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Motivation

Setting: A smooth, compact, Riemannian manifold (M, g) of dimension d.

ϕ : R×M → M is a smooth measure-preserving flow:
• Write ϕ(t, x) or ϕt(x),
• ϕ0 = identity,
• ϕ(s, ϕ(t, x)) = ϕ(s + t, x) or ϕs ◦ ϕt = ϕs+t

• det dϕt = 1,
• dϕt : TxM → Tϕt(x)M

Extend dϕt to be a map from TM to itself, where TM is the tangent bundle
of M as follows (think of the tangent bundle as the phase space for a particle
in a Hamiltonian system):

dϕt(x, v) = (ϕt(x), (dϕt)x(v)).

This can be a little confusing because of the double use of dϕt.

Example: Define ϕ on M = Rd such that [note that in this example
M is not compact]

ϕ1(x) = Ax,

where A is a constant self-adjoint, positive-definite matrix with
det A = 1. Then for all x ∈ M ,

(dϕ1)x = A,

(dϕn)x = An,

(dϕ1)(x, v) = (Ax,Av),

(dϕn)(x, v) = (Anx,Anv).
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Notice that
(dϕs+t)x = (dϕs)ϕt(x)(dϕt)x,

dϕs+t(x, v) = (ϕs+t(x), (dϕs+t)xv)

= (ϕs(ϕt(x)), (dϕs)ϕt(x)(dϕt)xv)

= dϕs(ϕt(x), (dϕt)xv)

= dϕs(dϕt(x, v)),

so
dϕs+t = dϕs ◦ dϕt.

If we fix a time increment of 1 then, being a dynamical systems talk, it is
natural to consider the forward orbit of a point (x, v) ∈ TM under iteration
of dϕ1. The function ϕ1 moves the point around on the manifold, while its
differential moves the vector in the corresponding tangent spaces.

Let

r : TM → R,

r(x, v) =
‖(dϕ1)xv‖ϕ1(x)

‖v‖x

,

where we have emphasized that the norms are evaluated at different points
in the Riemannian manifold, and so the Riemannian metric is involved here.
We will suppress the subscripts on the norms from now on, though.

r(x, v) is the factor by which the length of v expands or shrinks under the
differential map of ϕ. (The lengths are measured at different points on the
manifold.) Evaluating r at the k-th point in the forward orbit of (x, v) gives,

r((dϕ1)k(x, v)) = r(dϕk(x, v)) = r(ϕk(x), (dϕk)xv)

=

∥∥(dϕ1)ϕk(x)(dϕk)xv
∥∥

‖(dϕk)xv‖
=
‖(dϕk+1)xv‖
‖(dϕk)xv‖

.

Thus, the geometric mean of r as we move through the first n points in the
forward orbit is:

rn(x, v) : =
{
r(x, v)r(dϕ1(x, v))r((dϕ1)2(x, v)) · · · r((dϕ1)n−1(x, v))

}1/n

=
{
‖(dϕ1)xv‖

‖v‖
‖(dϕ2)xv‖
‖(dϕ1)xv‖

· · · ‖(dϕn)xv‖
‖(dϕn−1)xv‖

}1/n

=
{
‖(dϕn)xv‖

‖v‖

}1/n

.
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Back to our example:

r(x, v) =
‖Av‖
‖v‖

, rn(x, v) =
{
‖Anv‖
‖v‖

}1/n

.

We can do much better than this, however. Suppose (v, λ) is an
eigenvector, eigenvalue of A. Then Av = λv, so

r(x, v) =
‖λv‖
‖v‖

= |λ| , rn(x, v) =
{
‖λnv‖
‖v‖

}1/n

= |λ| .

This says nothing more than that an eigenvector is stretched by a
factor equal to the modulus of its eigenvalue. But what about an
arbitrary vector v?

Let v1, . . . , vd be a complete orthonormal set of eigenvectors of A
with corresponding eigenvalues λ1, . . . , λd, and assume that 0 ≤ λ1 ≤
· · · ≤ λd. Write v ∈ M as

v = α1v1 + · · ·+ αdvd.

Then

r(x, v) =
‖A(α1v1 + · · ·+ αdvd)‖
‖α1v1 + · · ·+ αdvd‖

=
‖λ1α1v1 + · · ·+ λdαdvd‖
‖α1v1 + · · ·+ αdvd‖

=
{

λ2
1α

2
1 + · · ·+ λ2

dα
2
d

α2
1 + · · ·+ α2

d

}1/2

and there’s not much more to say about that. But,

rn(x, v) =
{
‖An(α1v1 + · · ·+ αdvd)‖
‖α1v1 + · · ·+ αdvd‖

}1/n

=
{
‖λn

1α1v1 + · · ·+ λn
dαdvd‖

‖α1v1 + · · ·+ αdvd‖

}1/n

=
{

λ2n
1 α2

1 + · · ·+ λ2n
d α2

d

α2
1 + · · ·+ α2

d

}1/2n

.

Suppose k is the largest index such that αk 6= 0. Then

rn(x, v) =
{

λ2n
1 α2

1 + · · ·+ λ2n
k α2

k

α2
1 + · · ·+ α2

k

}1/2n

=

(λk)2n

(
λ1
λk

)2n
α2

1 + · · ·+
(

λk−1

λk

)2n
α2

k−1 + α2
k

α2
1 + · · ·+ α2

k


1/2n
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= λk


(

λ1
λk

)2n
α2

1 + · · ·+
(

λk−1

λk

)2n
α2

k−1 + α2
k

α2
1 + · · ·+ α2

k


1/2n

→ λk as n →∞.

We can interpret the last equation above as follows: Project a vector into
each eigenspace of A. The largest eigenvalue of the eigenspaces with nonzero
projections is the asymptotic value of the geometric mean rate of expansion
of the vector under the differential map—in our simple example. Almost all
(in terms of Lebesgue measure on Rn ∼= TxM) vectors will have rn(x, v) →
λd, the largest eigenvalue of A.

An obvious question at this point is whether for an arbitrary flow an asymp-
totic value for rn(x, v) exists.The perhaps surprising answer is that it does,
at least for almost all x in the manifold. This result follows from Oseledec’s
multiplicative ergodic theorem, which says that things work much the same
as they do in our simple example.

But before continuing on, let us return to our function rn and see what more
we can say. Define

λ(x, v) = lim
n→∞

log rn(x, v),

when the limit exists. We take the logarithm here for historical reasons:
when λ(x, v) exists it is called the Lyapunov or characteristic exponent of ϕ
for (x, v). We can calculate,

λ(x, v) = lim
n→∞

log
{
‖(dϕn)xv‖

‖v‖

}1/n

= lim
n→∞

1
n

log ‖(dϕn)xv‖ − lim
n→∞

1
n

log ‖v‖

= lim
n→∞

1
n

log ‖(dϕn)xv‖ ,

which because the differential is linear depends only on the direction of v,
not on its length. (We could have seen this directly by noting that the same
applies to r.)

The Lyapunov exponent is able to determine the rate of exponential growth
or decay of ‖(dϕn)xv‖ along an orbit, but is not able to detect the presence
of sub-exponential growth or decay. If λ(x, v) < 0, then the orbits of x and
of a nearby point y will converge toward each other; if λ(x, v) > 0, then the
orbits of x and y will diverge (at least initially); if λ(x, v) = 0 then we can
conclude nothing.
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Also, if we let τ = dϕ1, then

λ(x, v) = lim
n→∞

log
{
r(x, v)r(τ(x, v))r(τ2(x, v)) · · · r(τn−1(x, v))

}1/n

= lim
n→∞

1
n

n∑
k=1

log r(τk−1(x, v)).

Put a measure on the tangent bundle, TM , that is equal, in the local
trivializations, to dV dm, where dV is the measure inherited from the Rie-
mannian manifold and dm is Lebesgue measure on Rd (the tangent spaces).
Then τ = dϕ1 is measure-preserving since ϕ1 is measure-preserving and
det(dϕ1)x = 1 for all x ∈ M so (dϕ1)x preserves measure in Rd (the volume
of (dϕ1)x applied to a cube is equal to the determinant of (dϕ1)x times the
volume of the cube).

So we have the exact setup we need to apply Birkhoff’s ergodic theorem
except for one critical item—log r(x, v), the function we are averaging, is
not in L1(TM) (it does not have a finite integral). We might argue that
since r(x, v) depends only upon the direction of v, not on its magnitude, we
could get away with using the sphere bundle SM rather than the tangent
bundle (that is, use only the unit sphere in each tangent space rather than
the entire tangent space), since r(x, v) is in L1(SM). The problem with
this, is that dϕ1 is not measure-preserving on SM .

This approach, so hopeful looking, has met an insurmountable obstacle.

What we have been looking at is how the length of an initial vector grows
or shrinks as we iterate the differential map of ϕ1. We did this by following
the orbit of a point (x, v) in the tangent bundle and evaluating a real-valued
function, r, at each point. But the natural measure on the tangent bundle
that makes the differential map invariant is an infinite measure. The way
around our difficulty is, paradoxically, to ask for more information about
the behavior of the initial vector under iteration.

Let us ask what happens to the direction of the vector as well. One approach
would be to examine what happens to an appropriately defined vector-valued
function of points on the orbit in the tangent bundle. But this would suffer
from the same problem as before: the unboundedness of the natural measure
on the tangent bundle.

Instead, we look at the behavior of the differential map, viewed as a d×d real
matrix, as it varies over the orbit of the initial point in the manifold itself.
(Actually, we look at another d×d matrix formed from the differential map,
as we shall see.) We never introduce an initial vector; if we can get enough
information about the long term behavior of the differential map, then we
can answer any question about an initial vector using that information.
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Since the manifold is compact and ϕ1 preserves its natural measure, our
problem with applying the ergodic theorem disappears. The tradeoff is that
the ergodic theorem itself no longer even applies. But a natural, if difficult,
generalization of it, Oseledec’s multiplicative ergodic theorem, does.

Before moving on, let us summarize what has just been said. We wanted
to apply Birkhoff’s ergodic theorem to compute the average of a real-valued
function over a measure space that is not finite. This not being possible, we
reduce the domain to a finite measure space, but complicate the codomain
by expanding it to matrix-valued functions.

One final comment is that because this new approach relies on the subaddi-
tive ergodic theorem, a variant of Birkhoff’s ergodic theorem, we establish
existence of Lyapunov exponents, but no effective procedure for calculating
them.
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Oseledec’s Multiplicative Ergodic Theorem

The existence of Lyapunov exponents is assured, almost everywhere, by the
multiplicative ergodic theorem. As it relates to the Lyapunov exponents
of the previous section, the function T in the statement of this theorem
corresponds to the mapping that assigns to each point in the manifold the
differential, dϕ1, viewed as a real d×d matrix. The map τ is ϕ1, a map from
the manifold to the manifold (whereas in the previous section τ was that
same map extended to be a map from the tangent bundle to the tangent
bundle). The theorem is more general, though, than these specific interpre-
tations would limit it to. For one thing, the matrices are m ×m, where m
needn’t be the dimension of the manifold.

Theorem 0.1 (Discrete-time Multiplicative Ergodic Theorem). Let T be a
measurable function from M to the space of all real m × m matrices, such
that

log+ ‖T (·)‖ ∈ L1(M,ρ).

Let τ : M → M be a measure-preserving map and let

Tn
x = Tτn−1(x) · · ·Tτ(x)Tx.

Then there is a Γ ⊆ M with ρ(Γ) = 1 and such that τΓ ⊆ Γ, and the
following holds for all x ∈ Γ:

(1) Λx := limn→∞((Tn
x )∗Tn

x )1/2n exists.
(2) Let expλ

(1)
x < · · · < expλ

(s)
x be the eigenvalues of Λx, where s =

s(x), the λ
(r)
x are real, and λ

(1)
x can be −∞, and U

(1)
x , . . . , U

(s)
x the

corresponding eigenspaces. Let m
(r)
x = dim U

(r)
x . The functions x 7→

λ
(r)
x and x 7→ m

(r)
x are τ -invariant. Let V

(0)
x = {0} and V

(r)
x =

U
(1)
x ⊕ · · · ⊕ U

(r)
x for r = 1, . . . , s. Then for u ∈ V

(r)
x \ V

(r−1)
x ,

1 ≤ r ≤ s,

lim
n→∞

1
n

log ‖Tn
x u‖ = λ(r)

x .These are the
Lyapunov exponents.

By τ -invariant, we mean that a function f on M satisfies f(τ(x)) = f(x).
Applying this relation repeatedly, it follows that the function is constant on
the forward orbit of the point x under τ . If τ is invertible, then the function
is the same on the entire orbit, forward and backward.

The norm on matrices we use in this theorem and throughout is the operator
norm in Euclidean space, which is identical in value to the spectral norm
(the highest-modulus of the eigenvalues of the matrix). A critical property
of this norm is that it is a true matrix norm—that is, it is submultiplicative
(‖AB‖ ≤ ‖A‖ ‖B‖).
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For any d×d matrix A, the matrix A∗A is self-adjoint and positive-definite.
The matrix (A∗A)1/k exists for all positive integers k. Also,

∥∥(A∗A)1/2
∥∥ =

‖A‖. Thus, ((Tn
x )∗Tn

x )1/2n is guaranteed to exist, and we would expect it to
be about the same size (loosely speaking) as a typical value of Tx.

A few words on the proof of this theorem:
• The subadditive ergodic theorem is all that is needed to establish

the existence of limiting values for the eigenvalues of ((Tn
x )∗Tn

x )1/2n.
This is the “easy” part of the proof.

• Establishing the existence of a the limiting value, Λx, for the matrices
((Tn

x )∗Tn
x )1/2n themselves is much harder. It involves proving the

convergence in Grassman manifolds of subspaces constructed from
the eigenvectors of ((Tn

x )∗Tn
x )1/2n.

• The existence of the limiting matrix Λx is required to prove that
limn→∞

1
n log ‖Tn

x u‖ = λ
(r)
x , thereby establishing the existence of

the Lyapunov exponents. Thus, even though it is easy to show the
existence of the λ

(r)
x , the hard part of the proof must be faced (it

seems) to establish their connection to the Lyapunov exponents.

One final comment on the proof of the multiplicative ergodic theorem.
The subadditive theorem only establishes the existence of a limit, unlike
Birkhoff’s ergodic theorem, which gives a formula for calculating the limit.
Thus, we obtain the existence of the Lyapunov exponents, but no effective
method for calculating them. Ultimately, this limitation is due to the fact
that the matrix norm is submultiplicative—‖AB‖ ≤ ‖A‖ ‖B‖—rather than
multiplicative.
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