2. Because ∂tz vanishes, in place of (10.1) we have

∂tr +∇pg = ν∆r + ν∆z.

Multiplying by r and integrating over the domain, we have

1

2

d

dt
∥r∥2 + ν∥∇r∥2 = ν(∇z,∇r) ≤ ν

2
∥∇z∥2 + ν

2
∥∇r∥2.

We conclude that

d

dt
∥r∥2 + ν∥∇r∥2 ≤ ν∥∇z∥2 ≤ C

ν

δ
.

Integrating in time, we see that

∥r(t)∥2 + ν

∫ t

0
∥∇r∥2 ≤ ∥r(0)∥2 + C

ν

δ
t = ∥z∥2 + C

ν

δ
t ≤ Cδ + C

ν

δ
t ≤ C(tν)

1
2 ,

where in the last step we chose δ = (νt)
1
2 to balance the two terms. From Grönwall’s lemma,

then, ug → u ≡ 0 in L∞([0, T ];L2) as ν → 0.
Hence, for this linearized problem, at least in the special case in which the boundary data

is constant in time, we obtain the positive possibility. Of course, this linear situation should
not dominate our intuition: the question is whether the nonlinear, convective term disrupts
this linear behavior sufficiently to obtain a negative answer.
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12. On correctors

A fully scalable corrector, such as Kato’s, which we used to obtain all our results, corrects
only for the value of u − u = g − u = v (see (3.1)) on the boundary, while being of a size
in the boundary layer, as measured by certain key norms, that allows at least conditional
control of each term in the resulting energy argument. In this regard, we view it as a purely
size-based corrector, meeting what are pretty much the minimal requirements for any usable
corrector.

Another approach to obtaining a corrector is to start with the equation satisfied by the
difference between a solution and its intended limiting value—u− u in our case—and reduce
the complexity of the equation by performing formal asymptotics based on assuming certain
scaling laws, themselves typically based on (unproven) physical assumptions. Often, an
approximate, but explicit solution to the corrector equation is used as the actual corrector.

This approach originates in the work of Prandtl [46], who did not, however, express it in
terms of a corrector, but rather by performing formal asymptotics derived by scaling a thin
boundary layer; an approach to such problems using a corrector was pioneered by Vishik and
Ljusternik [63, 62] (in a linear setting).

There are many correctors in the literature for problems closely related to our own. We
restrict ourselves here to a brief discussion of those used to treat the vanishing viscosity limit,
primarily for no-slip boundary conditions for the full or linearized Navier-Stokes equations in
the spirit of Kato.

Correctors may differ, but they cannot differ too much in size in the L∞(0, T ;L2) and
L2(0, T ;H1) norms if they are to be used to investigate the vanishing viscosity limit in (1.1).
It is primarily the hope that the structure of some given corrector might more closely match
the underlying physical problem for certain situations, however, that motivates the choice of
correctors not exclusively based on size.

In defining the correctors in the subsections that follow, we define v = g − u, as in (3.1)
and let

U(t, x1) := u1(t, x1, 0)− g1(t, x1) = −v1(t, x1, 0).

We note that, like Kato’s corrector, all of these correctors satisfy Proposition 3.8.

12.1. Wang’s corrector in [65]. Let ρ ∈ C∞([0,∞)) taking values in [−1, 1] satisfy ρ(0) =

1, ρ′(0) = 0, supp ρ ⊆ [0, 1],
∫ 1
0 ρ = 0, and |ρ′| ≤ 2. Working with a flat boundary (a periodic

channel), define

α = U(t, x1)

∫ x2

0
ρ
(s
δ

)
ds = δU(t, x1)

∫ x2
δ

0
ρ(s) ds,

and let z = ∇⊥α. Then we see that the corrector is of the form described in Remark 3.7 with

z =

(
−U(t, x1)ρ

(x2
δ

)
, ∂1U(t, x1)

∫ x2

0
ρ
(s
δ

)
ds

)
.

12.2. Corrector in [53, 17] for inflow, outflow boundary conditions. In [53] the authors
consider solutions to the Navier-Stokes and Euler equations in a 3D periodic channel, in which
fluid enters from the top boundary and exits from the bottom. Letting g = (0, 0,−V ) for
some constant V > 0, the boundary condition for Navier-Stokes is u = g on [0, T ] × ∂Ω (as
in (NSg), though now g · n ̸= 0) and for the Euler equations they also set u = g on the top
boundary, but only u ·n = g ·n on the bottom boundary. The setup is generalized in [17] to
treat a bounded domain in R3 and to allow V to vary over the boundary, but the essential
nature of the problem is unchanged.
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Allowing inflow, outflow introduces a number of complications, not least of which is proving
the well-posedness (established in Chapter 4 of [1]) and higher regularity of solutions to
the Euler equations (only recently established in [21, 20]). Moreover, although the energy
argument that establishes the vanishing viscosity limit is akin to that in Section 4, it departs
substantially from it, and so is not strictly in the tradition of Kato. The nonlinear terms
are handled differently than we did in Section 4, allowing Hardy’s inequality in the form of
Lemma 2.8 to be advantageously applied to the corrected difference, which is not possible
when g · n = 0 (see Section 5.3). Moreover, the authors do not integrate by parts to change
∆z to ∇z as we did, and extra terms appear because of the inflow, outflow.

The equations are first “homogenized” by subtracting g from the solutions, so that the
solution to the Navier-Stokes equations vanishes on the boundary. The key extra term that
appears in the energy inequality is −g · ∇z, where g is extended to Q as in Lemma 1.3. This
term cannot by itself be controlled, but the combination ν∆z − g · ∇z can be if one uses a
corrector that approximately satisfies the 1D elliptic equation,

ν
∂2z1

∂x22
− V

∂z1

∂x2
= 0. (12.1)

(This would be the 2D version; in [53, 17] x2 is x3 and (12.1) applies to ztan.)

The dominant factor in the corrector that results is e−V x2/ν . The corrector is more compli-
cated, as a cutoff function is required along with other complicating issues, but this dominant
factor forces the specific scaling, δ = V −1ν. This in turn forces a compatibility condition to
be assumed on the initial velocity to control one critical term coming from the nonlinearity
for (NS), resulting in short-time convergence. (Given that in 3D there is only finite-time
existence of the solutions to the Euler equations, this is a minor limitation.)

12.3. Corrector in [9]. In Section 3 of [9], the authors define a nonnegative smooth cutoff
function, ψ, to be supported in [1/2, 4] and to have total mass 1, “approximating χ[1,2].” (We
interpret this to mean that ψ = 1 − ϵ on [1, 2] for some small ϵ > 0 so that the total mass
can add to 1.) The corrector as it appears in (3.1, 3.2) of [9] we can write as

z1(t, x1, x2) := −U(t, x1)
(
e−

x2
δ − δψ(x2)

)
,

z2(t, x1, x2) := δ∂1U(t, x1)

(
1−

∫ x2

0
ψ(y) dy − e−

x2
δ

)
,

working explicitly with a flat boundary (the upper half-plane). In [9], the authors use δ =
ατ(t), where τ(t) = min{t, 1} and, ultimately, α is set to ν. Observe that z = ∇⊥α where

α = δU(t, x1)

(
1−

∫ x2

0
ψ(y) dy − e−

x2
δ

)
.

Then α and z are of magnitude δ in a fixed-width boundary layer outside of which they
decay exponentially fast. Like the simple corrector of Remark 3.7, the stream function α is
product form and vanishes on the boundary, but it does not (purely) scale like δf(x2/δ) in
the x2 variable.

12.4. Heat equation-based correctors. The idea of using the solution to the 1D heat
equation to correct for a 2D PDE (heat equation or Stokes equation) with a divergence-free
corrector goes back to Temam and Wang in [55]. In the context of Kato-like arguments, such
correctors appear in a simple form in [16, 7]. In [16] Gie uses the corrector in a 3D bounded
domain with curved boundary, while in [7] it is used in a half-plane. In [16], the system
studied is linear, the Stokes equations, but both [16, 7], in effect, apply formal asymptotics to
the equation for w = u− u, and focus on controlling the terms of the form, ∂tw − ν∆w. We
present the corrector in [7], which works specifically in the half-plane, x2 > 0, the technical
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complexities being lessened over those in [16]. (Or see [55] for the construction in a 2D
periodic channel.)

The corrector z is required to satisfy z = v = g− u on the boundary (g = 0 in [16, 7]) and
be divergence-free. The tangential component z1(t, x1, ·) satisfies the 1D heat equation (as
would also follow from appropriate formal asymptotics) with z(t, x1, 0) = v(t, x1, 0) and then
z2 is chosen uniquely to enforce the divergence-free condition and vanish on the boundary.
This yields a corrector in which (see (3.2) of [7])

z1 = −U(t, x1) (erfc(x2/δ)− δη(x2)) ,

where δ =
√
4νt, erfc(r) = 1 − erf(r) = 2√

π

∫∞
r e−y2 dy, and η ∈ C∞([0,∞)) with supp η ∈

[1, 2] and
∫∞
0 η(r) dr = π−

1
2 . Hence, z = ∇⊥α, where

α = U(t, x1)

(∫ x2

0
erfc(s/δ) ds− δ

∫ x2

0
η(s) ds

)
= δU(t, x1)

(∫ x2
δ

0
erfc(s) ds− δ

∫ x2

0
η(s) ds

)
,

which we note vanishes on the boundary. Then

z2 = ∂1α = −∂1U(t, x1)

(∫ x2
δ

0
erfc(s) ds− δ

∫ x2

0
η(s) ds

)
,

which also vanishes on the boundary. The condition
∫∞
0 η(r) dr = π−

1
2 allows sufficient decay

of z2 as x2 → ∞, as shown in [7].
The key distinction between the use of this corrector and that of Kato (Section 3) or of

Wang (Section 12.1) is that it is designed to control the term, (∂tz−ν∆z, w̃), which is shown

in [7] to be bounded by C(ν
1
2 t−

1
2 + (νt)

1
4 ). Integrating in time, this gives a C(T )ν

1
4 bound.

By contrast, in Kato’s energy argument, (∂tz, w̃) and (ν∆z, w̃) are controlled separately, by
integrating by parts, in time or in space. In place of (ν∆z, w̃) one has ν(∇u,∇z), which is
easily controlled, since the boundary layer is wider than that of Kato’s.

As it turns out, Kato’s approach would work to obtain the results in [7]—as it would in
Gie’s [16] to obtain convergence of Stokes solutions to the inviscid solution in L∞([0, T ];L2).
The control on ∂tz−ν∆z in [16], however, is critical in demonstrating that the Stokes solutions
remain bounded in L∞(0, T ;H1). This is something that cannot happen for solutions to the
Navier-Stokes equations if the vanishing viscosity limit is to hold (as shown in [32]).

That controlling the H1 norm is the critical use of such correctors is already apparent in
[55], where it is explicitly stated. The use of similar correctors to control or even obtain
convergence of the corrected difference of solutions in the H1 norm is apparent in much of
the subsequent work of Temam and Wang and those following their general approach; this
includes, but is hardly limited to, [56, 61, 57, 59, 52, 58, 60, 53, 35, 19, 18].

Acknowledgements

Part of this work was prepared while the author participating in a program hosted by the
Mathematical Sciences Research Institute in Berkeley, California, in Spring 2021, supported
by the National Science Foundation under Grant No. DMS-1928930.

Appendix A. Curvilinear coordinates(long version only)

Proof of Lemma 2.2. First, we obtain the expression for v⊥ by the simple calculation,

v⊥ = v1τ⊥ + v2(−n)⊥ = v1(−n)− v2τ = (−v2, v1).



VV WITH DIRICHLET BOUNDARY CONDITIONS 35

Now let

γ = γ(x1, x2) :=
1

1− κx2
.

That is, γ is the same as the expression for J in (2.1), though we do not yet know that it is,
in fact, the Jacobian determinant.

Let P = (x1, x2) ∈ Γδ in coordinates as used above and let y = (y1, y2)C be P in Cartesian
coordinates. Let ξ(t) be a local parameterization of ∂Ω by arc length, expressed in Cartesian
coordinates. Then x1 is arc length along image ξ and

y = ξ(x1) + x2(ξ
′(x1))

⊥ = ξ(x1)− x2n(x1)

or

y1 = ξ1(x1)− x2n
1(x1) = ξ1(x1)− x2n

1(x1),

y2 = ξ2(x1)− x2n
2(x1) = ξ2(x1)− x2n

2(x1).

Here, and in what follows, we write the vectors n and later τ in Cartesian coordinates as

n = (n1, n2), τ = (τ1, τ2) = (−n2, n1).
Hence,

∂x1 =
∂y1
∂x1

∂y1 +
∂y2
∂x1

∂y2

=
[
(ξ1)′(x1)− x2(n

1)′(x1)
]
∂y1 +

[
(ξ2)′(x1)− x2(n

2)′(x1)
]
∂y2

= τ (x1) · ∇y − x2n
′(x1) · ∇y = (1− κ(x1)x2)τ (x1) · ∇y = γ−1τ (x1) · ∇y,

∂x2 =
∂y1
∂x2

∂y1 +
∂y2
∂x2

∂y2 = −n1(x1)∂y1 − n2(x1)∂y2 = −n(x1) · ∇y,

where we used that

n′(x1) =
∂n

∂τ
= κτ ,

κ being the scalar curvature on the boundary. We can write this as ∇x = A∇y, where

A =

(
γ−1τ1 γ−1τ2

−n1 −n2
)

=

(
γ−1τ1 γ−1τ2

τ2 −τ1
)
.

Noting that detA = −γ−1 we see that A is invertible with

A−1 = −γ
(
−τ1 −γ−1τ2

−τ2 γ−1τ1

)
=

(
γτ1 τ2

γτ2 −τ1
)
.

Hence,

∇y = A−1∇x =

(
γτ1 τ2

γτ2 −τ1
)(

∂x1

∂x2

)
=

(
γτ1∂x1 + τ2∂x2

γτ2∂x1 − τ1∂x2

)
=

(
γτ1∂x1 − n1∂x2

γτ2∂x1 − n2∂x2

)
,

so that

∇f = γ∂1fτ − ∂2fn.

From this we obtain the expression for the Jacobian determinant in (2.1),

J(x1, x2) =
∂(y1, y2)

∂(x1, x2)
= |detA−1| = |−γ(τ1)2 − γ(τ2)2| = γ.

Now,

div v = ∂y1(v · e1) + ∂y2(v · e2),
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where e1, e2 are the standard basis vectors in R2. But,

v · e1 = v1τ1 − v2n1 = −v1n2 − v2n1,

v · e2 = v1τ2 − v2n2 = v1n1 − v2n2,

so

div v = −∂y1v1n2 − ∂y1v
2n1 − v1∂y1n

2 − v2∂y1n
1

+ ∂y2v
1n1 − ∂y2v

2n2 + v1∂y2n
1 − v2∂y2n

2.

Now, n does not change with changes in x2, so applying the chain rules gives

∂yjn
k = ∂x1n

k∂x1yj

for each j, k. And,

∂x1y1 = (ξ1)′ − x2(n
1)′ = τ1 − x2κτ

1 = Jτ1 = −Jn2,
∂x1y2 = (ξ2)′ − x2(n

2)′ = τ2 − x2κτ
2 = Jτ2 = Jn1.

Also,

∂x1n
1 = (n1)′ = κτ1 = −κn2, ∂x1n

2 = (n2)′ = κτ2 = κn1

Thus,

∂y1n
1 = ∂x1n

1∂x1y1 = (−κn2)(−Jn2) = κJ(n2)2,

∂y1n
2 = ∂x1n

2∂x1y1 = κn1(−Jn2) = −κJn1n2,
∂y2n

1 = ∂x1n
1∂x1y2 = (−κn2)Jn1 = −κJn1n2,

∂y2n
2 = ∂x1n

2∂x1y2 = κn1)Jn1 = κJ(n1)2.

Hence,

div v = −∂y1v1n2 − ∂y1v
2n1 + v1κJn1n2 − v2κJ(n2)2

+ ∂y2v
1n1 − ∂y2v

2n2 − v1κJn1n2 − v2κJ(n1)2

= −∂y1v1n2 − ∂y1v
2n1 + ∂y2v

1n1 − ∂y2v
2n2 − v2κJ.

From our expression for ∇y, we have

∂y1v
1 = Jτ1∂x1v

1 − n1∂x2v
1 = −Jn2∂x1v

1 − n1∂x2v
1,

∂y2v
1 = Jτ2∂x1v

1 − n2∂x2v
1 = Jn1∂x1v

1 − n2∂x2v
1,

∂y1v
2 = −Jn2∂x1v

2 − n1∂x2v
2,

∂y2v
2 = Jn1∂x1v

2 − n2∂x2v
2.

So

div v = (Jn2∂x1v
1 + n1∂x2v

1)n2 + (Jn2∂x1v
2 + n1∂x2v

2)n1

+ (Jn1∂x1v
1 − n2∂x2v

1)n1 − (Jn1∂x1v
2 − n2∂x2v

2)n2 − v2κJ

= ∂x1v
1(J(n2)2 + J(n1)2) + ∂x2v2((n1)2 + (n2)2) + ∂x2v

1(n1n2 − n2n1)

+ ∂x1v
2(Jn2n1 − Jn1n2)− v2κJ

= J∂x1v
1 + ∂x2v2 − v2κJ = J∂1v

1 + ∂2v
2 − v2κJ,

which gives our expression for div v. The expression for curl v follows from the identity
curl v = −div v⊥. For ∆f , we calculate,

∆f = div∇f = div(J∂1f, ∂2f) = J∂1(J∂1f)) + ∂22f − κJ∂2f
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= J2∂21f + ∂22f − κJ∂2f + J∂1J∂1f.

But,

∂1J = − 1

(1− κx2)2
(−x2∂1κ) = x2J(x1, x2)

2κ′(x1),

which gives the expression for ∆f .
Because (τ ,n) are orthonormal, the expression for u · v is the same in (x1, x2) coordinates

as it is in Cartesian coordinates; that is, u · v = ujvj .
To calculate u · ∇v, we go to the raw definition of u · ∇v = (u · ∇)v as a directional

derivative.:

u · ∇v(x) = lim
h→0

v(x+ hu)− v(x)

h

= lim
h→0

[
v(x+ hu)− v(x)

h
· τ
]
τ + lim

h→0

[
v(x+ hu)− v(x)

h
· (−n)

]
(−n)

=

(
lim
h→0

v1(x+ hu)− v1(x)

h
, lim
h→0

v2(x+ hu)− v2(x)

h

)
= ∇v1 · u+∇v2 · u = (J∂1v

1, ∂2v
1) · (u1, u2) + (J∂1v

2, ∂2v
2) · (u1, u2)

=
(
Ju1∂1v

1 + u2∂2v
1, Ju1∂1v

2 + u2∂2v
2
)
.

Or, in somewhat more detail, let α(s) be any smooth path for which α(0) = x, α′(0) = u.
Then

u·∇v(x) = lim
s→0

v(α(s))− v(α(0))

s

= lim
s→0

[[
v(α(s))− v(α(0))

s
· τ
]
τ

]
+ lim

s→0

[[
v(α(s))− v(α(0))

s
· (−n)

]
(−n)

]
=

[
lim
s→0

v1(α(s))− v1(α(0))

s

]
τ +

[
lim
s→0

v2(α(s))− v2(α(0))

s

]
(−n).

In the second line, the τ and n are evaluated at x + hu, which in the next line become
evaluated at x by the product rule for limits. Now,

lim
s→0

v1(α(s))− v1(α(0))

s
=
dv1(α(s))

ds

∣∣∣∣
s=0

=
∂v1

∂α1

∣∣∣∣
x1=x1(s)

dα1(s)

ds

∣∣∣∣
s=0

+
∂v1

∂α2

∣∣∣∣
x2=x2(s)

dα2(s)

ds

∣∣∣∣
s=0

= ∇v1(x) · α′(0) = ∇v1(x) · u(x)
= Ju1∂1v

1 + u2∂2v
1,

using our expression for ∇ and for the scalar product of two vector fields. Similarly,

lim
s→0

v2(α(s))− v2(α(0))

s
= Ju1∂1v

2 + u2∂2v
2,

which yields

u · ∇v(x) =
(
Ju1∂1v

1 + u2∂2v
1, Ju1∂1v

2 + u2∂2v
2
)
. □
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Appendix B. Proof of corrector estimates(long version only)

In the section, we give the proofs of Propositions 3.5 and 3.8.

Proof of Proposition 3.5. Working on a single component of Γδ using Lemma 2.2, we
have,

z(x1, x2) = ∇⊥(φδ(x2)ψ(x1, x2)) = (−∂2(φδ(x2)ψ(x1, x2)), J∂1(φδ(x2)ψ(x1, x2)))

= −
(
φ′
δ(x2)ψ(x1, x2), 0

)
+ (−φδ(x2)∂2ψ(x1, x2), Jφδ(x2)∂1ψ(x1, x2))

= −
(
φ′
δ(x2)ψ(x1, x2), 0

)
+ φδ(x2)∇⊥ψ(x1, x2)

= −
(
φ′
δ(x2)ψ(x1, x2), 0

)
+ φδ(x2)v(x1, x2).

(B.1)

Hence,

∂1z
1 = −φ′

δ(x2)∂1ψ(x1, x2) + φδ(x2)∂1v
1(x1, x2)

= −φ′
δ(x2)v

2(x1, x2) + φδ(x2)∂1v
1(x1, x2),

∂2z
1 = −φ′

δ(x2)∂2ψ(x1, x2)− φ′′
δ (x2)ψ(x1, x2)

+ φ′
δ(x2)v

1(x1, x2) + φδ(x2)∂2v
1(x1, x2)

= 2φ′
δ(x2)v

1 − φ′′
δ (x2)ψ(x1, x2) + φδ(x2)∂2v

1(x1, x2),

∂1z
2 = φδ(x2)∂1v

2(x1, x2),

∂2z
2 = −∂1z1 + κJz2.

In the last equality, we used div z = 0 and the form of div z given in Lemma 2.2.
Now,

|ψ(x1, x2)| ≤ ∥v∥L∞x2 = Cx2,

|v2(x1, x2)| ≤ ∥∂2v2∥L∞x2 ≤ Cx2,

|∂1v2(x1, x2)| ≤ ∥∂2∂1v2∥L∞x2 ≤ Cx2,

|φ′
δ(x2)x2| ≤ C, |φ′′

δ (x2)x2| ≤ Cδ−1,

so we have the pointwise bounds (for all δ ≤ δ0, for some fixed δ0 > 0),

|z1(x1, x2)| ≤ C, |z2(x1, x2)| ≤ Cx2,
|∂1z1(x1, x2)| ≤ C, |∂2z1(x1, x2)| ≤ Cδ−1,
|∂1z2(x1, x2)| ≤ Cx2, |∂2z2(x1, x2)| ≤ C

(B.2)

with all quantities supported in Γδ. These bounds lead directly to the bounds in Proposi-
tion 3.5 given in (3.4).

We explicitly calculate the final bound in (3.4), which is the most involved. We have,

∥z · ∇z∥pLp =
∑
i,j

∥zi∂izj∥pLp =

∫
Γδ

∑
i,j

|zi(x1, x2)|p|∂izj(x1, x2)|p dx1 dx2

=

∫
Γδ

(|z1(x1, x2)|p|∂1z1(x1, x2)|p + |z2(x1, x2)|p|∂2z1(x1, x2)|p

+ |z1(x1, x2)|p|∂1z2(x1, x2)|p + |z2(x1, x2)|p|∂2z2(x1, x2)|p)
dx1 dx2

≤
∫
Γδ

(
CpCp + xp2C

pδ−p + Cpxp2 + Cxp2C
p
)
dx1 dx2

≤ Cp

∫
Γδ

dx1 dx2 = Cpδ.
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This yields the final bound in (3.4). (The point, here, is that z · ∇z is bounded on Ω.)
Because

∂tz(x1, x2) = ∇⊥(φδ(x2)∂tψ(x1, x2))

and ∂tψ is bounded in the same manner as ψ (just with different constants), the estimates
in (B.2) and so in (3.4) hold as well for ∂tz in place of z.

This establishes (3.4) for j, k = 0; j = 1, k = 0; j = 0, k = 1. Because additional derivatives
in x1 of z1 or z2 affect only ψ and v, which are C∞, we also obtain the result for any value
of j. Each additional derivative of z1 or z2 in x2 has the same effect on ψ and v, but also
adds one additional derivative on φδ, introducing an additional factor of δ. This leads to an
additional factor of δ−k for ∂k2 . Since, however, ∂2z

2 = −∂1z1, there is one less factor of δ−1

for ∂k2z
2 than there is for ∂k2z

1. Similar considerations apply to ∂j1∂
k
2 , completing the proof

of (3.4).
We now turn to the proof of (3.5). The estimates in (3.4) continue to hold unchanged

when m = 0. If δ also varies with time, however, the cutoff function, φδ, has an additional
dependence on time thorough δ, so that

∂tφδ(x2) = ∂tφ
(x2
δ

)
= φ′

(x2
δ

) ∂

∂t

x2
δ

= −x2
∂tδ

δ2
φ′
(x2
δ

)
.

Hence,

∂tz(x1, x2) = ∇⊥(φδ(x2)∂tψ(x1, x2))−∇⊥
(
x2
∂tδ

δ2
φ′
(x2
δ

)
ψ(x1, x2)

)
=: v1 + v2.

To obtain the estimates in (B.2) for ∂tz in place of z, v1 is bounded as before, so that, in
particular,

∥v11(x1, x2)∥Lp(Ω) ≤ Cδ
1
p ,

∥v21(x1, x2)∥Lp(Ω) ≤ Cδ
1
p
+1
.

In bounding v2, −φ′(x2/δ) plays the role that φδ(x2) played in bounding z, and is bounded
in the same manner (the vanishing of φ′ in a neighborhood of the boundary does not improve
any estimates), but there is an additional factor of x2

∂tδ
δ2

that is included in each of the
corresponding bounds in (3.4) for v2. We need only the first two bounds,

|v12(x1, x2)| ≤ Cx2
∂tδ

δ2
,

|v22(x1, x2)| ≤ Cx22
∂tδ

δ2
.

(B.3)

Hence (assuming that ∂tδ > 0),

∥v12∥Lp(Ω) ≤ C
∂tδ

δ2

(∫ δ

0
xp2

) 1
p

≤ C
∂tδ

δ2
δ
1+ 1

p ,

∥v22∥Lp(Ω) ≤ C
∂tδ

δ2

(∫ δ

0
x2p2

) 1
p

≤ C
∂tδ

δ2
δ
2+ 1

p .

(We have suppressed the Jacobian in these integrals, which is bounded above as in the proof
of Lemma 2.3, and so only changes the values of the constants.) From this, (3.5)1,2 follow
directly. Then

∥∂tz∥Lp(Ω) ≤ Cδ
1
p (1 + δ) + C∂tδ δ

1
p
−1

(1 + δ)
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≤ Cδ
1
p
−1

(δ + ∂tδ)(1 + δ) ≤ Cδ
1
p
−1

(δ + ∂tδ)

for δ less than any fixed δ0 > 0, which is (3.5)3. □

Proof of Proposition 3.8. Let ϕ ∈ C(Ω). Since v = g − u on ∂Ω, what we must show is
that ∫

Ω
curl z ϕ = (curl z, ϕ) →

∫
Γ
(v · τ )ϕ as ν → 0 uniformly on [0, T ]. (B.4)

Recalling the definition of φδ, z, v, and ψ in (3.1) and (3.2), since φδψ is the stream
function for z, we have

curl z = ∆(φδψ) = ∆φδψ + φδ∆ψ + 2∇φδ · ∇ψ
= (φ′′

δ (x2)− κJφ′
δ(x2))ψ + φδ curl v − 2φ′

δ(x2)v
1.

In switching to coordinates in the third equality, we used Lemma 2.2, noting in particular,
that

∇φδ · ∇ψ = ∇⊥φδ · ∇⊥ψ = (−φ′
δ(x2), 0) · (v1, v2) = −φ′

δ(x2)v
1.

One term in (curl z, ϕ) can be easily bounded by

|(φδ curl v, ϕ)| ≤
∫
Γδ

∥curl v∥L∞∥ϕ∥L∞ ≤ Cδ,

which vanishes in the limit as ν → 0, since δ → 0 by Definition 3.2. Using the definitions
in the proof of Lemmas 2.3 and 2.9, to treat the other terms in (curl z, ϕ), we integrate
separately over each component of Γδ (which allows us to assume that ψ vanishes on the
intersection of the boundary of that component with ∂Ω). We have,∫

Γk
δ

(−2φ′
δv

1 − κJφ′
δψ)ϕ

=
1

δ

∫ ℓ

0

∫ δ

0
(−2v1(x1, x2)− κJψ(x1, x2))φ

′
(x2
δ

)
ϕ(x1, x2)J(x1, x2) dx1 dx2

=

∫ ℓ

0

∫ 1

0
(−2v1(x1, δy)− κJ(δy)ψ(x1, δy))φ

′(y)ϕ(x1, δy)J(x1, δx2) dx1 dy

→
∫ ℓ

0
(−2v1(x1, 0)− κJ(0)ψ(x1, 0))ϕ(x1, 0)J(x1, 0) dx1

∫ 1

0
φ′(y) dy

=

∫ ℓ

0
2v1(x1, 0)ϕ(x1, 0) dx1 = 2

∫
Σk

(v · τ )ϕ.

Convergence holds because v1, J , and ϕ are each continuous on Ω. The equality following
convergence holds because ∫ 1

0
φ′(y) dy = [φ(1)− φ(0)] = −1

and because J(x1, 0) = 1.
For the final term in (curl z, ϕ), we have∫

Γk
δ

φ′′
δψ ϕ =

1

δ2

∫ ℓ

0

∫ δ

0
φ′′
(x2
δ

)
ψ(x1, x2)ϕ(x1, x2)J(x1, x2) dx1 dx2

=

∫ ℓ

0

∫ 1

0
φ′′(y)

ψ(x1, δy)

δ
ϕ(x1, δy)J(x1, δy) dx1 dy.
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But,

ψ(x1, δy)

δ
= y

ψ(x1, δy)− ψ(x1, 0)

δy
→ y∂2ψ(x1, 0) = −yv1

uniformly over y and time, since ψ′ is uniformly continuous on [0, T ]×Ω. Here, we used that
v = ∇⊥ψ = (∂2ψ, J∂1ψ) in coordinates by Lemma 2.2, so ∂2ψ = v1.

Again invoking uniform continuity (of J , and ϕ) to obtain limits, we see that∫
Γk
δ

φ′′
δψ ϕ→ −

∫ ℓ

0
v1(x1, 0)ϕ(x1, 0)J(x1, 0) dx1

∫ 1

0
yφ′′(y) dy = −

∫
Σk

(v · τ )ϕ,

since ∫ 1

0
yφ′′(y) dy =

[
yφ′(y)

]1
0
−
∫ 1

0
φ′(y) dy = [0− 0]− (−1) = 1.

From these limits, we see that (B.4) follows. □
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Linéaire, 36(5):1237–1280, 2019. 34

[19] Gung-Min Gie, James P. Kelliher, and Anna L. Mazzucato. Boundary layers for the Navier-Stokes equa-
tions linearized around a stationary Euler flow. J. Math. Fluid Mech., 20(4):1405–1426, 2018. 34

[20] Gung-Min Gie, James P. Kelliher, and Anna L. Mazzucato. The 3D Euler equations with inflow, outflow
and vorticity boundary conditions. arXiv:2203.15180, 2022. 33

[21] Gung-Min Gie, James P. Kelliher, and Anna L. Mazzucato. The linearized 3D Euler equations with inflow,
outflow. To appear in Advances in Differential Equations, 2023. 33
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