Removable Singularities For The Von Karman Equations

Let $\Omega \subset \mathbf{R}^2$ be a bounded domain. The Von-Karman equations in Ω is the following fourth order system:

$$\begin{array}{lll} \Delta^2 f &=& -[w,w] \\ \Delta^2 w &=& \lambda[F,w] + [f,w] \end{array}$$

where Δ^2 represents the iterated Laplace operator, $\lambda \in \mathbf{R}$, $F \in C^{2+\alpha}(\Omega)$, and [f, w] is the stands for the Monge-Ampere expression

$$[f, w] = f_{11}w_{22} + w_{11}f_{22} - 2(f_{12}w_{12}).$$

The following concerning removable singularities for the Von-Karman equations is established:

Let Ω be the unit disk and suppose $f, w \in C^4(\Omega \setminus \{0\})$. Suppose also that f, w satisfy the Von-Karman equations in $\Omega \setminus \{0\}$. In addition, suppose that

$$f, \Delta f, w, \Delta w = o\left(\log \frac{1}{r}\right) \ as \ r \to 0.$$

Then f, w can be defined at the origin so that $f, w \in C^4(\Omega)$ and also satisfy the Von-Karman equations in Ω . In many respects, this is a best possible result.

This is joint work with L. B. Di Fiori.