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Abstract. We construct a class of examples of initial vorticities for
which the solution to the Euler equations in the plane has an associated
flow that lies in no Hölder space of positive exponent for any positive
time. Our initial vorticities have Lp-norms that do not grow much faster
than log p, which Yudovich showed ensures the uniqueness of solutions
to the Euler equations ([8]). Our class of examples extends an example
of Bahouri’s and Chemin’s ([1]) with bounded initial vorticity, for which
the flow lies in no Hölder space of exponent greater than e−t.
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1. Introduction

Yudovich showed in [7] that there exists a unique solution to the Euler
equations in a bounded domain of the plane with bounded initial vorticity.
Also, there exists a unique continuous flow, and this flow lies in the Hölder
space of exponent e−Ct for all positive time t. Yudovich’s result is easily
modified to apply to solutions in the whole plane. Bahouri and Chemin in [1]
showed that this regularity of the flow was in a sense optimal by constructing
an example for which the flow lies in no Hölder space of exponent higher
than e−t.

In [8] Yudovich extended his uniqueness result to a certain class Y of
unbounded vorticities and showed that there exists as well a unique flow.
There is an upper bound on the modulus of continuity of this flow that
depends on how unbounded the initial vorticity is. It would be useful to
know whether this upper bound is achieved for certain initial vorticities;
that is, whether one can find examples for which the upper bound is also a
lower bound (to within a constant factor). The hope is that this might cast
some light on how near to the “edge of uniqueness” the class Y has brought
the Euler equations.

We give some partial information by extending the example of Bahouri
and Chemin to a class of initial vorticities in Y having a point singularity.
We show that for some such initial vorticities the flow lies in no Hölder space
of positive exponent for any positive time.
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2. Yudovich’s theorem for unbounded vorticity

We first define the function spaces in which our initial velocity will lie. We
let Em be as in [2] (although we could also work in the larger spaces of [3]).
For any real number m, a vector v belongs to Em if it is divergence-free and
can be written in the form v = σ + v′, where v′ is in L2(R2) and where σ is
a stationary vector field, meaning that σ is of the form

σ =
(
−x2

r2

∫ r

0
ρg(ρ) dρ,

x1

r2

∫ r

0
ρg(ρ) dρ

)
(2.1)

for some g in C∞0 (R). Em is an affine space; fixing an origin, σ, in Em we can
define a norm by ‖σ + v′‖Em = ‖v′‖L2(Ω). Convergence in Em is equivalent
to convergence in the L2–norm to a vector in Em.

We will further restrict our initial velocities to have vorticities that are
“only slightly unbounded” in a sense we now make precise.

Definition 2.1. Let θ : [p0,∞) → R+ for some p0 in [1, 2). We say that θ
is admissible if the function β : (0,∞) → [0,∞) defined, for some M > 0,
by1

βM (x) := C inf
{

(M εx1−ε/ε)θ(1/ε) : ε in (0, 1/p0]
}
, (2.2)

where C is a fixed absolute constant, satisfies∫ 1

0

dx

β(x)
=∞. (2.3)

Because

βM (x) = CM
x

M
inf
{

((x/M)−ε/ε)θ(1/ε) : ε in (0, 1/p0]
}

= Mβ1(x/M),

this definition is independent of the value of M . Also, βM is a monotonically
increasing continuous function, with limx→0+ βM (x) = 0.

Definition 2.2. We say that a vector field v has Yudovich vorticity if for
some admissible function θ : [p0,∞)→ R+ with p0 in [1, 2), ‖ω(v)‖Lp ≤ θ(p)
for all p in [p0,∞).

Examples of admissible bounds on vorticity are

θ0(p) = 1, θ1(p) = log p, . . . , θm(p) = log p · log2 p · · · logm p, (2.4)

where logm is log composed with itself m times. These admissible bounds
are described in [8] (see also [4].) Roughly speaking, the Lp–norm of a
Yudovich vorticity can grow in p only slightly faster than log p and still be
admissible. Such growth in the Lp–norms arises, for example, from a point
singularity of the type log log(1/ |x|) (see Lemma A.1).

1The definition of β in Equation (2.2) differs from that in [4] in that it directly incor-
porates the factor of p that appears in the Calderón-Zygmund inequality; in [4] this factor
is included in the equivalent of Equation (2.3).
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Given an admissible function θ and fixing m in R, we define the space

Yθ = {v ∈ Em : ‖ω(v)‖Lp ≤ Cθ(p) for all p in [p0,∞)} ,
for some constant C. We define the norm on Yθ to be

‖v‖Yθ = ‖v‖Em + sup
p∈[p0,∞)

‖ω(v)‖Lp /θ(p). (2.5)

This space is not separable, because Lp0 ∩ L∞, which is not separable, is
compactly embedded in it.

Finally, we define the space

Y = {v ∈ Yθ : θ is admissible} ,
but place no norm on this space.

The final thing we must do before stating Yudovich’s theorem is to define
what we mean by a weak solution to the Euler equations.

Definition 2.3 (Weak Euler Solutions). Given an initial velocity v0 in Yθ, v
in L∞([0, T ]; Yθ) is a weak solution to the Euler equations (without forcing)
if v(0) = v0 and

(E)
d

dt

∫
Ω
v · ϕ+

∫
Ω

(v · ∇v) · ϕ = 0

for all divergence-free ϕ in (H1(R2))2.

Our form of the statement of Yudovich’s theorem is a generalization of
the statement of Theorem 5.1.1 of [2] from bounded to unbounded vorticity.

Theorem 2.4 (Yudovich’s Theorem for Unbounded Vorticity). First part:
For any v0 in Y there exists a unique weak solution v of (E). Moreover, v
is in C(R;Em) ∩ L∞loc(R;L∞(R2)). Also,

‖ω(t)‖Lp(R2) = ‖ω0‖Lp for all 1 ≤ p ≤ ∞. (2.6)

Second part: The vector field has a unique continuous flow. More precisely,
if v0 is in Yθ then there exists a unique mapping ψ, continuous from R×R2

to R2, such that

ψ(t, x) = x+
∫ t

0
v(s, ψ(s, x)) ds.

Let

µ(r) = (C/r)β1(r2/4), (2.7)

where β1 is the function of Definition 2.1 associated with θ and let Γt : [0,∞)→
[0,∞) be defined by Γt(0) = 0 and for s > 0 by∫ Γt(s)

s

dr

µ(r)
= t or equivalently

∫ Γt(s)2/4

s2/4

dr

β1(r)
= t. (2.8)
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Then δ 7→ Γt(δ) is an upper bound on the modulus of continuity of the flow
at time t > 0; that is, for all x and y in R2

|ψ(t, x)− ψ(t, y)| ≤ Γt(|x− y|).

Also, for all x and y in R2

|v(t, x)− v(t, y)| ≤ µ(|x− y|), (2.9)

Existence in the first part of Yudovich’s theorem can be established, for
instance, by modifying the approach on p. 311-319 of [6], which establishes
existence under the assumption of bounded vorticity; the uniqueness argu-
ment is given by Yudovich in [8]. The second part is Theorem 2 of [8], the
bound on the modulus of continuity of the flow following from working out
the details of Yudovich’s proof (see Sections 5.2 through 5.4 of [5]).

The function µ of Equation (2.7) will have all the important properties
of β1: µ(0) = 0, µ is nondecreasing, and

∫ 1
0 (µ(r))−1 dr =∞.

The factors of 1/4 in Equation (2.8) are inconsequential, since if we define
Γt(s) by ∫ Γt(s)2

s2

dr

β1(r)
= t (2.10)

we will simply obtain a slightly weaker upper bound on the modulus of
continuity of the flow.

3. Square-symmetric vorticities

Ignoring for the moment the Euler equations, we will assume that the vor-
ticity has certain symmetries, and from these symmetries deduce some use-
ful properties of the divergence-free velocity having the given vorticity. In
Section 4, we will then consider what happens to a solution to the Euler
equations whose initial vorticity possesses these symmetries.

For convenience, we number the quadrants in the plane Q1 through Q4,
starting with

Q1 = {(x1, x2) : x1 ≥ 0, x2 ≥ 0} ,
and moving counterclockwise through the quadrants.

Definition 3.1. We say that a Yudovich vorticity (vorticity as in Defini-
tion 2.2) is symmetric by quadrant, or SBQ, if ω is compactly supported and
ω(x) = ω(x1, x2) is odd in x1 and x2; that is, ω(−x1, x2) = −ω(x1, x2) and
ω(x1,−x2) = −ω(x1, x2)—so also ω(−x) = ω(x).

Lemma 3.2. Let ω be SBQ. Then there exists a unique vector field v in
E0 ∩ Y with ω(v) = ω, and v satisfies the following:

(1) v2(x1, 0) = 0 for all x1 in R;
(2) v1(0, x2) = 0 for all x2 in R;
(3) v(0, 0) = 0.

If, in addition, ω ≥ 0 in Q1, then
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(4) v1(x1, 0) ≥ 0 for all x1 ≥ 0.

Proof. Let p be in [1, 2) and let q > 2p/(2− p). By Proposition 3.1.1 p. 44
of [2], for any vorticity ω in Lp there exists a unique divergence-free vector
field v in Lp+Lq whose curl is ω, with v being given by the Biot-Savart law,

v = K ∗ ω. (3.1)

Here, K is the Biot-Savart kernel, K(x) = (1/2π)x⊥/ |x|2, which decays like
1/ |x| with a singularity of order 1/ |x| at the origin.

Because ω is compactly supported and lies in L2(R2), ω is in Lp(R2), and
Equation (3.1) gives our velocity v, unique in all the spaces Lp + Lq. Also,
because

∫
R2 ω = 0, v is in (L2)2 = E0 (see the comment following Definition

1.3.3 of [2], for instance).
Then

v1(x1, 0) =
1

2π

∫
R2

y2

|x− y|2
ω(y) dy =

1
2π

∫
R2

y2

(x1 − y1)2 + y2
2

ω(y) dy

=
1

2π

4∑
j=1

∫
Qj

y2

(x1 − y1)2 + y2
2

ω(y) dy.

Making the changes of variables, u = (−y1, y2), u = −y, and u = (y1,−y2)
on Q2, Q3, and Q4, respectively, in all cases the determinant of the Jacobian
is ±1, and we obtain

v1(x1, 0) =
1

2π

[∫
Q1

y2

(x1 − y1)2 + y2
2

ω(y) dy −
∫
Q1

u2

(x1 + u1)2 + u2
2

ω(u) du

+
∫
Q1

u2

(x1 + u1)2 + u2
2

ω(u) du−
∫
Q1

u2

(x1 − u1)2 + u2
2

ω(u) du

]
or

v1(x1, 0) =
1
π

∫
Q1

(f1(x1, y)− f2(x1, y))ω(y) dy, (3.2)

where

f1(x1, y) =
y2

(x1 − y1)2 + y2
2

, f2(x1, y) =
y2

(x1 + y1)2 + y2
2

. (3.3)

It follows from (x1 − y1)2 + y2
2 ≤ (x1 + y1)2 + y2

2 on Q1 that f1(x1, y) >
f2(x1, y) for all x1, y1 > 0. Conclusion (4) then follows from Equation (3.2).
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By the Biot-Savart law of Equation (3.1),

v2(x1,−x2) = (K2 ∗ ω)(x1,−x2)

=
∫

R2

K2(x1 − y1,−x2 − y2)ω(y1, y2) dy

=
∫

R2

K2(x1 − y1, x2 + y2)ω(y1,−y2) dy

=
∫

R2

K2(x1 − y1, x2 − (−y2))ω(y1,−y2) dy

= −v2(x1, x2).

Here we used K2(x1,−x2) = −K2(x1, x2) and the symmetry of ω. A similar
calculation shows that v1(−x1, x2) = −v1(x1, x2). Thus, the velocity along
the x-axis is directed along the x-axis and the velocity along the y-axis is
directed along the y-axis, so the axes are preserved by the flow. In particular,
the origin is fixed. This gives conclusions (1)-(3). �

Lemma 3.3 is Proposition 2.1 of [1] (see also Proposition 5.3.1 of [2]).

Lemma 3.3. Let ω be SBQ with

ω = 2π1[0,1]×[0,1] (3.4)

on Q1. Then there exists a constant C > 0 such that

v1(x1, 0) ≥ 2x1 log(1/x1) (3.5)

for all x1 in (0, C].

The following lemma is a slight generalization of Lemma 3.3 that will give
us our key inequality.

Lemma 3.4. Let ω be SBQ with

ω = 2π1[0,r]×[0,r] (3.6)

on Q1 for some r in (0, 1). Then for any λ in (0, 1) there exists a right
neighborhood of the origin, N , such that

v1(x1, 0) ≥ 2(1− λ)x1 log(1/x1) (3.7)

for all x1 in (0, r1/λ] ∩N .

Remark 3.1. The neighborhood N depends only upon λ; in particular, it
is independent of r.

Proof. The result follows from scaling the result in Lemma 3.3. Indeed, if
we write ωr(x) for the function ω defined by Equation (3.6) then ω1 is the
function defined by Equation (3.4) and ωr(·) = ω1(·/r). Letting vr = K ∗ωr
we see that vr(x) = rv1(x/r), since then ω(vr(x)) = r(1/r)ω(v1)(x/r) =
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ω1(x/r) = ωr(x) and vr(x) is divergence-free. It follows from Lemma 3.3
that for all x1 such that x1/r lies in [0, C],

vr1(x1, 0) = rv1
1(x1/r, 0) > r2(x1/r) log(1/(x1/r))

= 2x1 [log(1/x1) + log r] .

Thus, if xλ1 ≤ r then log r ≥ λ log x1 = −λ log(1/x1) so

vr1(x1, 0) > 2x1(1− λ) log(1/x1).

Thus, Equation (3.7) holds for all x1 in [0, r1/λ] ∩ [0, rC]. But r1/λ ≤ rC

if and only if r ≤ Cλ/(1−λ), which gives us the right neighborhood, N =
(0, Cλ/(1−λ)). �

Definition 3.5. We say that ω is square-symmetric if ω is SBQ and ω(x1, x2) =
ω(max{x1, x2}, 0) on Q1.

Being square-symmetric means that a vorticity is SBQ and is constant in
absolute value along the boundary of any square centered at the origin.

Lemma 3.6. Assume that ω is square-symmetric, finite except possibly at
the origin, and ω(x1, 0) is non-increasing for x1 > 0. Then for any λ in
(0, 1)

v1(x1, 0) ≥ Cω(xλ1 , 0)x1 log(1/x1) (3.8)

for all x1 in the neighborhood N of Lemma 3.4, where C = 1/π.

Proof. We can write ω on Q1 as

ω(x) = 2π
∫ 1

0
α(s)1[0,s]×[0,s](x) ds, (3.9)

for some measurable, nonnegative function α : (0, 1) → [0,∞). This means
that

ω(x1, 0) = 2π
∫ 1

x1

α(s) ds. (3.10)

Let V (s) be the value of v1(x1, 0) that results from assuming that ω is
given by Equation (3.6). By Lemma 3.2, V (s) > 0. Then because the Biot-
Savart law of Equation (3.1) is linear, and using Lemma 3.4, for all x1 in
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the neighborhood N ,

v1(x1, 0) =
∫ 1

0
α(s)V (s) ds

=
∫ xλ1

0
α(s)V (s) ds+

∫ 1

xλ1

α(s)V (s) ds

≥
∫ 1

xλ1

α(s)V (s) ds

≥ 2π

(∫ 1

xλ1

α(s) ds

)
2

2π
x1 log(1/x1)

=
1
π
ω(xλ1 , 0)x1 log(1/x1).

In the final inequality, V (s) is bounded as in Lemma 3.4 because xλ1 ≤ s in
the integrand. �

Remark 3.2. Properly speaking, we must allow the function α of Equa-
tion (3.9) to be a distribution since, for instance, to obtain ω of Lemma 3.4,
we would need α = δr. We could avoid this complication, however, by as-
suming that ω is strictly decreasing and that ω(x1, 0) is sufficiently smooth
as a function of x1 > 0.

4. Square-symmetric initial vorticities

We now assume that our initial vorticity is square-symmetric, and consider
what happens to the solution to (E) over time.

Theorem 4.1. Assume that ω0 is square-symmetric, finite except possibly
at the origin, and ω0(x1, 0) is nonnegative and non-increasing for x1 > 0.
Then for any λ in (0, 1),

v1(t, x1, 0) ≥ Cω0(Γt(2λ/2xλ1), 0)x1 log(1/x1) (4.1)

for all x1 in the neighborhood N of Lemma 3.4 and all time t ≥ 0, where Γt
is defined as in Theorem 2.4. The constant C = 1/π.

Further, let L(t, x1) be any continuous lower bound on v1(t, x1, 0), Equa-
tion (4.1) being one possibility. Then if x1(t) is the solution to

dx1(t)
dt

= L(t, x1)

with x1(0) = a > 0 in N , then ψ1(t, a, 0) ≥ x1(t) for all t ≥ 0.

Proof. Since ω0(x1, x2) = −ω0(x1,−x2), if ω(t, x1, x2) is a solution to (E)
then −ω(t, x1,−x2) is also a solution. But the solution to (E) is unique by
Theorem 2.4, so we conclude that ω(t, x1, x2) = −ω(t, x1,−x2). Similarly,
ω(t, x1, x2) = −ω(t,−x1, x2), and we see that ω is SBQ. By Lemma 3.2, then,
it follows that the flow transports vorticity in Qk, k = 1, . . . , 4, only within
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Qk, because of the direction of v along the axes for all t ≥ 0. Therefore,
ω(t) is also nonnegative in Q1 for all time.

Our approach then will be to produce a point-by-point lower bound ω(t)
on ω(t) that satisfies all the requirements of Lemma 3.6. In particular, it is
SBQ, so ω(t)−ω(t) is SBQ and nonnegative inQ1. It follows from Lemma 3.2
that v1(t, x1, 0)− v1(t, x1, 0) ≥ 0 for all t ≥ 0, where ω(v(t)) = ω(t). Thus,
the lower bound on v1(t, x1, 0) coming from Lemma 3.6 will also be a lower
bound on v1(t, x1, 0). We now determine ω(t).

Because conclusion (3) of Lemma 3.2 holds for all time, ω being SBQ
for all time, the origin is fixed by the flow; that is ψ(t, 0) = ψ−1(t, 0) = 0
for all t. Also, the Euler equations are time reversible, and the function Γt
of Equation (2.8) depends only upon the Lebesgue norms of the vorticity,
which are preserved by the flow; therefore, Γt is a bound on the modulus of
continuity of ψ−1(t, ·) as well. Thus,∣∣ψ−1(t, x)

∣∣ =
∣∣ψ−1(t, x)− ψ−1(t, 0)

∣∣ ≤ Γt(|x|).
In Q1, the value of ω(t, x), then, is bounded below by using the minimum

value of ω0 on the circle of radius Γt(|x|) centered at the origin, since this
is the furthest away from the origin that ψ−1(t, x) can lie, and ω decreases
with the distance from the origin. That is,

ω(t, x) = ω0(ψ−1(t, x)) ≥ ω0(Γt(|x|), 0)

because ω0 is square-symmetric.
Since

√
2 max{x1, x2} ≥ |x|, Γt is nondecreasing, and ω0 is nonincreasing

on Q1, ω0(Γt(
√

2 max{x1, x2}), 0) ≤ ω0(Γt(|x|), 0) on Q1. Letting

ω(t, x1, x2) = ω0(Γt(
√

2 max{x1, x2}), 0)

we see that ω is square-symmetric, and on Q1, ω(t, x) ≤ ω(t, x), so ω is our
desired lower bound on ω.

Then from Equation (3.8),

v1(x1, 0) ≥ Cω(t, xλ1 , 0)x1 log(1/x1)

= Cω0(Γt((
√

2 max{x1, 0})λ), 0)x1 log(1/x1)

= Cω0(Γt(2λ/2xλ1), 0)x1 log(1/x1).

The lower bound on the flow, ψ1(t, a, 0) ≥ x1(t), follows from using the
minimum possible value of v1(t, x1, 0) in Equation (4.1), setting it equal to
dx1(t)/dt, and integrating over time. �

5. Bounded vorticity

We now apply Theorem 4.1 to the first in the sequence of Yudovich’s vor-
ticity bounds in Equation (2.4) in which we have bounded vorticity. We
assume that ω is square-symmetric with ω0 = 1[0,1/2]×[0,1/2] in Q1 so that
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‖ω0‖L1∩L∞ = 1. We have,

β1(r) = C inf
{
r1−ε/ε : ε in (0, 1]

}
= C inf {g(ε) : ε in (0, 1]} ,

where g(ε) = r1−ε/ε. Then

g′(ε) = C
r1−ε(ε log(1/r)− 1)

ε2
,

which is zero when ε = ε0 := 1/(log(1/r)) if r < 1 and ε0 < 1, and never
zero otherwise. But

ε0 < 1 ⇐⇒ 1
log(1/r)

< 1 ⇐⇒ log(1/r) > 1

⇐⇒ 1
r
> e ⇐⇒ r < e−1,

so the condition r < 1 is redundant.
Assume that r < e−1. Then g(ε) approaches infinity as ε approaches

either zero or infinity; hence, ε0 minimizes g. Thus,

β1(r) = Cr1−ε0/ε0 = Cr(1/r)ε0 log(1/r)

= Crelog(1/r)ε0 log(1/r) = −Cer log(r).

Then from Equation (2.8),∫ Γt(x1)2/4

x2
1/4

dr

β1(r)
= −C [log(− log r)]Γt(x1)2/4

x2
1/4

= t

=⇒ log(− log(x2
1/4))− log(− log(Γt(x1)2/4)) = Ct

=⇒ Γt(x1)2 = 4(x2
1/4)e

−Ct
=⇒ Γt(x1) = 2(x1/2)e

−Ct

as long as Γt(x1)2/4 < e−1.
Thus, Theorem 4.1 gives

v1(t, x1, 0) ≥ Cω0(2(2λ/2xλ1/2)e
−Ct

, 0)x1 log(1/x1)

≥ Cx1 log(1/x1)

as long as 2(2λ/2xλ1/2)e
−Ct

< 1/2.
Solving dx1(t)/dt = Cx1 log(1/x1) with x1(0) = a gives

ψ1(t, a, 0) ≥ x1(t) = aexp(−Ct),

which applies for sufficiently small a.
Since ψ(t, 0, 0) = 0,

|ψ(t, a, 0)− ψ(t, 0, 0)|
aα

=

∣∣ψ1(t, a, 0)
∣∣

aα
≥ aexp(−Ct)−α,

which is infinite for any α > e−Ct. This shows that the flow can be in no
Hölder space Cα for α > e−Ct, reproducing, up to a constant, the result of
[1] (or see Theorem 5.3.1 of [2].)
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6. Yudovich’s higher examples

Assume that m ≥ 2 and let ω0 have the symmetry described in Theorem 4.1
with

ω0(x1, 0) = log2(1/x1) · · · logm(1/x1) = θm(1/x1)/ log(1/x1), (6.1)

for x1 in (0, exp−m(0)), and ω0 equal to zero elsewhere in the first quadrant.
Then by Lemma A.1

θ(p) = ‖ω0‖Lp ≤ C log p · · · logm−1 p = θm−1(p)

for all p larger than some p∗, with θm−1 given by Equation (2.4).
Using an observation of Yudovich’s in [8], if β1 is the function of Def-

inition 2.1 associated with the admissible function θ, then letting ε0 =
1/ log(1/r) for r < e−p

∗
,

β1(r) ≤ C(r1−ε0/ε0)θ(1/ε0) = −Crr1/ log r log rθ(log(1/r))

= Cr log(1/r) log2(1/r) · · · logm(1/r)

= Crθm(1/r).

Then, if we define the upper bound on the modulus of continuity of the
flow by Equation (2.10) instead of Equation (2.8), we have

−C
[
logm+1(1/r)

]Γt(s)2
s2

=
∫ Γt(s)2

s2

dr

Crθm(1/r)

≤
∫ Γt(s)2

s2

dr

β1(r)
= t

=⇒ −C logm+1(1/Γt(s)2) ≤ −C logm+1(1/s2) + t

=⇒ logm+1(1/Γt(s)2) ≥ logm+1(1/s2)− Ct
=⇒ logm(1/Γt(s)2) ≥ e−Ct logm(1/s2)

=⇒ logm(1/Γt(s)) ≥ (1/2)e−Ct logm(1/s2) ≥ (1/2)e−Ct logm(1/s)

for sufficiently small s by Lemma 6.2.
Using this bound, we have, from Equation (4.1),

v1(t,x1, 0) ≥ Cω0(Γt(2λ/2xλ1), 0)x1 log(1/x1)

≥ C log2(1/Γt(2λ/2xλ1)) · · · logm(1/Γt(2λ/2xλ1))x1 log(1/x1)

≥ Ce−Ct log2(1/Γt(2λ/2xλ1)) · · · logm(1/2λ/2xλ1)x1 log(1/x1)

≥ Ce−Ct log2(1/Γt(2λ/2xλ1)) · · · logm(1/x1)x1 log(1/x1)

(6.2)

as long as x1 > 0 is sufficiently small. (The argument 1/Γt(2λ/2xλ1) appears
in each of the log2, . . . , logm−1 factors above, but not in the log factor or,
unless m = 2, the logm factor.)

Specializing to the case m = 2 and combining the previous two inequali-
ties, the explicit dependence of the bound in Equation (6.2) on Γt disappears,
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and we have

v1(t, x1, 0) ≥ Ce−Ct log2(1/x1)x1 log(1/x1) = Ce−Ctx1θ2(1/x1).

Solving for
dx1(t)
dt

= Ce−Ctx1θ2(1/x1) (6.3)

with x1(0) = a, we get

log3(1/x1(t)) = log3(1/a) + C
(
e−Ct − 1

)
,

so

ψ1(t, a, 0) ≥ x1(t) = exp
(
−(− log a)exp(C(e−Ct−1))

)
= e−(− log a)γ ,

where γ = exp
(
C(e−Ct − 1)

)
.

Observe that γ < 1 for all t > 0. Thus, for any α in (0, 1) and all t > 0,

‖ψ‖Cα ≥ lim
a→0+

ψ1(t, a, 0)− ψ1(t, 0, 0)
aα

≥ lim
a→0+

x1(t)
aα

= lim
a→0+

e−(− log a)γ

e−(− log a)α
= lim

u→∞

e−u
γ

e−αu
= lim

u→∞
eαu−u

γ
=∞.

(6.4)

We conclude that the flow lies in no Hölder space of positive exponent for all
positive time, a result that we state explicitly as a corollary of Theorem 4.1.

Corollary 6.1. There exists initial velocities satisfying the conditions of
Theorem 2.4 for which the unique solution to (E) has an associated flow
lying, for all positive time, in no Hölder space of positive exponent.

We used the following lemma above:

Lemma 6.2. Let m be a positive integer. Then for sufficiently small positive
x,

logm(1/x) ≥ (1/2) logm(1/x2).

Proof. The proof is by induction. For x < 1,

log(1/x2) = 2 log(1/x),

which establishes the inequality (in fact, equality) for m = 1. So assume the
inequality holds for all positive integers up to m. Then

logm+1(1/x2) = log logm−1(1/x2) ≤ log(2 logm−1(1/x))

= log 2 + logm(1/x) ≤ 2 logm(1/x)

as long as x is sufficiently small that log 2 ≤ logm(1/x). �
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7. Final remarks

It is natural to try to extend the analysis of Section 6 to Yudovich initial
vorticities for m > 2. But this is, in fact, quite difficult, because when m > 2
the explicit dependence of the bound in Equation (6.2) on Γt remains, so
we must also bound logk(1/Γt(s)) for k = 2, . . . ,m− 1. Doing so makes the
analog of Equation (6.3) no longer exactly integrable. It is clear that one
obtains a worse bound on the modulus of continuity than for m = 2, but it
is not at all clear what happens as we take m to infinity.

We chose to give the initial vorticity SBQ symmetry because such sym-
metry works well with the symmetry of the Biot-Savart law to produce a
lower bound on the velocity along the x- or y-axes. Having made this choice,
the rest of our choices concerning the vorticity were inevitable, up to inter-
changing the roles of x and y or changing the sign of the vorticity. Because
the initial vorticity is SBQ, the function f = f1 − f2, where f1 and f2

are defined in Equation (3.3), controls the bound on the velocity, and f is
continuous except for a singularity at y = (x1, 0), where it goes to positive
infinity (for x1 > 0). Thus, whatever lower bound we derive on v1(x1, 0), it
will increase the fastest at a singularity of |ω(t)| that lies along the x-axis
and this effect is most pronounced when ω is of a single sign in Q1 (this fol-
lows from Equation (3.2)). The lower bound on the modulus of continuity
of the flow then follows from allowing a point a = (a1, 0) to approach the
singularity and looking at how large the appropriate difference quotient be-
comes, as in Equation (6.4). But to do this, we need control on the position
of the singularity of |ω(t)|, and, when assuming SBQ, the origin is the one
point at which we have the most control—the singularity doesn’t move at
all.

Thus, the assumption of SBQ naturally leads us to assume a point sin-
gularity at the origin. Then, because it appears that we can only bound
from below the effect on v1(x1, 0) of the vorticity outside of the square on
which a point lies (actually, an even larger square because of the exponent
λ in Lemma 3.6), we are naturally led to the assumption that |ω0| decreases
with the distance from the origin, which leads to Lemma 3.6. Perhaps we
could improve our lower bound on v1(x1, 0) by accounting for the vorticity
all the way to the origin, but this may simply be impossible (and in any
case would not change our conclusion for m = 2).

Appendix A. Logarithmic singularities

We show how to bound the Lp-norms of a function with a singularity like
those we use in Section 6.

Lemma A.1. Let m ≥ 2 and let ω0 have the symmetry described in Theo-
rem 4.1 with

ω0(x1, 0) = log2(1/x1) · · · logm(1/x1) = θm(1/x1)/ log(1/x1),
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for x1 in (0, exp−m(0)), and ω0 equal to zero elsewhere in the first quadrant.
Then

‖ω0‖Lp ∼ log p · · · logm−1 p = θm−1(p)

for large p.

Proof. Because of the symmetry of ω0,

‖ω0‖pLp = 4
∫ exp−m(0)

0
2
∫ x1

0
(ω0(x1, 0))p dx2 dx1

= 8
∫ exp−m(0)

0
x1

[
log2(1/x1) · · · logm(1/x1)

]p
dx1.

(A.1)

Making the change of variables, u = log(1/x1) = − log x1, it follows that
x1 = e−u and du = −(1/x1) dx1 so dx1 = −e−u du. Thus,

‖ω0‖pLp = 8
∫ expm−1(0)

∞
e−u

[
log u · · · logm−1 u

]p (−e−u) du

= 8
∫ ∞

expm−1(0)
e−2u

[
log u · · · logm−1 u

]p
du.

Making the further change of variables x = u/p, so that u = px and
du = p dx, we have

‖ω0‖pLp = 8p
∫ ∞

expm−1(0)/p
e−2xp

[
log(xp) · · · logm−1(xp)

]p
dx. (A.2)

Obtaining a lower bound on
∥∥ω0

∥∥
Lp(R2)

is easy. For x ≥ 1,

log(xp) · · · logm−1(xp) ≥ log p · · · logm−1 p,

so

‖ω0‖pLp ≥ 8p
∫ ∞

expm−1(0)/p
e−2xp

[
log p · · · logm−1 p

]p
dx

= 8p
[
log p · · · logm−1 p

]p ∫ ∞
expm−1(0)/p

e−2xp dx

= 8p
[
log p · · · logm−1 p

]p(− 1
2p

)[
e−2xp

]∞
expm−1(0)/p

= 4exp−2(m−1)(0)
[
log p · · · logm−1 p

]p
.

Thus, asymptotically, ‖ω0‖Lp ≥ log p · · · logm−1 p.
We now obtain an upper bound on ‖ω0‖Lp . For x ≤ 1,∣∣log(xp) · · · logm−1(xp)

∣∣ ≤ ∣∣log p · · · logm−1 p
∣∣ ,
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while for x ≥ 1 and sufficiently large p, Equation (A.3) holds. Thus,

‖ω0‖pLp ≤ 8p
(∫ 1

0
+
∫ ∞

1

)
e−2xp

∣∣log(xp) · · · logm−1(xp)
∣∣p dx

≤ 8p
∫ 1

0
e−2xp

∣∣log p · · · logm−1 p
∣∣p dx

+ 8p
∫ ∞

1
e−2xp

[∣∣log p · · · logm−1 p
∣∣ ex−1

]p
dx

≤ 8p
∣∣log p · · · logm−1 p

∣∣p [∫ 1

0
e−2xp dx+ e−p

∫ ∞
1

e−xp dx

]
= 8p

∣∣log p · · · logm−1 p
∣∣p [ 1

2p
(
1− e−2p

)
+ e−p

e−p

p

]
≤ 8

∣∣log p · · · logm−1 p
∣∣p .

It follows that for sufficiently large p, ‖ω0‖Lp ≤ 81/p logm−1 p, so asymp-
totically, ‖ω0‖Lp ≤ log p · · · logm−1 p, which completes the proof. �

Lemma A.2. Let m be a positive integer. Then for sufficiently large p,

log(xp) · · · logm−1(xp) ≤ (log p · · · logm−1 p)ex−1 (A.3)

for all x ≥ 1.

Proof. We prove this for m = 3, the proof for other values of m being entirely
analogous. First, by taking the logarithm of both sides of Equation (A.3),
that equation holds if and only if

f(x) := log log(xp) + log log log(xp)

≤ g(x) := log(log p log log p) + x− 1.

Because equality holds for x = 1, our result will follow if we can show that
f ′ ≤ g′ for all x ≥ 1 and sufficiently large p. This is, in fact, true, since

f ′ =
1

x log(xp)
+

1
x log(xp) log log(xp)

≤ 1 = g′

for all x ≥ 1 and p ≥ ee. �
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