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Abstract. We demonstrate connections that exists between a conjec-
ture of Schiffer’s (which is equivalent to a positive answer to the Pompeiu
problem), stationary solutions to the Euler equations, and the conver-
gence of solutions to the Navier-Stokes equations to that of the Euler
equations in the limit as viscosity vanishes.

We say that a domain Ω ⊆ R
d, d ≥ 2, has the Pompeiu property if, given that

the integral of a continuous function f : R
d → R is zero for all translations

and rotations of Ω, it follows that f is identically zero. The Pompeiu problem
is to determine whether balls are the only simply connected domains with
Lipschitz boundary not having the Pompeiu property.

From now on we assume that Ω is a nonempty simply connected domain
with Lipschitz boundary Γ, having outward unit normal n (defined almost
everywhere on Γ).

Williams showed in [5] that an affirmative answer to the Pompeiu problem
is equivalent to Conjecture 1 of Schiffer.

Conjecture 1 (Schiffer’s conjecture). Let α and λ be nonzero real numbers.
Then there exists a non-identically vanishing solution ω to the overdeter-
mined equation

{

∆ω + λω = 0 in Ω,
ω = α, ∇ω · n = 0 on Γ

(1)

if and only if Ω is a ball.

Observe that because ω is an eigenfunction of the Neumann Laplacian,
necessarily λ ≥ 0. The assumption that λ 6= 0 in Conjecture 1 simply rules
out that possibility that ω ≡ α. Also, since ω is constant on Γ, it follows
that ∇ω = 0, not just the normal component of it; that is, Equation (1) is
equivalent to

{

∆ω + λω = 0 in Ω,
ω = α, ∇ω = 0 on Γ.

(2)
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(In fact, only the condition ∇ω = 0 on Γ is needed, since it then follows
that ω is constant on Γ, but we will find it convenient to specifically state
the value of ω on the boundary.)

We also observe that by Lemma 9, a solution to Equation (2), if it exists,
is unique.

The following is a result of Williams in [6]:

Theorem 2. The existence of a non-identically vanishing solution to Equa-
tion (2) implies that Γ is real analytic.

We define the function space

V =
{

u ∈ (H1(Ω))d : div u = 0 in Ω, u = 0 on Γ
}

and endow it with the H1-norm.
Given any u in V ∩H2(Ω), the (classical) Stokes operator AD applied to

u is that unique element ADu of H such that ∆u + ADu = ∇p for some
harmonic pressure field p. The operator AD maps V ∩H2(Ω) onto H (see,
for instance, p. 49-50 of [2] for more details). This leads to the eigenvalue
problem in Definition 3.

Definition 3. [Eigenvalue problem for AD: strong form] An eigenfunction
u ∈ V ∩H2(Ω) of AD with eigenvalue λ > 0 satisfies ADu = λu or, equiva-
lently,

{

∆u+ λu = ∇p, ∆p = 0, div u = 0 in Ω,
u = 0 on Γ.

(3)

Theorem 4. In two dimensions, the following are equivalent:

(1) There exists a non-identically vanishing solution to Equation (2) on
Ω.

(2) There exists a pressureless eigenfunction of the Stokes operator on
Ω—that is, Equation (3) has a solution with ∇p ≡ 0.

(3) There exists a steady state solution to the Euler equations that is
also an eigenfunction of the Stokes operator.

Remark 1. The equivalence of (2) and (3) shows that the steady state
solution to the Euler equations in (3) is by necessity pressureless. Also, the
nature of the steady state solution in (3) is very specific, as we describe
following the proof of Theorem 4.

Proof of Theorem 4. Assume (1). Then Γ is real analytic by Theorem 2 so
we can apply Lemma 8 giving a corresponding velocity field u satisfying

{

∆u+ λu = 0, div u = 0 in Ω,
u · n = 0, ω = α on Γ.

But then from the identity ∆u = ∇⊥ω, it follows that u = −(1/λ)∆u = 0
on Γ, meaning that u satisfies Equation (3) with ∇p ≡ 0.

Now assume (2), and let ω = ω(u). Taking the vorticity of Equation (3),
∆ω + λω = 0. It also follows from Equation (3) and the assumption p ≡ 0
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that ∇ω = −∆u⊥ = −λu⊥ = 0 on Γ from which Equation (2) follows for
some value of α, and α cannot be zero by Lemma 9.

This shows the equivalence of (1) and (2).
If we assume that (2) holds, then u · ∇ω = −u ·∆u⊥ = −u · (−λu⊥) ≡ 0,

which shows that u is a steady state solution to the Euler equations; that
is, (3) holds.

Finally, assume (3), letting u be a steady state solution to the Euler
equations that is also an eigenfunction of the Stokes operator with eigenvalue
λ. Let ω be the vorticity of u and let ψ be the stream function for u, so
that u = ∇⊥ψ.

Because u is a steady state solution to the Euler equations, it follows that
ω = F (ψ) for some function F (see, for instance, Proposition 2.2 p. 46
of [4]) and because u is in C2(Ω) it follows that F is in C1(R). Since ψ is
constant on Γ (which gives the condition u ·n = 0) so must ω be constant on
Γ; thus, ∇p ≡ 0 by Lemma 8. This shows that (3) implies (2), completing
the proof. �

In the proof of Theorem 4 that (3) implies (2), we also have

∇ω = F ′(ψ)∇ψ =⇒ ∆u = ∇⊥ω = F ′(ψ)∇⊥ψ = F ′(ψ)u.

But ∆u+ λu = 0, since we showed that the solution to the Euler equations
was pressure-free, so F ′(ψ) = −λ giving

ω = F (ψ) = −λψ + C.

The stream function ψ is defined uniquely up to an additive constant. With
the usual assumption that ψ = 0 on Γ, this becomes

ω = −λψ + α. (4)

So if ψ is the stream function for a steady state solution to the Euler equa-
tions, then ω = ∆ψ will satisfy Equation (2) as long as we also have ∇ψ = 0
on Γ. We can also solve for ψ in terms of ω and use it to obtain the impli-
cations (1) implies (2) and (3) of Theorem 4.

These observations lead to Theorem 5, which is an alternate way of ex-
pressing Theorem 4.

Theorem 5. Given the solution ω to Equation (2), setting

ψ = (α− ω)/λ,

it follows that u = ∇⊥ψ solves Equation (3) with ∇p ≡ 0 and that u is
a steady state solution to (E). Conversely, given that u is a steady state
solution to the Euler equations that is also an eigenfunction of the Stokes
operator, the pressure must vanish, and it follows that ω as given by Equa-
tion (4) solves Equation (2).

If any of the conditions in Theorem 4 are satisfied, then λ is an eigenvalue
of the Neumann Laplacian. But u also satisfies Equation (3) with ∇p ≡ 0,
so it follows that both components of u are eigenfunctions of the Dirichlet
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Laplacian having eigenvalue λ, or possibly one component is zero. So λ must
be an eigenvalue of both the Dirichlet and Neumann Laplacian. In fact, we
can say more:

Theorem 6. If any of the conditions in Theorem 4 are satisfied then λ is
an eigenvalue of the Neumann Laplacian and of the Stokes operator, and is
an eigenvalue of the Dirichlet Laplacian with multiplicity at least two.

Proof. Except for the multiplicity of λ, this all follows from the observations
above. If as an eigenvalue of the Dirichlet Laplacian the multiplicity of
λ were only one, then since both components of u are eigenfunctions of
the Dirichlet Laplacian, or possibly one component is zero, it follows that
u = (f,Cf) or u = (Cf, f) for some possibly zero constant C, where f is the
only (up to normalization) eigenfunction of the Dirichlet Laplacian having
eigenvalue λ. But div u = 0, so if u = (f,Cf) then ∂1f +C∂2f = 0, so that
∇f = ∂2f(−C, 1). Thus, throughout Ω, ∇f points in the direction −Ci+ j,
meaning that f is constant along lines in the direction i + Cj. But u and
so f is zero on Γ and so must be zero on the portions of all lines in the
direction i +Cj lying in Ω; that is, on all of Ω. This contradicts u being an
eigenfunction of the Dirichlet Laplacian. A similar argument applies when
u = (Cf, f). We conclude that λ must be at least a double eigenvalue of
the Dirichlet Laplacian. �

We can also make the following observation:

Theorem 7. Assume that u is a smooth solution of the Euler equations
that vanishes on the boundary (in particular, this will be true if any of
the conditions in Theorem 4 are satisfied). Then the solutions uν to the
Navier-Stokes equations with the same initial velocity as u converge to u in
L∞([0, T ];L2(Ω)) as ν → 0.

Proof. We have,

∂tuν + uν · ∇uν + ∇pν = ν∆uν ,

∂tu+ u · ∇u+ ∇p = 0,

for some pressure pν, where div uν = div u = 0 on Ω and uν = u = 0 on Γ.
Letting W = uν − u, subtracting the two equations above, multiplying by
W , and integrating over Ω gives

1

2

d

dt
‖W‖2

L2(Ω) +

∫

Ω
(uν · ∇W ) ·W +

∫

Ω
(W · ∇u) ·W

+

∫

Ω
∇(pν − p) ·W = ν

∫

Ω
∆uν ·W.

The second and fourth terms above vanish after integrating by parts because
divW = 0 and W · n = 0 on Γ. Writing ∆uν ·W = ∆W ·W + ∆u ·W and
using W = 0 on Γ, integrating by parts once more, we have

1

2

d

dt
‖W‖2

L2(Ω) + ν ‖∇W‖2
L2(Ω) = ν

∫

Ω
∆u ·W −

∫

Ω
(W · ∇u) ·W.
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But u is in C∞(Ω) so

‖W‖L2(Ω)

d

dt
‖W‖L2(Ω) =

1

2

d

dt
‖W‖2

L2(Ω)

≤
1

2

d

dt
‖W‖2

L2(Ω) + ν ‖∇W‖2
L2(Ω)

≤ ν ‖∆u‖L2(Ω) ‖W‖L2(Ω) + ‖∇u‖L∞(Ω) ‖W‖2
L2(Ω)

≤ C ‖W‖L2(Ω)

(

ν + ‖W‖L2(Ω)

)

.

It follows that
d

dt
‖W‖L2(Ω) ≤ C

(

ν + ‖W‖L2(Ω)

)

and so by Gronwall’s lemma that

‖uν − u‖L∞([0,T ];L2(Ω)) ≤ CνTeCT ,

which vanishes with the viscosity ν. �

The following lemmas were used above.

Lemma 8. Given ω in H2(Ω) that satisfies
{

∆ω + λω = 0 on Ω,
ω = g on Γ

with g in L2(Γ) and λ > 0 there exists u and p in H2(Ω) such that ω = ω(u)
and

{

∆u+ λu = ∇p, div u = 0, ∆p = 0 on Ω,
u · n = 0, ω = g on Γ.

The vector field u is unique and the pressure p is unique up to the addition
of a constant. The pressure solves the Neumann problem,

{

∆p = 0 on Ω,
∇p · n = −∇ω · τ on Γ.

Furthermore, ∇p ≡ 0 when g ≡ C.

Proof. See [3]. �

Lemma 9 is the analog of the (only) lemma in [1] and, in fact, follows from
it. For a proof see [3].

Lemma 9. For all λ in R, the only solution to Equation (2) with α = 0
vanishes identically.
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