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The Navier-Stokes equations describe the motion of an incompressible fluid of con-

stant density and constant positive viscosity. With zero viscosity, the Navier-Stokes

equations become the Euler equations. A question of longstanding interest to math-

ematicians and physicists is whether, as the viscosity goes to zero, a solution to the

Navier-Stokes equations converges, in an appropriate sense, to a solution to the Eu-

ler equations: the so-called “vanishing viscosity” or “inviscid” limit. We investigate

this question in three settings: in the whole plane, in a bounded domain in the plane

with Navier friction boundary conditions, and for radially symmetric solutions in

the whole plane.
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Working in the whole plane and in a bounded domain, we assume a particular

bound on the growth of the Lp-norms of the initial vorticity (curl of the velocity)

with p, and obtain a bound on the convergence rate in the vanishing viscosity limit.

This is the same class of initial vorticities considered by Yudovich and shown to

imply uniqueness of the solution to the Euler equations in a bounded domain lying

in Euclidean space of dimension 2 or greater.

For radially symmetric initial vorticities we obtain a more precise bound

on the convergence rate as a function of the smoothness of its initial vorticity as

measured by its norm in a Sobolev space or in certain Besov spaces.

We also consider the questions of existence, uniqueness, and regularity of

solutions to the Navier-Stokes and Euler equations, as necessary, to make sense of

the vanishing viscosity limit. In particular, we investigate properties of the flow for

solutions to the Euler equations in the whole plane. We construct a specific example

of an initial vorticity for which there exists a unique solution to the Euler equations

whose associated flow lies in no Hölder space of positive exponent for any positive

time. This example is an adaptation of a bounded-vorticity example of Bahouri and

Chemin’s, which they show has a flow lying in no Hölder space of exponent greater

than an exponentially decreasing function of time.
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Chapter 1

Introduction

1.1 Overview

The Navier-Stokes equations,

(NS)


∂tvν + vν · ∇vν − ν∆vν = −∇pν

div vν = 0
vν |t=0 = v0,

describe the motion in Rd, d ≥ 2, of an incompressible fluid of constant density and
constant viscosity, ν. The velocity of the fluid at time t and position x in space
is vν(t, x) with corresponding pressure p(t, x). We will also consider a fluid that
is constrained to a bounded domain of Rd (for d = 2), in which case boundary
conditions are imposed as well (see Chapter 3).

The Navier-Stokes equations can be derived directly from Newton’s laws
under the assumptions that the fluid is incompressible (which means, in effect, that
the speed of sound in the fluid is infinite) and that the shear stress tensor varies
linearly with the rate of strain tensor. These issue are explained, for instance, in
Chapter 1 of [10], but will not concern us here.

With zero viscosity, the The Navier-Stokes equations become the Euler equa-
tions:

(E)


∂tv + v · ∇v = −∇p

div v = 0
v|t=0 = v0.

In brief, the subject of this thesis is whether the solutions to (NS) converge,
in an appropriate sense, to a solution to (E) as ν goes to zero: the so-called “van-
ishing viscosity” or “inviscid” limit. We investigate this question in three settings:
all of R2 in Chapter 2, a bounded domain in the plane in Chapter 3, and radially
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symmetric solutions in the plane in Chapter 4.
We also consider the questions of existence, uniqueness, and regularity of

solutions to (NS) and (E), as necessary, to make sense of the vanishing viscosity
limit. In particular, we investigate properties of the flow for solutions to (E) in
Chapter 5.

What precisely it means to solve (NS) and (E) depends upon the function
spaces in which the initial velocity lies; we will give an explicit definition of what
we mean by a solution in each of the chapters that follow. As a general statement,
however, we will always be assuming sufficiently strong conditions on the initial
velocity to insure the existence and uniqueness of weak solutions to both (NS) and
(E) within the particular class of solutions that we are studying. In this regard, (E)
is more of an issue than (NS), in that existence as well as uniqueness are known for
(NS) under considerably weaker assumptions than for (E). Our assumptions will
be, for the most part, nearly as weak as possible to insure uniqueness of the Euler
equations, given what is known (or established here).

The study of the vanishing viscosity limit in various settings has a long
history. Temam has a discussion of this in Appendix III of [33]. See also Kato’s
remarks in [15]. Briefly, convergence of smooth solutions in Rd is well understood.
Much less is known about convergence of weak solutions in Rd or the convergence
of solutions, weak or smooth, in a domain with boundaries. In the introduction to
each of the chapters that follow, we discuss the existing state of knowledge in each
of the settings we consider.

1.2 Chapter summaries

We now summarize the results of this thesis in more detail, chapter-by-chapter.

Chapter 2: The plane. (The results in this chapter appear in [18].) In [36],
Yudovich established the uniqueness of solutions to the Euler equations in a bounded
domain Ω of Rd for d ≥ 2 when the initial vorticity ω0 is in L∞(Ω). He extended
this uniqueness result in [37] to to a class of initial velocity fields, Y. This is the
class of all divergence-free vector fields v whose vorticity ω lies in Lp(Ω) for all p
in [p0,∞) for some p0 in [1,∞) and for which

∫ 1
0 (β(x))−1 dx = ∞, where β(x) =

inf{M ε(x1−ε/ε) ‖ω‖L1/ε : ε ∈ (0, 1/p0]} and M is a positive real number. The space
Y is independent of the choice of M (however, see below). These conditions are
satisfied, for instance, if ‖ω‖Lp ≤ C log p, but not for Lp–norms that grow much
faster than logarithmically. Such growth in the Lp–norms arises, for instance, for a
compactly supported vorticity with a point singularity of type log log |x|−1.

In [5], Chemin shows that for initial vorticity in L1(R2) ∩L∞(R2), solutions
to the Navier-Stokes equations converge strongly to a solution to the Euler equations
in the inviscid limit, and gives a bound on the rate of convergence. In Chapter 2, we
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combine the approaches of Yudovich in [37] and Chemin in [5] to establish strong
convergence in the inviscid limit for initial velocity in Y (with p0 ≤ 2), and give a
bound on the rate of convergence that depends on the function β described above.

Specifically, if uν is a solution to the Navier-Stokes equations and u is a solu-
tion to the Euler equations, both with initial velocity u0, then ‖uν − u‖L∞([0,t];L2) ≤
ρ(ν, t), where ρ is defined implicitly by∫ ρ(ν,t)

Rνt

dx

β(x)
= t, (1.2.1)

where R = C‖ω0‖2L2 and M is an upper bound on 4 ‖u0‖2L∞ (which is finite for u0

in Y).
An interesting feature of this bound is that one can always find initial vortic-

ities for which the bounded rate of convergence is arbitrarily slow. This is in accord
with Yudovich’s assumptions on the initial vorticity being among the weakest as-
sumptions known to imply uniqueness.

Chapter 3: A bounded domain. (The results in this chapter appear in [16].)
The approach in Chapter 2 to the inviscid limit encounters the well known obstacle
of boundary layer effects when applied to a bounded domain in R2 with the usual
no-slip boundary condition for the Navier-Stokes equations (see, for instance, [15]).
Using Navier boundary conditions for the Navier-Stokes equations, however, bound-
ary layer effects are manageable, as shown in [7], where existence and uniqueness of
solution to the Navier-Stokes equations along with weak convergence in the inviscid
limit to a solution to the Euler equations is established when the initial vorticity
is in L∞(R2). In [27], existence, uniqueness, and convergence is extended to initial
vorticities in Lp(R2) for some p > 2. Both [7] and [27] treat only the case of a simply
connected domain.

Navier boundary conditions can be expressed for a bounded domain in R2

with a C2-boundary Γ as ω(v) = (2κ − α)v · τ and v · n = 0 on Γ, where v is the
velocity, ω(v) the vorticity, n a unit normal vector, τ a unit tangent vector, and
α is in L∞(Γ). Such boundary conditions are an idealization of a rough boundary,
with the function α measuring the degree of roughness.

In Chapter 3, we extend the results of [7] and [27] to non-simply connected
domains, and establish strong convergence in the inviscid limit with the same bound
on the convergence rate as in all of R2 established in [18]. In [7] and [27], only the case
where α is nonnegative is treated, since for such solutions energy is nonincreasing.
Taking a different approach to the existence and uniqueness proofs, we also extend
the results of [7] and [27] to general α. This has the advantage of allowing one to
view the boundary conditions ω(v) = 0 and v ·n = 0 on Γ, which were studied by J.
L. Lions in [24] and later by P. L. Lions in [26], as special cases of Navier boundary
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conditions for bounded domains that are not necessarily convex.
Finally, we show in Chapter 3 that in the limit as α → +∞ on the bound-

ary, when the boundary is C3 and the initial velocity lies in H3(Ω), solutions
of the Navier-Stokes equations with Navier boundary conditions converge in the
L∞([0, T ];L2(Ω)) norm to the solution of the Navier-Stokes equations with no-slip
boundary conditions. We also give a bound on the rate of convergence.

Chapter 4: Radial symmetry. We specialize to radially symmetric initial vor-
ticity in the plane, assuming that the initial velocity is in Em (a space described
in Appendix 2A). Because of radial symmetry, there will always be a steady state
solution to (E), and the solution to (NS) will be the same as the solution to the heat
equations. This allows us to work with weaker assumptions on the initial vorticity
than those of Chapter 2 (so the steady state solution to (E) may not be unique).
We obtain upper bounds on the convergence rate in the vanishing viscosity limit
under various assumptions on the initial vorticity.

In particular, we show that if the initial vorticity is in Ḣη for η in (−1, 1],
then for all νt ≥ 0, the solution to (E) approaches the solution to (NS) in the
L2-norm at a rate bounded by

√
2 ‖ω0‖Ḣη (νt)(1+η)/2.

We also adapt an approach of [1] to obtain a bound on the convergence rate when
the initial vorticity is radially symmetric and lies in the Besov space Bη

2,∞ for η in
(−1, 1).

We then consider a superposition of disjoint circular patches of vorticity
(eddies) in the plane, each with zero total vorticity: this gives a steady state solution
to the Euler equations. Let the initial vorticity be such a superposition of a finite
number of compactly supported eddies with a positive minimum distance between
any two patches. We employ an inequality established in [28], where the same
superposition of confined eddies is studied for initial vorticity that is a particular
subclass of bounded measures, to obtain a bound on the combined convergence
rate for the eddies. We show that for any T > 0, the corresponding solutions to
the Navier-Stokes equations will converge in L∞([0, T ];L2(R2)) to the steady state
solution to the Euler equations at a rate that is the same, over a short time, as for
a single eddy, though with a larger constant.

Chapter 5: The flow. We return to the setting of Chapter 2 and establish the
properties of the flow for the solution to the Euler equations in the plane given
Yudovich initial vorticity. These properties are stated, in slightly different form,
by Yudovich in [37], though not proved there. The properties are interesting in
themselves, but can also be used in the proof of existence of weak solutions to (E)
and (NS) as we defined them in Chapter 2.
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We extend an example of Bahouri’s and Chemin’s described in [3] and in
Section 5.3 of [6] to show that the upper bound on the modulus of continuity of
the vector field can be achieved, to within a constant at time zero, at least for the
sequence of unbounded vorticities in [37]. We then obtain a lower bound for the
modulus of continuity of the vector field over time, and hence, for that of the flow.
Finally, we show that for certain initial velocities it is possible to have a unique
solution to the Euler equations with an associated flow that lies, for all positive
time, in no Hölder space of positive exponent.

1.3 Notational conventions

We follow the convention that C is always an unspecified constant that may vary
from expression to expression, even across an inequality (but not across an equality).
When we wish to emphasize that a constant depends, at least in part, upon the
parameters x1, . . . , xn, we write C(x1, . . . , xn). When we need to distinguish between
unspecified constants, we use C and C ′.

For vectors u and v in R2, we alternately write ∇vu and u · ∇v, by both of
which mean ui∂ivjej , where e1, e2 are basis vectors, and we define ∇u ·∇v = uijvij .
Here, as everywhere in this paper, we follow the common convention that repeated
indices are summed—whether or not one is a superscript and one is a subscript.

If X is a function space and k a positive integer, we define (X)k to be

{(f1, . . . , fk) : f1 ∈ X, . . . , fk ∈ X} .

For instance, (H1(Ω))2 is the set of all vector fields, each of whose components lies
in H1(Ω). To avoid excess notation, however, we always suppress the superscript
k when it is clear from the context whether we are dealing with scalar-, vector-, or
tensor-valued functions.

1.4 A comment on units of measure

It will occasionally be useful to perform a dimensional analysis to at least determine
the plausibility of our results, or those in the literature. Toward this end, we observe
that, from (NS):

1. viscosity ν has units (distance)2/(time);

2. vorticity ω has units (velocity)/(distance) = 1/(time);

3.
√
νt has units (distance).
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Chapter 2

Vanishing viscosity in R2

2.1 Introduction

The motion of an incompressible fluid of constant density and constant viscosity
is governed by the Navier-Stokes equations, and without viscosity by the Euler
equations. These are equations (NS) and (E) introduced in Chapter 1.

In this chapter, we restrict our attention to fluids extending throughout R2,
with the initial velocity belonging, for some real number m, to the space Em of [5]
and [6]. This space is described in detail in Appendix 2A, but, in brief, a vector v
belongs to Em if it is divergence-free and can be written in the form v = σ + v′,
where v′ is in L2(R2) and where σ is a stationary vector field, meaning that σ is of
the form,

σ =
(
−x

2

r2

∫ r

0
ρg(ρ) dρ,

x1

r2

∫ r

0
ρg(ρ) dρ

)
, (2.1.1)

where g is in C∞0 (R). The subscript m is the integral over all space of the vorticity
of v, the vorticity of v being ∂1v

2− ∂2v
1. We use the notation ω(v), or just ω when

v is understood, for the vorticity of v. The initial vorticity we denote by ω0.
Em is an affine space; fixing an origin, σ, in Em we can define a norm by

‖σ + v′‖Em = ‖v′‖L2 . Convergence in Em is equivalent to convergence in the L2–
norm to a vector in Em.

The following is a fundamental result of Yudovich’s ([36]), as adapted by
Chemin in [4] from bounded domains to all of R2 (see [6]):

Theorem 2.1.1 (Yudovich’s theorem). Let v0 be in Em, with ω0 belonging to
La(R2) ∩ L∞(R2) for some 1 < a < ∞. Then there exists a unique solution v
of (E) belonging to C(R;Em) such that ω(v) is in L∞(R× R2) ∩ L∞(R;La(R2)).

In [37], Yudovich, in the setting of a bounded domain in Rn with impermeable
boundary, weakens the conditions on the initial vorticity in Theorem 2.1.1, allowing
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unbounded vorticity, and is still able to obtain uniqueness. (Similar results have
been obtained by Serfati in [31].) Chemin shows in [5] that with the assumptions on
the initial data in Theorem 2.1.1 with a = 2, solutions (vν)v>0 of (NS) converge in
the L2–norm uniformly over a finite time interval as ν → 0 to the unique solution v
of (E) given by Theorem 2.1.1. We establish the same convergence as Chemin, but
with the initial vorticity of Yudovich.

To describe Yudovich’s conditions on the initial vorticity, we need the fol-
lowing definition:

Definition 2.1.2. Let θ : [p0,∞)→ R for some p0 > 1. We say that θ is admissible
if the function β : (0,∞)→ [0,∞) defined, for some M > 0, by1

β(x) := βM (x) := 2C0x inf
{

(M εx−ε/ε)θ(1/ε) : ε in (0, 1/p0]
}
, (2.1.2)

where C0 is a fixed absolute constant, satisfies∫ 1

0

dx

β(x)
=∞. (2.1.3)

Because βM (x) = Mβ1(x/M), this definition is independent of the value of
M . Also, β is a monotonically increasing continuous function, with limx→0+ β(x) =
0. In Section 2.2 we give examples of admissible functions and discuss how our
definition relates to the equivalent definition in [37].

Yudovich proves in [37] that for a bounded domain in Rn with impermeable
boundary (which adds the condition to (E) that the normal component of the ve-
locity on the boundary is zero), if ‖ω0‖Lp ≤ θ(p) for some admissible function θ,
then at most one solution to (E) exists. Because of this, we call the class of all such
vorticities, Yudovich vorticity :

Definition 2.1.3. We say that a vector field v has Yudovich vorticity if p 7→
‖ω(v)‖Lp(Ω) is an admissible function.

For our purposes, we define (weak) solutions to (E) and (NS) as follows:

Definition 2.1.4. Fix an arbitrary m in R. A time-varying vector field v : R+ ×
R2 → R2 is a weak solution to (E) or (NS) if at all times t in R+ there exists a
tempered distribution p(t) such that (E) or (NS) hold in the sense of tempered
distributions and if, in addition,

(i) v is in L∞loc(R+;Em) for some real m, and

1The definition of β in Equation (2.1.2) differs from that in [18] in that it directly incorporates the
factor of p that appears in the constant in the Calderón-Zygmund inequality of Theorem 2.1.6.(iv);
in [18] this factor is included in the equivalent of Equation (2.1.3).
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(ii) there exists a p0 > 1 such that ‖ω(t)‖Lp ≤ ‖ω0‖Lp for all p in (p0,∞) and all
t > 0.

A weak solution of (E) or (NS) will also lie in C(R;Em) (after possibly
changing their values on a set of measure zero), but we do not use this fact. Also,
because of Lemma 2.5.1, it is possible to show that we could replace the requirement
in Definition 2.1.4 that (E) hold in the sense of tempered distributions with the
requirement that ∫

R2

ϕ(T, x) · v(T, x) dx−
∫

R2

ϕ(0, x) · v0 dx

=
∫ T

0

∫
R2

∂tϕ · v +∇ϕ · (v ⊗ v) dx dt

for all T > 0 and all test functions ϕ : R × R2 → R2 that are smooth, compactly
supported, and divergence-free in the space variables. Here, (v ⊗ v)ij = vivj , and
∇ϕ · (v ⊗ v) = ∂iϕ

jvivj . A similar equivalence holds for solutions to (NS).
We combine the techniques of Chemin and Yudovich to prove the following

theorem:

Theorem 2.1.5. Fix m in R, let v0 be in Em, and let ω0 be in Lp(R2) for all p in
[2,∞), with ‖ω0‖Lp ≤ θ(p) for some admissible function θ. Then:

(i) There exists a unique solution v of (E).

(ii) For all ν > 0, there exists a unique solution vν of (NS).

(iii) ‖vν(t)− v(t)‖L2 → 0 in L2(R2) uniformly on [0, T ] as ν → 0+.

We prove only the uniqueness statements of (i) and (ii), a proof of existence
following from the bounds we obtain on the L2–norm of the difference between two
solutions, much as in the proof of Theorem 2.1.1 (see Section 2.6).

Given an initial velocity in Em, there exists a unique solution in the sense
of distributions to (NS) in C([0, T ];Em) ∩ L2([0, T ]; Ḣ1) for all T > 0. This is
essentially a classical result of Leray, Ladyženskaja, Lions, and Prodi ([21], [22], [23],
[19], [20], [25]), which can be proved, for instance, by straightforward modifications
of the proofs of Theorems 3.1 and 3.2 of Chapter 3 of [33]. (See [17] for details.)
Additional assumptions, such as those of Theorem 2.1.5, are required, however, to
conclude that the velocity is in L∞([0, T ]; Ḣ1), not just in L2([0, T ]; Ḣ1).

The rate of convergence in the inviscid limit is also of interest. Constantin
and Wu in [8] show that the L2–rate of convergence of the velocity for a vortex patch
in R2 with smooth boundary is O(

√
νt) uniformly over any finite time interval, and

remark that this same result holds when ∇v is in L1
loc(R;L∞(R2)), where v is the

solution to (E). Chemin in [5] gives essentially the same bound on the convergence
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rate as that in [8], assuming that v is in L∞loc(R+;Lip), which implies the condition
in [8] that ∇v lie in L1

loc(R;L∞(R2)).
Chemin goes on to establish bounds on the rate of convergence given initial

vorticity in L2 ∩ L∞, the bounded rate of convergence always being slower than
O(
√
ν), but approaching that order for small time intervals. The approach we take

leads, in the special case of L2 ∩L∞, to the same bound on the rate of convergence
as Chemin. In the general case of unbounded vorticity, however, the bounded rate
of convergence can be arbitrarily slow.

In [9], Constantin and Wu consider an initial vorticity in R2 lying in the space
Y of bounded, compactly supported functions. They also assume that the initial
vorticity lies in certain Besov spaces, and establish convergence of the vorticity in
every Lp–norm for p ≥ 2, with the rate of convergence increasing with increasing p.

We also note that given the uniqueness of the solution to (E) in R2 established
in Theorem 2.1.5, the compactness argument on p. 131-133 of [26] would imply the
strong convergence in (iii) of Theorem 2.1.5. A bound on the rate of convergence
does not follow from that approach, however.

We will need the following theorem, which summarizes some known facts:

Theorem 2.1.6. Let v be a solution to (NS) or (E) as defined in Definition 2.1.4,
and let σ be any stationary vector field in Em. Then:

(i) v − σ is in L∞loc(R;L2(R2)) (i.e., the L2–norm of v − σ is bounded over any
finite time interval), the norm being bounded over {ν > 0};

(ii) v is in L∞loc(R;L∞(R2)), the norm being bounded over {ν > 0};

(iii) there exists a constant C such that for all p ≥ 2, ‖∇v‖Lp ≤ C0p ‖ω‖Lp when
ω is in Lp, where C0 is an absolute constant.

In Theorem 2.1.6, (i) comes from energy estimates, as does (ii) after decom-
posing v − σ into high and low frequencies (see Lemma 2B.1 and Lemma 2B.2).
Equality holds in (iii) for solutions to (E). Statement (iii) is a result from harmonic
analysis that applies to all divergence-free vector fields in Rn.

We will also need Osgood’s lemma, the proof of which can be found, for
example, on p. 92 of [6].

Lemma 2.1.7 (Osgood’s lemma). Let L be a measurable positive function and
γ a positive locally integrable function, each defined on the domain [t0, t1]. Let
µ : [0,∞) → [0,∞) be a continuous nondecreasing function, with µ(0) = 0. Let
a ≥ 0, and assume that for all t in [t0, t1],

L(t) ≤ a+
∫ t

t0

γ(s)µ(L(s)) ds.

9



If a > 0, then

−M(L(t)) +M(a) ≤
∫ t

t0

γ(s) ds, whereM(x) =
∫ 1

x

ds

µ(s)
.

If a = 0 and M(0) =∞, then L ≡ 0.

2.2 Yudovich’s unbounded vorticity

Definition 2.1.2 is equivalent to requiring that

ψ(x) := inf {(xε/ε)θ(1/ε) : ε ∈ (0, 1/p0]} (2.2.1)

satisfy ∫ ∞
1

dx

xψ(x)
=∞,

which is essentially the same as the condition in [37]. The functions ψ and β are
related by ψ(x) = xβ(1/x) when M = 1.

Choosing ε = 1/ log x in Equation (2.2.1) gives ψ(x) ≤ e(log x)θ(log x) when
x ≥ exp(p0). It follows that∫ ∞

1

dx

xψ(x)
≥
∫ ∞
ep0

dx

ex(log x)θ(log x)
=

1
e

∫ ∞
p0

dp

pθ(p)
. (2.2.2)

For θ to be admissible, it is sufficient, though not necessary, that the final integral
in Equation (2.2.2) be infinite. Thus we can say, as a rough measure only, that the
Lp–norm of the initial vorticity can grow in p only slightly faster than log p and still
be handled by our approach. Such growth in the Lp–norm arises, for example, from
a point singularity of the type log log(1/x).

Define, as in [37], the sequence of admissible bounds on vorticity,

θ0(p) = 1, θ1(p) = log p, . . . , θm(p) = log p · log log p · · · logm p, (2.2.3)

where logm is log composed with itself m times. These are each admissible since
ψ(x) ≤ e(log x)θm(log x) = eθm+1(x), and a repeated change of variables shows that
the final integral in Equation (2.2.2) is infinite for θ = θm.

2.3 Proof of Theorem 2.1.5

We take a unified approach to proving the three parts of Theorem 2.1.5. Let each
of (vν)ν>0 and (v′ν)ν>0 be either a family of solutions to (NS) parameterized by the
viscosity ν or a single solution to (E). In the latter case, the solution is independent
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of the value of ν. All solutions in (vν)ν>0 and (v′ν)ν>0 share the same initial velocity
v0, which lies in Em and satisfies the vorticity bounds assumed in Theorem 2.1.5.
Let

wν = vν − v′ν .

Theorem 2.3.1. Under the assumptions of Theorem 2.1.5, for all t ≥ 0,∫
R2

|wν(t, x)|2 dx ≤ Rνt+ 2
∫ t

0

∫
R2

∣∣∇v′ν(s, x)
∣∣ |wν(s, x)|2 dx ds.

R = 0 when wν is the difference between two solutions to (NS) and when wν is
the difference between two solutions to (E). R = C‖ω0‖2L2(R2) > 0 when wν is the
difference between a solution to (NS) and a solution to (E).

Proof. See Section 2.5.

Proof of Theorem 2.1.5. Let

M =
∑
ν>0

‖ |wν |2 ‖L∞(R×R2) =
∑
ν>0

‖ |vν |2 − 2vνv′ν +
∣∣v′ν∣∣2 ‖L∞(R×R2),

which is finite by Theorem 2.1.6.(ii). Let s be in [0, T ], and

A = |wν(s, x)|2 , B =
∣∣∇v′ν(s, x)

∣∣ , Lν(s) = ‖wν‖2L2 .

Then∫
R2

∣∣∇v′ν(s, x)
∣∣ |wν(s, x)|2 dx =

∫
R2

AB =
∫

R2

AεA1−εB ≤M ε

∫
R2

A1−εB

≤M ε
∥∥A1−ε∥∥

L1/(1−ε) ‖B‖L1/ε = M ε ‖A‖1−εL1 ‖B‖L1/ε

= M εLν(s)1−ε ∥∥∇v′∥∥L1/ε

≤ CM εLν(s)1−ε 1
ε
‖ω0‖L1/ε

≤ C0M
εLν(s)1−ε 1

ε
θ(1/ε).

Since this is true for all ε in [1/p0,∞), it follows that

2
∫

R2

∣∣∇v′ν(s, x)
∣∣ |wν(s, x)|2 dx ≤ β(Lν(s))

and thus, from Theorem 2.3.1, that

Lν(t) ≤ Rνt+
∫ t

0
β(Lν(s)) ds.
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Since Equation (2.1.3) holds, by Osgood’s lemma, when R = 0, Lν(t) ≡ 0,
giving (i) and (ii) of Theorem 2.1.5. When R > 0,∫ Lν(t)

Rνt

ds

β(s)
=

(
−
∫ 1

Lν(t)
+
∫ 1

Rνt

)
ds

β(s)
≤
∫ t

0
ds = t. (2.3.1)

It follows that for all t in (0, T ],∫ 1

Rνt

ds

β(s)
≤ T +

∫ 1

Lν(t)

ds

β(s)
. (2.3.2)

As ν → 0+, the left side of Equation (2.3.2) becomes infinite; hence, so must the
right side. But this implies that Lν(t)→ 0 as ν → 0+, and that the convergence is
uniform over [0, T ]. �

2.4 Rates of convergence

Define f : R+ → R+ implicitly by∫ f(x)

x

ds

β(s)
= T. (2.4.1)

As x decreases to zero, f(x) monotonically decreases (to zero) because β is positive.
Also, because of Equation (2.3.1),

Lν(t) ≤ f(Rνt) ≤ f(RνT ), (2.4.2)

giving an expression for a uniform bound on the convergence rate. When 1/β can
be explicitly integrated, a bound on the rate can sometimes be determined in closed
form. For the case of bounded vorticity, one obtains essentially the same bound
on the rate as in [5], as we show below. The sequence of bounds on vorticity in
Equation (2.2.3) can also be handled this way, using the upper bound on the corre-
sponding β functions that Yudovich derives in [37]. In the notation of Section 2.2
this is β(x) = xψ(1/x) ≤ exθm+1(1/x).

In general, though, one can bound the initial vorticity by an admissible
function that will yield an arbitrarily slow bounded rate of convergence. This is
because the function f , which was defined implicitly in terms of β, can, conversely,
be used to define β, and we can choose f so that it approaches zero arbitrarily
slowly.

To derive the rate of convergence for bounded vorticity, let M be defined as
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in the proof of Theorem 2.1.5 and let A = ‖ω0‖Lp0∩L∞ and . Then

β(x) = 2C0x inf
{

(M εx−ε/ε)A : ε in (0, 1/p0]
}

= 2C0A inf {g(ε) : ε in (0, 1/p0]} ,

where g(ε) = M εx1−ε/ε. Then

g′(ε) = 2C0
M εx1−ε(ε log(M/x)− 1)

ε2
,

which is zero when ε = ε0 := 1/(log(M/x)) if x < M and ε0 < 1/p0, and never zero
otherwise. But

ε0 < 1/p0 ⇐⇒
1

log(M/x)
<

1
p0
⇐⇒ log(M/X) > p0

⇐⇒ M

x
> ep0 ⇐⇒ x < Me−p0 ,

so the condition x < M is redundant.
Assume that x < Me−p0 . Then g(ε) approaches infinity as ε approaches

either zero or infinity; hence, ε0 minimizes g. Thus,

β(x) = BM ε0x1−ε0/ε0 = Bx(M/x)ε0 log(M/x)

= Bxelog(M/x)ε0 log(M/x) = −Bex log(x/M),

where B = 2C0A.
From Equation (2.4.1),

−
∫ f(x)

x

ds

Bes log(s/M)
=

1
Be

∫ x/M

f(x)/M

M du

Mu log u

=
1
Be

[ log log u]
x/M

f(x)/M
=

1
Be

[log log(x/M)− log log(f(x)/M)]

=
1
Be

log [log(x/M)/ log(f(x)/M)] = 2C0T,

so

log(x/M)/ log(f(x)/M) = eBeT =⇒ log(f(x)/M) = log(x/M)e−BeT

=⇒ f(x) = M
( x
M

)e−BeT
,
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It follows from Equation (2.4.2) that

Lν(t) ≤M
(
RνT

M

)e−BeT
,

or,

‖vν − v‖L∞([0,T ];L2(R2)) ≤M
1/2

(
RνT

M

) 1
2
e−BeT

, (2.4.3)

when νt < (M/R)e−p0 , where R = C‖ω0‖2L2(R2). This is similar to the bound on
the convergence rate in Theorem 1.4 of [5].

As a check on the validity of Equation (2.4.3), M has units of (velocity)2,
so M1/2 has the correct units of (velocity). The factor R = C‖ω0‖2L2 has units
(vorticity)2 = 1/(time)2, since C is an absolute constant, so the units of RνT are
(distance)2/(time)2 = (velocity)2 (see Section 1.4), and RνT/M is unitless, as it
must be. Finally, A has units of (vorticity) = 1/(time), so AeT is unitless, as it also
must be.

Also, observe from the definition of β(x) in Equation (2.1.2), that xmust have
the same units as M , and that Equation (2.1.2) has the units (units of x)(units of θ).
But as applied in Equation (2.4.1), θ has units (vorticity) = 1/(time), and x must
have the same units as s in Equation (2.4.1)—namely, (velocity)2. Thus, β(x) has
units of (velocity)2/(time), and the integral in the left-hand side of Equation (2.4.1)
has units (velocity)2/((velocity)2/(time)) = (time), in agreement with its right-hand
side. Finally, M , having the same units as x, always has units (velocity)2.

2.5 Proof of Theorem 2.3.1

In this section we establish Theorem 2.3.1, which is a standard energy inequality
used by Chemin in [5]. We will need the following lemma, which establishes the
membership of the various terms in (E) and (NS) in certain Lebesgue spaces.

Lemma 2.5.1. Let (v, p) be a solution to (E), and (vν , pν) be a solution to (NS)
in the sense of Definition 2.1.4. Then v · ∇v, vν · ∇vν , ∇p, ∇pν , and ∂tv all lie
L∞loc(R;L2(R2)), while ∂tvν and ∆vν lie in L∞loc(R;H−1(R2)).

Proof. First, if we can prove that v · ∇v and ∇p both lie in L∞loc(R;L2(R2)), then
the same follows for ∂tv, since ∂tv = −∇p− (v · ∇v).

By Lemma 2B.1,

‖v(t)− σ‖L∞ ≤ C(‖v(t)− σ‖L2 + ‖ω(v(t)− σ)‖La)
≤ C(‖v‖L∞loc(R;Em) + ‖ω‖L∞loc(R;La) + ‖ω(σ)‖La <∞,
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so v − σ belongs to L∞loc(R;L∞(R2)). But v − σ also belongs to L∞loc(R;L2(R2))
since v is in L∞loc(R;Em). Then if we let 2 < p ≤ ∞, then since ‖v − σ‖Lp ≤
max {‖v − σ‖L2 , ‖v − σ‖L∞} (for instance, see Ex. 4(d) p. 71 of [30]), v − σ is in
L∞loc(R;Lp(R2)). (The issue is not just membership of v(t) in Lp(R2), but having a
uniform bound on the Lp(R2)-norm over any finite time interval.) But σ is bounded
and decays like 1/r, so σ is in Lp(R2) and hence v is in L∞loc(R;Lp(R2)). This in
turn means that v2 is in L∞loc(R;Lq(R2)) for all q > 1.

Because a > 2, |∇v|2 is in L∞loc(R;Lb(R2)) where b = a/2, and

‖v · ∇v‖L∞loc(R;L2(R2) ≤ ‖ |v|
2 |∇v|2 ‖1/2

L∞loc(R;L1(R2)

≤ ‖ |v|2 ‖1/2
L∞loc(R;Lb′ (R2)

‖ |∇v|2 ‖1/2
L∞loc(R;Lb(R2)

<∞,

where b′ is such that 1/b′ + 1/b = 1. This shows that v · ∇v lies in L∞loc(R;L2(R2)),
and the same argument applies for vν · ∇vν .

We now consider ∇pν . Using div vν = 0, we have

pν = ∆−1∆pν = ∆−1(∂t div vν + ∆pν) = ∆−1

∂t∑
j

∂jv
j
ν +

∑
j

∂2
j pν


=
∑
j

∆−1(∂j∂tvjν + ∂j∂jpν) =
∑
j

∂j∆−1(∂tvjν + ∂jpν)

= −
∑
j

∂j∆−1(vν · ∇vjν − ν∆vjν) = −
∑
j,k

∂j∆−1(vkν∂kv
j
ν) + ν

∑
j

∂jv
j
ν ,

= −
∑
j,k

∂j∆−1(vkν∂kv
j
ν),

so

∇pν = −∇
∑
j,k

∂j∆−1(vkν∂kv
j
ν). (2.5.1)

We used above the fact that partial derivatives commute with the inverse Laplacian,
since they commute with the Laplacian itself.
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We can write a term in Equation (2.5.1) as

−∇∂j∆−1(vkν∂kv
j
ν) = −∇∂jF−1

(
− 1
|ξ|2
F(vkν∂kv

j
ν)
)

= ∇F−1

(
ξk

|ξ|2
F(vkν∂kv

j
ν)
)

=
2∑

n=1

F−1

(
ξnξk

|ξ|2
F(vkν∂kv

j
ν)
)
,

where we used the expression for ∆−1 (the left inverse of the Laplacian) on p. 14 of
[6], and where we ignored possible factors of i =

√
−1.

It follows (for instance, from Comment 4.5 p. 78 of [32]) that ξnξk/ |ξ|2 is
the multiplier for a higher Riesz transform (it is the product of two Riesz multipli-
ers). Therefore, each term in Equation (2.5.1) is in L∞loc(R;L2(R2)), so ∇pν is in
L∞loc(R;L2(R2)). The argument is identical for ∇p, except now the Laplacian term
(which was eliminated by our argument) never appears.

Since ∂tv = −∇p − (v · ∇v), it follows that ∂tv is also in L∞loc(R;L2(R2)).
Since vν is in L∞loc(R;H1(R2)), ∆vν is in L∞loc(R;H−1(R2)) as, then, is ∂tvν , since
∂tvν = −∇pν − (vν · ∇vν) + ν∆vν .

Proof of Theorem 2.3.1. We consider three cases: 1) both vν and v′ν are solutions
to (NS); 2) vν is a solution to (NS) while v′ν is a solution to (E); 3) both vν and
v′ν are solutions to (E).

Consider case 1. Taking the inner product of both sides of the first equation
in (NS) with wν and subtracting the resulting equations for vν and v′ν gives

wν · ∂twν + wν · (vν · ∇wν)
= −wν · ∇(pν − p′ν) + νwν ·∆wν − wν · (wν · ∇v′ν).

(2.5.2)

Integrating both sides of Equation (2.5.2) over [0, T ]×R2, the pressure term
disappears because wν is divergence-free both wν(t) and ∇(pν − p′ν)(t) belong to
L2(R2) by Lemma 2.5.1.

Similarly, the term wν · (vν · ∇wν) disappears because∫
R2

wν · (vν · ∇wν) =
∫

R2

wν · (σ · ∇wν) +
∫

R2

wν · (vν · ∇wν),

where σ is a stationary solution to (E) with total vorticity equal to that of vν and vν
is in H1(R2). The second term above is zero, since vν and wν are both in H1(R2),
so we can approximate each vector field by smooth functions and integrate by parts
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(see, for instance, Lemma 1.3 p. 109 of [33]). The first term we can handle similarly,
by multiplying σ by a series of cutoff functions supported on larger and larger balls.
Each integral is zero by the same argument as above for the second term, and the
integral itself is finite by Hölder’s inequality; therefore, the integral itself is zero.

It follows that∫ T

0

∫
R2

wν · ∂twν dx dt =
∫ T

0

∫
R2

νwν ·∆wν − wν · (wν · ∇v′ν) dx dt.

But wν in L∞loc(R;H1(R2)) and ∂twν in L∞loc(R;H−1(R2)) is sufficient to con-
clude (see, for instance, Lemma 1.2 p. 176 of [33]) that∫ T

0

∫
R2

wν · ∂twν dx dt =
1
2
‖wν(T )‖2L2 ,

where we have used wν(0) = 0.
It follows that

1: ‖wν(T )‖2L2 = 2
∫ T

0

∫
R2

νwν ·∆wν − wν · (wν · ∇v′ν) dx dt. (2.5.3)

Because of the absolute continuity of the integral, ‖wν(T )‖2L2 is an absolutely con-
tinuous function of T .

Following a similar procedure for the other two cases, we obtain

2: ‖wν(T )‖2L2 = 2
∫ T

0

∫
R2

νwν ·∆vν − wν · (wν · ∇v′ν) dx dt, (2.5.4)

3: ‖wν(T )‖2L2 = −2
∫ T

0

∫
R2

wν · (wν · ∇v′ν) dx dt. (2.5.5)

For the term common to Equation (2.5.3)-Equation (2.5.5),

−2
∫ T

0

∫
R2

wν · (wν · ∇v′ν) dx dt ≤ 2
∫ T

0

∫
R2

|wν |2
∣∣∇v′ν∣∣2 dx dt.

Since w(t) is in H1(R2) for all time t,∫ T

0

∫
R2

wν ·∆wν dx dt = −
∫ T

0

∫
R2

|∇wν |2 dx dt ≤ 0. (2.5.6)
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Similarly,∫ T

0

∫
R2

wν ·∆vν dx dt = −
∫ T

0

∫
R2

∇wν · ∇vν dx dt

= −
∫ T

0

∫
R2

|∇vν |2 dx dt+
∫ T

0

∫
R2

∇vν · ∇v′ν dx dt

≤ ‖∇vν‖L∞([0,T ];L2(R2))

∥∥∇v′ν∥∥L∞([0,T ];L2(R2))
T

≤ C‖ω0‖2L2(R2)T.

Putting this all together gives Theorem 2.3.1 with, for the three cases,

1: R = 0, 2: R = C‖ω0‖2L2(R2) > 0, 3: R = 0.

In case 1, we only know that R, which comes from Equation (2.5.6), is negative or
equal to 0; we cannot choose, a priori, a specific constant other than 0.

Remark: If vν and v′ν had different initial velocities, then Equation (2.5.3) and
Equation (2.5.5) would have the additional term ‖ων(0)‖2L2 on the right-hand side.
Modifying the argument in Section 2 to incorporate this term is the basis of the
proof of existence in Theorem 2.1.5.

2.6 Brief comments on existence

There are at least two approaches to the proof of existence; we briefly comment on
these approaches here.

The first approach is that followed by [29] p. 311-319. The key step in their
proof of existence is establishing the properties of the flow for smooth solutions to
(E) or (NS), then making a limiting argument for a sequence of the flows corre-
sponding to the smooth solutions for a sequence of mollified initial velocities. In the
classical case of initial vorticity in L1 ∩L∞, the L1 ∩L∞–norm is used to show that
the sequence of smooth velocities are log-Lipschitz and hence obtain the modulus
of continuity for the sequence of smooth flows, the modulus of continuity being es-
sentially r 7→ Cr(1− log r) for r ≤ 1. This same approach works in our setting—for
both solutions to (E) and to (NS)—though now using function β of Equation (2.1.2)
in place of the L1 ∩ L∞–norm. This is because the resulting modulus of continuity
has all the properties of r 7→ r(1− log r) that are required to establish convergence.
This aspect of the argument is given in Section 5.2 through Section 5.3, though
our interest there is wholly in characterizing the properties of the flow given that a
weak solution is known to exist. (The same argument applies, of course, for smooth
solutions.)

An alternate approach is to use an energy inequality (see the first remark
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following the proof of Theorem 2.3.1 in Section 2.5) to establish the convergence of
the same smooth solutions as in the previous paragraph in the L∞loc(R;Em)–norm.
This gives (i) of Definition 2.1.4 quite easily. Establishing (ii) is much harder,
and would seem to require general results for renormalized solutions to transport
equations.

The first approach has the advantage of its relative brevity (when fully elu-
cidated) and its more elementary nature. The merit of the second approach is its
focus on the central issue of convergence in C([0, T ];Em), leaving the bound on the
Lp–norms of vorticity as a side issue to be resolved through technical means.

Appendices

2A The space Em

The most natural function space for a velocity field v that is a solution to (NS) or (E)
is probably L2

sol(R2), the space of all divergence-free (in the sense of a distribution)
vector fields in L2(R2), since this space is exactly the space of solutions of finite
energy. (One could argue that also assuming some level of smoothness is more
natural or even required.) A deficiency of this space, however, is that, under fairly
weak additional assumptions on v in L2

sol(R2), it necessarily follows that
∫

R2 ω(v) =
0 (see Theorem 2A.5). There are, however, applications in which one wishes to
consider nonnegative or nonpositive measures; for instance, when studying vortex
patches.

A vortex patch is the solution to (E) in which the initial vorticity ω0 is the
characteristic function of a bounded domain. The velocity v0 associated to such a
vorticity is given by the Biot-Savart law:

v0 = K ∗ ω0, (2A.1)

where K(x) = (−x2, x1)/ |x|2. Since vorticity is transported by the flow for a so-
lution to (E), ω(t) remains nonnegative for all time, and v(t) is never in L2

sol(R2).
Thus, we need a larger space than L2

sol(R2) when dealing with vortex patches. It
turns out, as we will see below, that the velocity associated with a vortex patch
is in the space Em that we briefly introduced in Section 2.1, where m is the total
vorticity—that is,

∫
R2 ω.

Because the Em spaces are central to all of our results in the plane, we chose
to give a self-contained and careful elucidation of all of their properties that we will
use. This appendix can be seen as a fleshing out of the account of these spaces given
by Chemin in Chapter 1 of [6].

Em is defined in Chapter 1 of [6] p. 12 as the space of all divergence-free
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vector fields that are the sum of a stationary vector field σ of total vorticity m (that
is,
∫

R2 ω(σ) = m) and an L2 vector field. A stationary vector field is defined in [6]
p. 11 as a vector field in the plane of the form

σ =
(
−x

2

r2

∫ r

0
ρg(ρ) dρ,

x1

r2

∫ r

0
ρg(ρ) dρ

)
, (2A.2)

where g ∈ C∞0 (R).
Majda and Bertozzi in [29] p. 93 call this way of decomposing a vector in

Em the radial-energy decomposition, though they only make the assumption that
g is smooth and vanishes at infinity, not that it is compactly supported (see the
comment following Corollary 2A.4). We use whichever of Chemin’s or Majda and
Bertozzi’s terminology seems more convenient at the time.

Remark: Equation (2A.2) is what results when one applies the Biot-Savart law to
the radially symmetric vorticity g, giving the velocity field σ.

The following lemma is Proposition 1.3.1 p. 9 of [6]:

Lemma 2A.1. Two vector fields whose coefficients are tempered distributions and
whose divergence and vorticity are equal, equal each other up to a vector field with
harmonic polynomials as coefficients.

An immediate corollary of Lemma 2A.1 is the following:

Corollary 2A.2. Let v1 and v2 be two vector fields lying in Lp + Lq for some p, q
in [1,∞] for which div v1 = div v2 and ω(v1) = ω(v2). Then v1 = v2.

Proof. Let v1 and v2 be two such vector fields. It follows from Lemma 2A.1 that
they differ by a vector field with harmonic polynomials as coefficients. But the only
polynomial in Lp + Lq is the zero polynomial; hence, v1 = v2.

Remark: It follows, in particular, from Corollary 2A.2 that a divergence-free vector
field in Em is uniquely determined by its vorticity, since Em ⊆ L2 + L2+ε for all
ε > 0.

The following theorem is a combination of Corollary 2A.2 and Proposition
1.3.2 p. 11 of [6]:

Theorem 2A.3. Let σ be a stationary vector field. Then σ has the following prop-
erties:

1. σ is smooth;

2. ω(σ) is in C∞0 (R2) and is radially symmetric;
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3. div σ = 0;

4. |σ| is radially symmetric and for all sufficiently large r,

|σ| (r) =
m

2πr
,

where m =
∫

R2 ω(σ);

5. σ is a solution to the time-independent Euler equations

Conversely, properties (1) through (4) are enough to insure that a vector field
is a stationary vector field with g = ω(σ); in fact, this still holds if property (4) is
weakened to the assumption that the vector field vanishes at infinity. (To be more
explicit, if properties (1) through (3) hold and σ vanishes at infinity, then σ is given
by Equation (2A.2) with g = ω(σ), and all five properties hold.)

Proof. Let σ be a stationary vector field. Write

σ =
(
−x2f, x1f

)
,

where

f = r−2

∫ r

0
ρg(ρ) dρ.

It is clear that σ is smooth away from the origin, and smoothness at the
origin follows from an argument using Taylor’s remainder theorem. Thus, we have
established property (1).

The vorticity of σ is

∂1σ
2 − ∂2σ

1 = ∂1(x1f)− ∂2(−x2f) = f + x1∂1f + f + x2∂2f

= 2f + ∂rf(x1∂1r + x2∂2r) = 2f + ∂rf(x1x
1

r
+ x2x

2

r
)

= 2f + r∂rf.

But,

∂rf = − 2
r3

∫ r

0
ρg(ρ) dρ+ r−2rg = −2

r
f +

g

r
,

so
ω(σ) = ∂1σ

2 − ∂2σ
1 = 2f + r(−2

r
f +

g

r
) = g,

establishing property (2).
We have

div σ = ∂1

(
−x

2

r2
f

)
+ ∂2

(
x1

r2
f

)
= 0,
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by the obvious symmetry in x1 and x2, establishing property (3).
The prove the decay in property (4), let B be the ball of radius r centered

at the origin. Then∫
B
ω(σ) = −

∫
B

div σ⊥ = −
∫
∂B
σ⊥ · n = −

∫
∂B
σ · n⊥

= −
∫
∂B

(
−x2f, x1f

)
· (−x2, x1)/r = −

∫
∂B
r2f/r = −r

∫
∂B
f

= −2πr2f,

where v⊥ := (−v2, v1). But, |σ| =
∣∣(−x2f, x1f

)∣∣ = r |f |, so

|σ| = 1
2πr

∫
B
ω(σ).

Then, since ω(σ) = g and g is compactly supported, for all sufficiently large r,

|σ| = m

2πr
.

Finally, we prove that property (5) holds, via a fairly lengthy calculation.
Because σ = (−x2f, x1f),

σ · ∇σ =
∑
i

σi∂iσ = σ1∂1σ + σ2∂2σ

= −x2f(∂1(−x2f), ∂1(x1f)) + x1f(∂2(−x2f), ∂2(x1f))

=
(
−x2f∂1(−x2f) + x1f∂2(−x2f)
−x2f∂1(x1f) + x1f∂2(x1f))

)
.

Notice that the two coordinates for σ ·∇σ are the same, but with the indexes 1 and
2 transposed. But,

− x2f∂1(−x2f) + x1f∂2(−x2f) = −x2f(−x2∂1f) + x1f(−f − x2∂2f)

= −x1f2 + f
[
(x2)2∂1f − (x1x2)∂2f

]
= −x1f2 + f

[
(x2)2∂1r − (x1x2)∂2r

]
∂rf

= −x1f2 + f

[
(x2)2x

1

r
− (x1x2)

x2

r

]
∂rf

= −x1f2,
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where we used the fact that

∂ir = ∂i((x1)2 + (x2)2)1/2 =
1
2

((x1)2 + (x2)2)−1/22xi =
xi

r
.

Similarly,

− x2f∂1(x1f) + x1f∂2(x1f) = −x2f2,

because of the symmetry in the coordinates of σ ·∇σ that we observed above. Thus,

σ · ∇σ = f2

(
x1

x2

)
.

Now let2

h(r) =
∫ r

0
ρf(ρ)2 dρ.

Then

−∇(h(r)) =
(
−∂1h
−∂2h

)
=
(
−∂rh∂1r
−∂rh∂2r

)
= −∂rh

(
∂1r
∂2r

)
= −rf2

(
x1

r
x2

r

)
= −f2

(
x1

r
x2

r

)
= σ · ∇σ.

Then ∂tσ = 0 (as we would expect for a stationary vector field), and so σ satisfies
Equation 1.6 p. 7 of Chemin—the strong version of (E) of p. 8 of Chemin—with
the pressure p equal to h. This establishes property (5).

To argue the converse, suppose that v is a vector field satisfying properties
(1) through (3) that also vanishes at infinity (which allows, of course, property (4) as
one possible way to vanish at infinity). Let g be its vorticity. Then we know by what
we proved above that the stationary vector field σ given by Equation (2A.2) satisfies
properties (1) through (4) as well with the same vorticity. Thus, ω(σ) = ω(v) = g, so
v and σ are two vector fields vanishing at infinity with the same divergence (namely,
zero) and curl and so, by Corollary 2A.2, they are equal.

Remark: Let σ be a stationary vector field with total vorticity m. Then because σ
is divergence-free by Theorem 2A.3, it follows that if σ + v is in Em, then v is also
divergence-free.

Corollary 2A.4. The space Em is independent of the particular choice of stationary
vector field of the form Equation (2A.2) that is used to define it.

2This is a correction of an expression in [6].
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Proof. If σ and σ′ are two stationary vector fields with the same total vorticity
m, then it follows from property (4) of Theorem 2A.3 that σ − σ′ is in L2(R2) (in
fact, in C∞0 (R2)). Even if the two stationary vector fields do not share the same
origin about which their vorticities are circularly symmetric, property (4) insures
that their difference decays like 1/r2 and so is in L2(R2). Hence, the space Em does
not depend upon the specific choice of the stationary vector field.

Remark: The independence in Corollary 2A.4 would not follow simply from assum-
ing that the function g vanishes at infinity: compact support of g is stronger than
required, but an exact statement of the required decay is not immediately clear.

The following is Lemma 1.3.1 p. 12 of [6]:

Theorem 2A.5. Let µ be a finite measure such that (1 + |x|) |µ| is also finite. If µ
is in H−1(R2), then there exists a unique divergence-free vector field v in Em, where

m =
∫

R2

dµ,

and such that ω(v) = µ.

Proof. We first prove uniqueness. Suppose v and v′ both satisfy the conclusion of
the theorem. Then v and v′ are both divergence-free and have the same vorticity.
It follows from Lemma 2A.1 that they differ by a vector field with harmonic poly-
nomials as coefficients. But v − v′ is in L2(R2) and so vanishes at infinity; hence,
the polynomial they differ by is zero, so v = v′.

We now prove existence. Let σ be any stationary vector field such that∫
R2 ω(σ) = m. Let

v = σ + F−1
[
ξ |ξ|−2 (µ̂(ξ)− ω̂(σ)(ξ))

]
, (2A.3)

where ξ := −iξ⊥ = (iξ2,−iξ1) and i is
√
−1, not an index. We will show that v

satisfies the conclusion of the theorem by showing that div v = 0, that the vorticity
of v equals µ, and that v − σ is in L2(R2). (We motivate the definition of v in
Equation (2A.3) following the proof.)

The first two of these facts follow from straightforward calculations. Since
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∂kF−1u = F−1(iξku) for any u : Rd → R,

div v = ∂1v
1 + ∂2v

2

= div σ + ∂1F−1
[
ξ |ξ|−2 (µ̂(ξ)− ω̂(σ)(ξ))

]
1

+ ∂2F−1
[
ξ |ξ|−2 (µ̂(ξ)− ω̂(σ)(ξ))

]
2

= F−1
[
−iξ1(iξ2) |ξ|−2 (µ̂(ξ)− ω̂(σ)(ξ))

]
+ F−1

[
iξ2(−iξ1) |ξ|−2 (µ̂(ξ)− ω̂(σ)(ξ))

]
= 0,

and

ω(v) = ω(σ) + ∂1F−1
[
ξ |ξ|−2 (µ̂(ξ)− ω̂(σ)(ξ))

]
2

− ∂2F−1
[
ξ |ξ|−2 (µ̂(ξ)− ω̂(σ)(ξ))

]
1

= ω(σ) + F−1
[
iξ1(−iξ1) |ξ|−2 (µ̂(ξ)− ω̂(σ)(ξ))

]
−F−1

[
iξ2(iξ2) |ξ|−2 (µ̂(ξ)− ω̂(σ)(ξ))

]
= ω(σ) + F−1

[
((ξ1)2 + (ξ2)2) |ξ|−2 (µ̂(ξ)− ω̂(σ)(ξ))

]
= ω(σ) + F−1 [µ̂(ξ)− ω̂(σ)(ξ)]
= ω(σ) + µ− ω(σ) = µ.

Finally, we need to prove that v belongs to σ + L2(R2); that is, that∥∥∥F−1
[
ξ |ξ|−2 (µ̂(ξ)− ω̂(σ)(ξ))

]
k

∥∥∥
L2
<∞,

for k = 1, 2. We have, with l = 3− k,∥∥∥F−1
[
ξ |ξ|−2 (µ̂(ξ)− ω̂(σ)(ξ))

]
k

∥∥∥
L2

=
∥∥∥[ξ |ξ|−2 (µ̂(ξ)− ω̂(σ)(ξ))

]
k

∥∥∥
L2

=
∥∥∥ξl |ξ|−2 (µ̂(ξ)− ω̂(σ)(ξ))

∥∥∥
L2
≤
∥∥∥|ξ|−1 (µ̂(ξ)− ω̂(σ)(ξ))

∥∥∥
L2

=
∫
B

|µ̂(ξ)− ω̂(σ)(ξ)|2

|ξ|2
dξ +

∫
Rd\B

|µ̂(ξ)− ω̂(σ)(ξ)|2

|ξ|2
dξ, (2A.4)

where B is the unit ball centered at the origin. We bound these last two integrals
separately.
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The derivatives of µ̂ are bounded since

|∂kµ̂(ξ)| = |x̂µ| (ξ) =
∣∣∣∣∫
Rd
xe2πixξ dµ(x)

∣∣∣∣ ≤ ∫
Rd
|x| d |µ| (x),

which is finite by the assumption on µ. Also, ∂kω̂(σ)(ξ) is finite by similar reasoning,
but using the fact that ω(σ) is compactly supported. Hence, |∇(µ̂− ω̂(σ))| ≤ C.
Then, since

(µ̂− ω̂(σ))(0) =
∫

R2

µ−
∫

R2

ω(σ) = m−m = 0,

it follows that |µ̂− ω̂(σ)| (ξ) ≤ C |ξ|, and we conclude that the quotient |µ̂(ξ)− ω̂(σ)(ξ)| / |ξ|
is bounded. Thus, the first integral in Equation (2A.4) is finite, since its integrand
is finite.

As for the second integral in Equation (2A.4), it is bounded above by∫
Rd\B

|µ̂(ξ)|2

|ξ|2
dξ +

∫
Rd\B

|ω̂(σ)(ξ)|2

|ξ|2
dξ

≤ 2
∫

Rd\B

|µ̂(ξ)|2

1 + |ξ|2
dξ +

∫
Rd\B

|ω̂(σ)(ξ)|2 dξ

≤ 2 ‖µ‖2H−1(R2) + ‖ω(σ)‖2L2 .

Here, the first term is finite by assumption, and the second term is finite since ω(σ)
is compactly supported.

The definition of v in Equation (2A.3) can be motivated by the following
formal calculation, in which, for clarity, we assume that σ = 0. Starting with
Equation (2A.3), if it is to be true that ω(v) = µ, then

v = F−1

(
ξ

|ξ|2
µ̂

)
=⇒ v̂ =

ξ

|ξ|2
µ̂ = −i ξ

⊥

|ξ|2
µ̂ =⇒ |ξ|2 v̂ = −iξ⊥µ̂

=⇒ ∆̂v = ∇̂⊥µ
=⇒ ∆v = ∇⊥µ = (−∂2, ∂1)(∂1v

2 − ∂2v
1)

= (−∂1∂2v
2 + ∂2

2v
1, ∂2

1v
2 − ∂2∂1v

1) = ∆v,

where in the last step we used div v = 0 so ∂2v
2 = −∂1v

1. Thus, working backwards
from the final identity, we deduce, formally, Equation (2A.3).

Remark: Given a vector in Em, all we can immediately say about its vorticity is
that it lies in H−1(R2) (in particular, it is generically not in any Lp-spaces). Using
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Theorem 2A.5 we could define a space, or at least a set, E′m of all vectors in Em
whose vorticity satisfies the conditions of Theorem 2A.5. These sets would have the
properties that E′m∩E′m′ = ∅ when m 6= m′, and that if v = σ+ v is a radial-energy
decomposition of v in E′m, then

∫
R2 v = 0 (only the first property is shared by the

spaces Em).

Remark: We can use Equation (2A.3) to define an operator from the space of
measures satisfying the conditions of Theorem 2A.5 to a specific Em or even to the
union of all Em. In the latter form, we can view it as a complement to the Biot-
Savart law which Chemin shows, in Proposition 3.1.1 p. 45 of [6], maps a vorticity
in La to its associated vector field lying in La +Lb, where a < 2 and b > 2a/(2− a)
(in two dimensions). Our new operator would partially address the case a = 2,
mapping a measure-valued vorticity satisfying the conditions of Theorem 2A.5 to a
vector in weak-L2 + L2. It might be interesting to investigate the properties of this
operator.

Remark: Let v be in Em. If ω(v) is compactly supported and smooth, then it
follows from the Biot-Savart law that v decays like m/((2π)r). (For instance, see
[29] p. 92.) It follows that such a v will be in L2(R2) if and only if m = 0; that
is, if and only if its total vorticity is zero. Theorem 2A.5 can be seen as a broad
generalization of this result in which the condition of smoothness and compact
support of ω(v) are replaced with much weaker conditions.

The following is Lemma 5.1.2 p. 89 of [6].

Lemma 2A.6. Let (ρn) be an approximation to the identity and σ a stationary
vector field in Em. Then σ − ρn ∗ σ is in L2 and

lim
n→∞

‖σ − ρn ∗ σ‖L2 = 0.

Proof. Being an approximation to the identity means that ρn(x) = (1 + n)2ρ((1 +
n)x) where ρ is in S(R2) and integrates to 1. We let σn = ρn ∗ σ.

By the mean value theorem, given ξ ∈ R2, there exists an η on the line
segment between the origin and ξ/(n+ 1) (see, for instance, Theorem 8.4 p. 254 of
[2]) such that

ρ̂(ξ/(n+ 1))− ρ̂(0)
|ξ/(n+ 1)|

= ξ̂ · ∇ρ̂(η),

where ξ̂ is a unit vector in the direction of ξ. From this it follows that∣∣∣∣1− ρ̂( ξ

n+ 1

)∣∣∣∣ ≤ |ξ|
1 + n

‖Dρ̂‖L∞ .
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Even though σ is not in L2, we still have

‖σ̂ − σ̂n‖L2 =
∥∥σ̂ − ρ̂n ∗ σ∥∥L2 = ‖σ̂ − ρ̂nσ̂‖L2 = ‖σ̂(1− ρ̂n)‖L2

=
∥∥∥∥σ̂(ξ)

(
1− ρ̂

(
ξ

1 + n

))∥∥∥∥
L2

≤
∥∥∥∥σ̂(ξ)

|ξ|
1 + n

‖Dρ̂‖L∞
∥∥∥∥
L2

=
‖Dρ̂‖L∞
n+ 1

‖ξσ̂(ξ)‖L2 =
‖Dρ̂‖L∞
n+ 1

∥∥∥∇̂σ∥∥∥
L2

=
‖Dρ̂‖L∞
n+ 1

‖∇σ‖L2 ≤ C
‖Dρ̂‖L∞
n+ 1

‖ω(σ)‖L2 ,

the last inequality being by Theorem 3.1.1 p. 45 of [6]. Letting n → 0 completes
the proof.

2B Bounding the L∞–norm of velocity

Lemma 2B.1. Let v be a divergence-free vector field in L2 with vorticity ω lying in
La for some a and b, 2 < a < b ≤ ∞. Then v is in L2 ∩ L∞ and

‖v‖Lb ≤ C
(
‖v‖L2 +

a2

(a− 1)(1− 22/a−2/b−1)
‖ω‖La

)
≤ C

(
‖v‖L2 +

a2

(a− 1)(1− 22/a−1)
‖ω‖La

)
.

(2B.1)

(When b =∞, we let 1/b = 0.)

Proof. Let a and b be such that 2 < a < b ≤ ∞. Then

‖v‖Lb ≤ ‖χ(D)v‖Lb + ‖(Id− χ(D))v‖Lb ,

where we are using the definitions for the Littlewood-Paley operators and associated
functions from [6]. In these definitions, χ is a smooth radially symmetric nonnegative
function supported in a ball of radius 4/3.

The first term is bounded by

‖χ(D)v‖Lb ≤ C ‖χ(D)v‖L2 = C ‖χv̂‖L2 ≤ C ‖χ‖L∞ ‖v‖L2

≤ C ‖v‖L2 <∞,

where we used Bernstein’s lemma (Lemma 2.1.1 of [6] with λ = 1) for the first
inequality and the fact that χ ∈ L∞ to absorb its norm into the constant, C. We
note that b > 2 was needed to apply Bernstein’s lemma.
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For the second term, we have

‖(Id− χ(D))v)‖Lb =

∥∥∥∥∥∥
∞∑
j=0

∆jv

∥∥∥∥∥∥
Lb

≤
∞∑
j=0

‖∆jv‖Lb .

Applying Bernstein’s inequality twice, we have

‖∆jv‖Lb ≤ C2−j ‖∂k∆jv‖Lb ≤ C2−j ‖∇∆jv‖Lb
≤ C2−j(2j)2(1/a−1/b) ‖∇∆jv‖La

≤ C2j(2/a−2/b−1) a2

a− 1
‖ω(∆jv)‖La

= C2j(2/a−2/b−1) a2

a− 1
‖∆jω‖La ,

where the last inequality is the Calderon-Zygmund inequality. The first application
of Bernstein’s inequality required that the Fourier transform of ∆jv be supported
in an annulus; this is why we decomposed v into low and high frequencies before
bounding its norm.

In any case, we then have

‖∆jω‖La =
∥∥F−1(ϕ(2−j ·)ω̂)

∥∥
La

=
∥∥F−1

(
F(F−1(ϕ(2−j ·)))ω̂

)∥∥
La

=
∥∥F−1

(
F(F−1(ϕ(2−j ·)) ∗ ω)

)∥∥
La

=
∥∥F−1(ϕ(2−j ·)) ∗ ω

∥∥
La
≤
∥∥F−1(ϕ(2−j ·))

∥∥
L1 ‖ω‖La

=
∥∥F−1(ϕ)

∥∥
L1 ‖ω‖La = C ‖ω‖La .

That
∥∥F−1(ϕ(2−j ·))

∥∥
L1 =

∥∥F−1(ϕ)
∥∥
L1 follows by a change of variables.

Thus,

‖(Id− χ(D))v‖L∞ ≤
∞∑
j=0

C2j(2/a−2/b−1) a2

a− 1
‖ω‖La

≤ C a2

(a− 1)(1− 22/a−2/b−1)
‖ω‖La

as long as 2/a − 2/b − 1 < 0—that is, 1/a − 1/b < 1/2; this follows from 2 < a <
b ≤ ∞.

Combining these results gives Equation (2B.1). Since v is in L2 by assump-
tion, and v is in L∞ (the case b = ∞, above), v is in L2 ∩ L∞, and the proof is
complete.
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Lemma 2B.2. Let u be a solution to (E) or (NS). Fix an origin σ in the affine
space Em. Then

‖v(t)‖Em ≤
[
‖v(0)‖Em + νC ‖∇σ‖L2 ‖ω0‖L2

]
e2‖∇σ‖L∞ t, (2B.2)

where, of course, ν = 0 when u is a solution to (E).

Proof. Assume first that u is a solution to (E). Then we can write u(t) = σ + v(t)
where v(t) is in L2, and we have

∂t(σ + v) + (σ + v) · ∇(σ + v) +∇p = 0
=⇒ ∂tv + σ · ∇σ + σ · ∇v + v · ∇σ + v · v +∇p = 0.

(2B.3)

But σ · ∇σ = ∇q for some q in C∞ ∩H1, because σ is a stationary solution to the
Euler equations, as we showed in Theorem 2A.3, and because σ is in L∞ and ∇σ is
in L2. Thus, taking the inner product of the above equality with v and integrating
over space, and arguing as in the proof of Theorem 2.3.1, we have

1
2
d

dt
‖v‖2L2 = −

∫
R2

(v · ∇σ) · v ≤ ‖∇σ‖L∞ ‖v‖
2
L2 ,

which leads to Equation (2B.2) after integrating.
If u is a solution to (NS), then instead of 0, the right-hand side of Equa-

tion (2B.3) becomes

ν

∫
R2

∆(σ + v) · v = −ν
∫

R2

∇σ · ∇v − ν
∫

R2

|∇v|2 ≤ ν ‖∇σ‖L2 ‖∇v‖L2

≤ νC ‖∇σ‖L2 ‖ω0‖L2 .

Applying Gronwall’s lemma gives Equation (2B.2).

An important, but subtle conclusion of Equation (2B.2) is that our solutions
to (NS) and (E) for initial velocity in Em remain in Em for all time. This is true
even if the initial vorticity is not in L1. (The condition that

∫
R2 ω = m in the

definition of Em is an integral over a measure in H−1(R2) that is assumed to be
finite. If ω is in L1, then it is the same as the integral of ω as an L1–function.)

For the solution to (NS) to remain in Em, though, we require that its initial
vorticity lie in L2, because its L2–norm appears directly in Equation (2B.2). A
solution to (E) on the other hand would remain in Em even if the initial vorticity
were only in a higher Lp–space. Thus, the restriction we made in Theorem 2.1.5
that ω0 lie in Lp(R2) for all p in [2,∞) was not just so that the energy argument in
the proof of Theorem 2.3.1 would work (which gave, ultimately, both the uniqueness
of the solutions to (E) and (NS), but the vanishing viscosity limit), but because
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the basic existence proof for (NS) requires it.
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Chapter 3

Vanishing viscosity in a
bounded domain with Navier

boundary conditions

3.1 Introduction

Let Ω be a bounded domain of R2 with a boundary Γ consisting of a finite number
of connected components. We always assume that Γ is at least as smooth as C2,
but will assume additional smoothness as needed.

We consider the existence and uniqueness of a solution u to the Navier-Stokes
equations under Navier boundary conditions; namely,

v · n = 0 and 2D(v)n · τ + αv · τ = 0 on Γ, (3.1.1)

where α is in L∞(Γ), n and τ are unit normal and tangent vectors, respectively, to
Γ, and D(v) is the rate-of-strain tensor,

D(v) =
1
2
[
∇v + (∇v)T

]
.

We follow the convention that n is an outward normal vector and that the ordered
pair (n, τ ) gives the standard orientation to R2. (We give an equivalent form of
Navier boundary conditions in Corollary 3.4.2.)

J.L. Lions in [24] p. 87-98 and P.L. Lions in [26] p. 129-131 consider the
following boundary conditions, which we call Lions boundary conditions:

v · n = 0 and ω(v) = 0 on Γ,

where ω(v) = ∂1v
2 − ∂2v

1 is the vorticity of v. Lions boundary conditions are
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the special case of Navier boundary conditions in which α = 2κ, as we show in
Corollary 3.4.3.

J.L. Lions, in Theorem 6.10 p. 88 of [24], proves existence and uniqueness
of a solution to the Navier-Stokes equations in the special case of Lions boundary
conditions, but includes the assumption that the initial vorticity is bounded. With
the same assumption of bounded initial vorticity, the existence and uniqueness is es-
tablished in Theorem 4.1 of [7] for Navier boundary conditions, under the restriction
that α is positive (and in C2(Γ)). This is the usual restriction, which is imposed to
insure the conservation of energy. Mathematically, negative values of α present no
real difficulty, so we do not make that restriction (until the last section). The only
clear gain from removing the restriction, however, is that it allows us to view Lions
boundary conditions as a special case of Navier boundary conditions for more than
just convex domains (nonnegative curvature).

P.L. Lions establishes an energy inequality on p. 130 of [26] that can be
used in place of the usual one for no-slip boundary conditions. He argues that ex-
istence and uniqueness can then be established—with no assumption on the initial
vorticity—exactly as was done for no-slip boundary conditions in the earlier sec-
tions of his text. As we will show, P.L. Lions’s energy inequality applies to Navier
boundary conditions in general, which gives us the same existence and uniqueness
theorem as for no-slip boundary conditions. (P.L. Lions’s comment on the regularity
of ∂u∂t does not follow as in [26], though, because (4.18) of [26] is not valid for general
Navier boundary conditions.) We include a proof of existence and uniqueness in
Section 3.6, based on the classical proofs as they appear in [24] and [33]. In Sec-
tion 3.7, we extend the existence, uniqueness, regularity, and convergence results of
[7] and [27] to non-simply connected domains.

It is shown in [27] that if the initial vorticity is in Lp(Ω) for some p >
2, then after extracting a subsequence, solutions to the Navier-Stokes equations
with Navier boundary conditions converge in L∞([0, T ];L2(Ω)) to a solution to the
Euler equations (with the usual boundary condition of tangential velocity on the
boundary) as ν → 0. This extends a result in [7] for initial vorticity in L∞(Ω), and
because the solution to the Euler equations is unique in this case, it follows that the
convergence is strong in L∞([0, T ];L2(Ω))—that is, does not require the extraction
of a subsequence.

The convergence in [27] also generalizes the similar convergence established
for the special case of Lions boundary conditions on p. 131 of [26] (though not
including the case p = 2). The main difficulty faced in making this generalization
is establishing a bound on the Lp-norms of the vorticity, a task that is much easier
for Lions boundary conditions (see p. 91-92 of [24] or p. 131 of [26]). In contrast,
nearly all of [7] and [27], including the structure of the existence proofs, is directed
toward establishing an analogous bound.

The methods of proof in [7] and [27] do not yield a bound on the rate of

33



convergence. With the assumptions in [27], such a bound is probably not possible.
We can, however, make an assumption that is weaker than that of [7] but stronger
than that of [27] and achieve a bound on the rate of convergence. Specifically, we
assume, as in Chapter 2, that the Lp-norms of the initial vorticity grow sufficiently
slowly with p (Definition 2.1.3) and establish the bound given in Theorem 3.8.3. To
achieve this result, we also assume additional regularity on α and Γ.

The bound on the convergence rate in L∞([0, T ];L2(Ω)) in Theorem 3.8.3 is
the same as that obtained for Ω = R2 in Chapter 2. In particular, it gives a bound
on the rate of convergence for initial vorticity in L∞(Ω) proportional to

(νt)
1
2

exp(−C‖ω0‖L2∩L∞ t),

where C is a constant depending on Ω and α, and ω0 is the initial vorticity. This
is essentially the same bound on the convergence rate as that for Ω = R2 appearing
in [5].

Another interesting question is whether solutions to the Navier-Stokes equa-
tions with Navier boundary conditions converge to a solution to the Navier-Stokes
equations with the usual no-slip boundary conditions if we let the function α grow
large. We show in Section 3.9 that such convergence does take place for initial ve-
locity in H3(Ω) and Γ in C3 when we let α approach +∞ uniformly on Γ. This type
of convergence is, in a sense, an inverse of the derivation of the Navier boundary
conditions from no-slip boundary conditions for rough boundaries discussed in [13]
and [14].

3.2 Function spaces

Let

E(Ω) =
{
v ∈ (L2(Ω))2 : div v ∈ L2(Ω)

}
, (3.2.1)

as in [33], with the inner product,

(u, v)E(Ω) = (u, v) + (div u,div v).

We will use several times the following theorem, which is Theorem 1.2 p. 7 of [33].

Lemma 3.2.1. There exists a continuous linear operator γn mapping E(Ω) into
H−1/2(Γ) such that

γnv = the restriction of v · n to Γ, for every v in (D(Ω))2.

Also, the following form of the divergence theorem is true for all vector fields
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v in E(Ω) and scalar functions h in H1(Ω):∫
Ω
v · ∇h+

∫
Ω

(div v)h =
∫

Γ
γnv · γ0h.

We always suppress the trace function γ0 in our expressions, and we write
v · n in place of γnv.

Define the following function spaces as in [7]:

H =
{
v ∈ (L2(Ω))2 : div v = 0 in Ω and v · n = 0 on Γ

}
,

V =
{
v ∈ (H1(Ω))2 : div v = 0 in Ω and v · n = 0 on Γ

}
,

W =
{
v ∈ V ∩H2(Ω) : v satisfies Equation (3.1.1)

}
.

(3.2.2)

We give W the H2-norm, H the L2-inner product and norm, which we symbolize
by (·, ·) and ‖·‖L2(Ω), and V the H1-inner product,

(u, v)V =
∑
i

(∂iu, ∂iv),

and associated norm. This norm is equivalent to the H1-norm, because Poincaré’s
inequality holds on V , as we show in Lemma 3.2.2.

Lemma 3.2.2 (Poincaré’s inequality). For all v in V and all p in [1,∞],

‖v‖Lp(Ω) ≤ C(Ω) ‖∇v‖Lp(Ω) .

Proof. Let v be in V and let h = xi, i = 1, 2, on Ω. By Lemma 3.2.1,

0 =
∫

Γ
(v · n)h =

∫
Ω
v · ∇h+

∫
Ω

(div v)h =
∫

Ω
vi.

But it is a classical result that Poincaré’s inequality holds for any scalar function in
H1(Ω) whose average value is zero, so Poincaré’s inequality holds for each component
of v and hence for v itself.

Corollary 3.2.3. For all u and v in V ,

‖u · v‖L1(Γ) ≤ C(Ω) ‖u‖L2(Ω) ‖∇v‖L2(Ω) ,

and

‖v‖L2(Γ) ≤ C(Ω) ‖v‖1/2
L2(Ω)

‖∇v‖1/2
L2(Ω)

.

Proof. Using Lemma 3.2.1, Lemma 3.2.2, div u = 0, and the standard trace theorem,
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we have

‖u · v‖L1(Γ) ≤ ‖u‖H−1/2(Γ) ‖v‖H1/2(Γ) ≤ C(Ω) ‖u‖E(Ω) ‖v‖H1(Ω)

≤ C(Ω) ‖u‖L2(Ω) ‖∇v‖L2(Ω) .

Letting u = v gives the second inequality in the statement of the theorem.

We need, as in the classical case, Ladyzhenskaya’s inequality ([20]), although
we now have a domain-dependent constant.

Lemma 3.2.4 (Ladyzhenskaya’s inequality). For any v in V ,

‖v‖L4(Ω) ≤ C(Ω) ‖v‖1/2
L2(Ω)

‖∇v‖1/2
L2(Ω)

. (3.2.3)

Proof. Let E be an extension operator from V to H1(R2) with the property that
‖Ev‖Hk(R2) ≤ C ‖v‖Hk(Ω), k = 0, 1. (See, for instance, Theorem 5 p. 181 of [32].)
Then

‖∇(Ev)‖L2(R2) ≤ ‖Ev‖H1(R2) ≤ C ‖v‖H1(R2)

= C ‖v‖L2(Ω) + C ‖∇v‖L2(Ω) ≤ C ‖∇v‖L2(Ω) ,

where we used Lemma 3.2.2 in the last inequality.
So for v in V ,

‖v‖L4(Ω) ≤ ‖Ev‖L4(R2) ≤ 2−1/4 ‖Ev‖1/2
L2(R2)

‖∇(Ev)‖1/2
L2(R2)

≤ C ‖v‖1/2
L2(Ω)

‖∇v‖1/2
L2(Ω)

,

where we used Ladyzhenskaya’s inequality for vector fields in H1(Ω′) (for instance,
see (2.8) p. 32 of [11]).

Define, as is customary, the trilinear function,

b(u, v, w) =
∫

Ω
ui∂iv

jwj =
∫

Ω
(u · ∇v) · w.

The property that b(u, v, w) = −b(u,w, v) for all u, v, and w in V holds as it does
classically. This property along with Ladyzhenskaya’s inequality are sufficient to
establish the following bound on |b(u, v, w)|, from Lemma 3.4 p. 198 of [33]:

Lemma 3.2.5. For all u, v, and w in V ,

|b(u, v, w)| ≤ C(Ω) ‖u‖1/2
L2(Ω)

‖∇u‖1/2
L2(Ω)

‖∇v‖L2(Ω) ‖w‖
1/2
L2(Ω)

‖∇w‖1/2
L2(Ω)

.
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3.3 Hodge decomposition of H

Only simply connected domains are considered in [7] and [27]. To handle non-simply
connected domains we will need a portion of the Hodge decomposition of L2(Ω). We
briefly summarize the pertinent facts, drawing mostly from Appendix I of [33].

Let {Σ1, . . . ,ΣN} be one-manifolds with boundary that generate the one-
dimensional real homology class of Ω relative to its boundary Γ.

We can decompose the space H into two subspaces, H = H0 ⊕Hc, where

H0 = {v ∈ H : all internal fluxes are zero} ,
Hc = {v ∈ H : ω(v) = 0} .

An internal flux is a value of
∫

Σi
v · n. Then H0 = H⊥c and there is an orthonormal

basis ∇q1, . . . ,∇qN for Hc ⊆ C∞(Ω) consisting of the gradients of N harmonic
functions, q1, . . . , qN . (Each qi is multi-valued in Ω, but ∇qi is single-valued.)

If v is in V , then v is also in H so there exists a unique v0 in H0 and vc in Hc

such that v = v0 + vc; also, (v0, vc) = 0. But vc is in C∞(Ω) and so in V ; hence, v0

also lies in V . This shows that V = (V ∩H0)⊕Hc, though this is not an orthogonal
decomposition of V .

The following is a result of Yudovich’s:

Lemma 3.3.1. For any p in [2,∞) and any v in V ∩H0,

‖∇v‖Lp(Ω) ≤ C(Ω)p ‖ω(v)‖Lp(Ω) .

Proof. Let v be in V ∩ H0. Since v has no harmonic component, v = ∇⊥ψ =
(−∂2ψ, ∂1ψ) for some stream function ψ, which we can assume vanishes on Γ. Ap-
plying Corollary 1 of [35] with the operator L = ∆ and r = 0 gives

‖∇v‖Lp(Ω) ≤ ‖ψ‖H2,p(Ω) ≤ C(Ω)p ‖∆ψ‖Lp(Ω) = C(Ω)p ‖ω(v)‖Lp(Ω) .

For Ω simply connected, H = H0, and Lemma 3.3.1 applies to all of V .

Corollary 3.3.2. For any p in [2,∞) and any v in V ,

‖∇v‖Lp(Ω) ≤ C(Ω)p ‖ω(v)‖Lp(Ω) + C ′(Ω) ‖v‖L2(Ω) ,

the constants C(Ω) and C ′(Ω) being independent of p.

Proof. Let v be in V with v = v0 + vc, where v0 is in V ∩H0 and vc is in Hc, and
assume that ∇v is in Lp(Ω). Let vc =

∑N
i=1 ci∇qi and r = ‖vc‖L2(Ω) = (

∑
i c

2
i )

1/2.
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Then

‖∇vc‖Lp(Ω) =
N∑
i=1

|ci| ‖∇∇qi‖Lp(Ω) ≤
N∑
i=1

r |Ω|1/p ‖∇∇qi‖L∞(Ω)

≤ rmax
{

1, |Ω|1/2
} N∑
i=1

‖∇∇qi‖L∞(Ω) ≤ C ‖vc‖L2(Ω) ,

where we used the smoothness of ∇qi. But, H0 = H⊥c , so ‖v‖L2(Ω) = ‖v0‖L2(Ω) +
‖vc‖L2(Ω) and thus ‖vc‖L2(Ω) ≤ ‖v‖L2(Ω). Therefore,

‖∇v‖Lp(Ω) ≤ ‖∇v0‖Lp(Ω) + ‖∇vc‖Lp(Ω)

≤ C(Ω)p ‖ω(v)‖Lp(Ω) + C ′(Ω) ‖v‖L2(Ω)

by virtue of Lemma 3.3.1.

3.4 Vorticity on the boundary

If we parameterize each component of Γ by arc length, s, it follows that

∂n
∂τ

:=
dn
ds

= κτ ,

where κ, the curvature of Γ, is continuous because Γ is C2.
The second part of the following theorem is Lemma 2.1 of [7].

Lemma 3.4.1. If v is in (H2(Ω))2 with v · n = 0 on Γ, then

∇vn · τ = ω(v)− κv · τ , (3.4.1)

and

D(v)n · τ =
1
2
ω(v)− κv · τ . (3.4.2)

Proof. Because C∞(Ω)∩{v : v · n = 0 on Γ} is dense in H2(Ω)∩{v : v · n = 0 on Γ}
and the trace operator of Lemma 3.2.1 is continuous, it is sufficient to establish
Equation (3.4.1) and Equation (3.4.2) for smooth velocity fields on Ω.

Because v · n has a constant value (of zero) along Γ,

0 =
∂

∂τ
(v · n) =

∂v

∂τ
· n + v · ∂n

∂τ
= ∇vτ · n + κv · τ .
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Letting

n =
(
n1

n2

)
, τ =

(
−n2

n1

)
with (n1)2 + (n2)2 = 1, we have

∇vn · τ −∇vτ · n

=
((

∂1v
1 ∂2v

1

∂1v
2 ∂2v

2

)(
n1

n2

))
·
(
−n2

n1

)
−
((

∂1v
1 ∂2v

1

∂1v
2 ∂2v

2

)(
−n2

n1

))
·
(
n1

n2

)
=
(
∂1v

1n1 + ∂2v
1n2

∂1v
2n1 + ∂2v

2n2

)
·
(
−n2

n1

)
−
(
−∂1v

1n2 + ∂2v
1n1

−∂1v
2n2 + ∂2v

2n1

)
·
(
n1

n2

)
= −∂1v

1n1n2 − ∂2v
1(n2)2 + ∂1v

2(n1)2 + ∂2v
2n1n2

+ ∂1v
1n1n2 − ∂2v

1(n1)2 + ∂1v
2(n2)2 − ∂2v

2n1n2

=
[
(n1)2 + (n2)2

] [
∂1v

2 − ∂2v
1
]

= ω(v).

Thus,

∇vn · τ = ω(v) +∇vτ · n = ω(v)− κv · τ , (3.4.3)

establishing Equation (3.4.1).
To establish Equation (3.4.2), observe that

D(v)n · τ =
1
2
ω(v)− κ(v · τ ) = −1

2
ω(v) + ω(v)− κ(v · τ )

⇐⇒ D(v)n · τ = −1
2

[∇vn · τ −∇vτ · n] +∇vn · τ

⇐⇒ D(v)n · τ =
1
2

[∇vn · τ +∇vτ · n] .

This last identity can be verified by direct calculation.

Corollary 3.4.2. A vector v in V ∩ H2(Ω) satisfies Navier boundary conditions
(that is, lies in W) if and only if

ω(v) = (2κ− α)v · τ and v · n = 0 on Γ. (3.4.4)

Also, for all v in W and u in V ,

∇vn · u = (κ− α)v · u on Γ. (3.4.5)

Proof. Let v be in V ∩H2(Ω). Then from Equation (3.4.2),

2D(v)n · τ + 2κ(v · τ ) = ω(v). (3.4.6)
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If v satisfies Navier boundary conditions, then Equation (3.4.4) follows by subtract-
ing 2D(v)n·τ +αv·τ = 0 from Equation (3.4.6). Conversely, substituting the expres-
sion for ω(v) in Equation (3.4.4) into Equation (3.4.6) gives 2D(v)n ·τ +αv ·τ = 0.

If v is in W, then from Equation (3.4.1),

∇vn · τ = ω(v)− κv · τ = (2κ− α)v · τ − κv · τ = (κ− α)v · τ ,

and Equation (3.4.5) follows from this, since u is parallel to τ on Γ.

Corollary 3.4.3. For initial velocity in H2(Ω), Lions boundary conditions are the
special case of Navier boundary conditions where

α = 2κ.

That is, any solution of (NS) with Navier boundary conditions where α = 2κ is also
a solution to (NS) with Lions boundary conditions.

3.5 Weak formulations

We give two equivalent formulations of a weak solution to the Navier-Stokes equa-
tions with Navier boundary conditions, in analogy with Problems 3.1 and 3.2 p.
190-191 of [33].

For all u in W and v in V ,∫
Ω

∆u · v =
∫

Ω
(div∇ui)vi =

∫
Γ
(∇ui · n)vi −

∫
Ω
∇ui · ∇vi

=
∫

Γ
(∇un) · v −

∫
Ω
∇u · ∇v =

∫
Γ
(κ− α)u · v −

∫
Ω
∇u · ∇v,

(3.5.1)

where we used Equation (3.4.5) of Corollary 3.4.2. This motivates our first formu-
lation of a weak solution.

Definition 3.5.1. Given a viscosity ν > 0 and initial velocity u0 in H, u in
L2([0, T ];V ) is a weak solution to the Navier-Stokes equations (without forcing)
if u(0) = u0 and

d

dt

∫
Ω
u · v +

∫
Ω

(u · ∇u) · v + ν

∫
Ω
∇u · ∇v − ν

∫
Γ
(κ− α)u · v = 0

for all v in V . (We will make sense of the initial condition u(0) = u0 as in [33].)

Our formulation of a weak solution is equivalent to that in (2.11) and (2.12)
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of [7]. This follows from the identity,

2
∫

Ω
D(u) ·D(v) =

∫
Ω
∇u · ∇v −

∫
Γ
κu · v,

which holds for all u and v in V . This identity can be derived from Equation (3.4.3)
and Lemma 3.2.1, and the density of H2(Ω) ∩ V in V .

Our second formulation of a weak solution will be identical to that of Problem
3.2 p. 191 of [33], except that the operator A of [33] will also include the boundary
term of Equation (3.5.1). Accordingly, we define A by

〈Au, v〉V,V ′ =
∫

Ω
∇u · ∇v −

∫
Γ
(κ− α)u · v

for all u and v in V .
By Corollary 3.2.3,

| 〈Au, v〉V,V ′ | ≤
∣∣∣∣∫

Ω
∇u · ∇v

∣∣∣∣+
∣∣∣∣∫

Γ
(κ− α)u · v

∣∣∣∣
≤ ‖u‖V ‖v‖V + C ‖u · v‖L1(Γ)

≤ ‖u‖V ‖v‖V + C ‖u‖L2(Ω) ‖∇v‖L2(Ω) ≤ C ‖u‖V ‖v‖V .

(3.5.2)

Thus, if u is in L2([0, T ];V ), then Au is in L2([0, T ];V ′): this is the fact we need to
argue as in [33] p. 191 that the following formulation of a weak solution is equivalent
to that of Definition 3.5.1:

Definition 3.5.2. Given a viscosity ν > 0 and initial velocity u0 in H, u in
L2([0, T ];V ) is a weak solution to the Navier-Stokes equations if u(0) = u0 and

u′ ∈ L1([0, T ];V ′),
u′ + νAu+Bu = 0 on (0, T ),

u(0) = u0,

where u′ := ∂tu.

From here on we will refer to either of the formulations in Definitions 3.5.1
and 3.5.2 as (NS).

If a is the symmetric bilinear form on V ×V defined by a[u, v] = 〈Au, v〉V,V ′ ,
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then by Equation (3.5.2), |a[u, v]| ≤ C ‖u‖V ‖v‖V . Also, a is (V,H)-coercive, since

|a[u, u]| ≥ ‖∇u‖2L2(Ω) − ‖κ− α‖L∞(Γ) ‖u‖
2
L2(Γ)

≥ ‖∇u‖2L2(Ω) − C ‖u‖L2(Ω) ‖∇u‖L2(Ω)

≥ ‖∇u‖2L2(Ω) −
1
2
‖∇u‖2L2(Ω) − C ‖u‖

2
L2(Ω)

=
1
2
‖u‖2V − C ‖u‖

2
H ,

where we used Corollary 3.2.3 and Young’s inequality. This is enough to insure
the existence of an orthonormal basis for V consisting of eigenvectors of A, with
eigenvalues λ1 ≤ λ2 ≤ . . . , where λj →∞ as j →∞.

3.6 Existence and uniqueness

Our proof of the existence of a solution to (NS) proceeds as in the first proof of
existence in [24] p. 75-77, though using the analog of the energy inequality on p.
130 of [26]. The proofs of regularity in time and space and of uniqueness proceed
as in the proof of Theorem 3.2 p. 199 of [33].

Theorem 3.6.1. Assume that Γ is C2 and α is in L∞(Γ). Let u0 be in H and let
T > 0. Then there exists a solution u to (NS). Moreover, u is in L2([0, T ];V ) ∩
C([0, T ];H), u′ is in L2([0, T ];V ′), and we have the energy inequality,

‖u(t)‖L2(Ω) ≤ e
C(α)νt‖u0‖L2(Ω), (3.6.1)

where the constant C(α) = 0 if α is nonnegative on Γ.

Proof. Existence: We follow [24], but use the basis of Corollary 3A.3. Because this
basis is also a basis for H, if we let u0m be the projection in H of u0 onto the span
of the first m basis vectors, then u0m → u0 in L2(Ω). Because the basis is in H2(Ω),
the approximate solution um is in C1([0, T ];H2(Ω)).

Definition 3.5.1 leads to the following replacement for (3.27) p. 193 of [33]:

(u′m(t), um(t)) + ν ‖∇um(t)‖2L2(Ω) = ν

∫
Γ
(κ− α)um · um.

Using Equation (3.4.5) of Corollary 3.4.2 and Lemma 1.2 p. 176 of [33], we conclude
that

1
2
d

dt
‖um‖2L2(Ω) + ν ‖∇um‖2L2(Ω) ≤ Cν ‖um‖

2
L2(Γ) , (3.6.2)
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where C = supΓ |κ− α|. Except for the value of the constant, Equation (3.6.2) is
identical to the first inequality on p. 130 of [26], which is for the special case of
Lions boundary conditions.

Arguing exactly as in [26], it follows that

d

dt
‖um‖2L2(Ω) + ν ‖∇um‖2L2(Ω) ≤ Cν ‖um‖

2
L2(Ω) .

Integrating over time gives

‖um(t)‖2L2(Ω) + ν

∫ t

0
‖∇um(s)‖2L2(Ω) ds

≤ ‖u0m‖2L2(Ω) + Cν

∫ t

0
‖um(s)‖2L2(Ω) ds.

(3.6.3)

The energy bound,

‖um(t)‖2L2(Ω) ≤ e
Cνt‖u0m‖2L2(Ω) ≤ e

Cνt‖u0‖2L2(Ω), (3.6.4)

then follows from Gronwall’s lemma, showing that the right side of Equation (3.6.3)
is bounded uniformly on [0, T ]. It follows from Equation (3.6.3) and Equation (3.6.4)
that

{um} is bounded in L2([0, T ];V ) ∩ L∞([0, T ];H),

from which Equation (3.6.1) will follow. (If α is nonnegative, then, in fact, energy is
conserved—in the absence of forcing—so C(α) = 0. This follows from the equation
preceding (2.16) of [7].)

The proof of existence is completed by showing that {u′m} is bounded in
L2([0, T ];V ′); this is done as in [24] without change. Also, we make sense of the
initial conditions as in [33]. (Specifically, see Lemma 1.2 of Section III.1.4 and the
argument at the end of section III.1.3 of [33].)

Regularity in time: This follows exactly as in part (i) of the proof of Theorem
3.2 p. 199 of [33].

Uniqueness: We argue as in part (ii) of the proof of Theorem 3.2 p. 199 of [33],
but using our first formulation of a weak solution rather than the second.

Assume that u1 and u2 are two solutions to (NS), and let u = u1−u2. Using
the test function v = u in Definition 3.5.1 applied to u1 and u2, and subtracting the
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two equalities gives

d

dt
‖u(t)‖2L2(Ω) + 2ν ‖∇u(t)‖2L2(Ω)

= −2b(u(t), u2(t), u(t)) + ν

∫
Γ
(κ− α) |u|2 .

Using Corollary 3.2.3,∣∣∣∣ν ∫
Γ
(κ− α) |u|2

∣∣∣∣ ≤ Cν ‖u(t)‖L2(Ω) ‖∇u(t)‖L2(Ω)

≤ Cν ‖u(t)‖2L2(Ω) + ν ‖∇u(t)‖2L2(Ω) ,

and from Lemma 3.2.5 (note the typographical error in the corresponding inequality
in [33]),

|2b(u(t), u2(t), u(t))| ≤ C ′ ‖u(t)‖L2(Ω) ‖∇u(t)‖L2(Ω) ‖∇u2(t)‖L2(Ω)

≤ ν ‖∇u(t)‖2L2(Ω) +
C ′

ν
‖u(t)‖2L2(Ω) ‖∇u2(t)‖2L2(Ω) .

From these last three relations, we have

d

dt
‖u(t)‖2L2(Ω) ≤ Cν ‖u(t)‖2L2(Ω) +

C ′

ν
‖u(t)‖2L2(Ω) ‖∇u2(t)‖2L2(Ω)

=
[
Cν +

C ′

ν
‖∇u2(t)‖2L2(Ω)

]
‖u(t)‖2L2(Ω) ,

so

d

dt

[
exp

(
−
∫ t

0

[
Cν +

C ′

ν
‖∇u2(s)‖2L2(Ω)

]
ds

)
‖u(t)‖2L2(Ω)

]
≤ 0. (3.6.5)

The integral in this expression is finite because u2 is in L2([0, T ];V ) by the
existence portion of this theorem. Since u(0) = 0, we conclude that ‖u(t)‖2L2(Ω) ≤ 0
for all t in [0, T ], so u1 = u2 and the solution is unique.

3.7 Additional regularity

In this section we establish an existence theorem suited to addressing the issue of
convergence of a solution to (NS) to a solution to the Euler equations, where we
always impose stronger regularity on the initial velocity.

If we assume extra regularity on the initial velocity, that regularity will be
maintained for all time. Our proof of this is an adaptation of the proof of Theorem
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3.5 p. 202-204 of [33] to establish the regularity of u′, combined with the second
half of the proof of Theorem 2.3 of [7] to establish the regularity of u.

Definition 3.7.1. A vector field v in W is called compatible if ω(v) is in L∞(Ω).

Definition 3.7.1 is as in [27], except that we define the vector field to be
compatible instead of the vorticity.

Theorem 3.7.2. Assume that Ω is a bounded domain with a C2,1/2+ε boundary Γ
and that α is in H1/2+ε(Γ) +C1/2+ε(Γ) for some ε > 0. Let u0 be in W with initial
vorticity ω0, and let u be the unique solution to (NS) given by Theorem 3.6.1 with
corresponding vorticity ω. Let T > 0. Then

u′ ∈ L2([0, T ];V ) ∩ C([0, T ];H).

If, in addition, ω0 is in L∞(Ω) (so u0 is compatible), then

u ∈ C([0, T ];H2(Ω)), ω ∈ C([0, T ];H1(Ω)) ∩ L∞([0, T ]× Ω).

Proof. We prove the regularity of u′ in three steps as in the proof of Theorem 3.5 p.
202-204 of [33]. The only change in step (i) is that we use the basis of Corollary 3A.3
rather than the basis in [33].

No change to step (ii) is required, because (3.88) of [33] still holds.
In step (iii), an additional term of

ν

∫
Γ
(κ− α)|u′m|2

appears on the right side of (3.94) of Temam’s proof, which we bound by

Cν
∥∥u′m∥∥L2(Ω)

∥∥∇u′m∥∥L2(Ω)
≤ ν

2

∥∥∇u′m∥∥2

L2(Ω)
+ Cν

∥∥u′m∥∥2

L2(Ω)
.

Then (3.95) of Temam’s proof becomes

d

dt

∥∥u′m(t)
∥∥2

L2(Ω)
≤ φm(t)

∥∥u′m(t)
∥∥2

L2(Ω)
,

where

φm(t) =
(

2
ν

+ Cν

)
‖um(t)‖2L2(Ω) ,

and the proof of the regularity of u′ is completed as in [33], along with the observation
in [7] that u′ is then in C([0, T ];H).

To prove the regularity of u and ω, we follow the argument in the second half
of the proof of Theorem 2.3 in [7] (which does not rely on α being nonnegative). We
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must, however, impose additional regularity on Γ and on α over that assumed in
Theorem 3.6.1. This is to insure that u lying in C1/2([0, T ]; (H1(Ω))2) implies that
(κ− α/2)u · τ lies in C1/2([0, T ];H1(Ω)). Our conditions on Γ and α are sufficient,
though not necessary (see, for instance, Theorem 1.4.1.1 p. 21 and Theorem 1.4.4.2
p. 28 of [12]).

Then, after it is shown that u is in C([0, T ]; (H2,q(Ω))2), we know by Sobolev
embedding that u is in C([0, T ]× Ω). Thus,

‖u · ∇u(t)‖H ≤ ‖u‖L∞([0,T ]×Ω) ‖u(t)‖V ,

and since we already have u in C([0, T ];V ), it follows that u · ∇u and also Φ are
in C([0, T ];H). Then curl Φ is in C([0, T ];H−1(Ω)), and another pass through the
argument in [7], this time with q = 2, gives u in C([0, T ]; (H2(Ω))2). Because the
increase in regularity of the solution arises from the equation −∆ψ = w with the
boundary condition ψ = 0, no regularity on Γ or on α beyond that we have assumed
is required.

(The argument in [7] is for a simply connected domain. We can easily adapt
it, though, by using the equivalent of Lemma 2.5 p. 26 of [33], which gives a stream
function ψ in C([0, T ]×Ω) that is constant on each boundary component, which is
good enough to apply Grisvard’s result (Theorem 2.5.1.1 p. 128 of [12]) to conclude
that ψ is in C([0, T ];H3,q(Ω)).)

With Theorem 3.7.2, we have a replacement for Theorem 2.3 of [7] that
applies regardless of the sign of α. Since the nonnegativity of α is used nowhere else
in [7] and [27], all the results of both of those papers apply for simply connected
domains as well regardless of the sign of α, but with the extra regularity assumed
on Γ (and the lower regularity assumed on α).

To remove the restriction on the domain being simply connected, it remains
only to show that Lemmas 3.2 and 4.1 of [27] remain valid for non-simply connected
domains. We show this for Lemma 3.2 of [27] in Theorem 3A.2. As for Lemma
4.1 of [27], we need only use Corollary 3.3.2 to replace the term ‖ω(·, t)‖1−θLp(Ω) with
(‖ω(·, t)‖Lp(Ω) + ‖u(·, t)‖L2(Ω))

1−θ in the proof of Lemma 4.1 in [27]. Lemma 4.1 of
[27] then follows with no other changes in the proof—only the value of the constant
C changes.

Fix q > 2 and suppose that ω0 is in Lp(Ω) for some p ≥ q. The argument in
the proof of Lemma 4.1 of [27] can be used to bound Λ = ‖(2κ− α)u · τ‖L∞(Ω) in
terms of ‖ω0‖Lq(Ω), and this in turn gives a bound on ‖ω(t)‖Lp(Ω) that has no direct
dependence on p. This gives a bound on ‖ω(t)‖Lp(Ω) very similar to that for the
Euler equations. The result is Theorem 3.7.3, which is only a slight modification of
Proposition 5.2 of [27].
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Theorem 3.7.3. Assume that Ω and α are as in Theorem 3.7.2. Let q be in (2,∞],
and assume that u0 is in V with initial vorticity ω0 in Lp(Ω) for some p in [q,∞]. Let
T > 0. Then there exists a unique solution u to (NS) with corresponding vorticity
ω, and for all p in [q,∞],

‖ω(t)‖Lp ≤ ‖ω
0‖Lp + C0 (3.7.1)

for almost all t in [0, T ], where

C0 = C(T, α, κ, q)eC(α)νT max{|Ω|1/2 , 1}
(
‖u0‖L2(Ω) + ‖ω0‖Lq(Ω)

)
,

C0 being independent of p.
Also, u is in L∞([0, T ];C(Ω)) ∩ L∞([0, T ];V ), the norm of u in this space

being bounded over any finite range of viscosity ν.

Proof. Approximate u0 by a sequence of compatible vector fields via Theorem 3A.2,
and let un be the corresponding solutions to (NS) given by Theorem 3.7.2. The
bound in Equation (3.7.1) holds for each un via the minor modification of Lemma
4.1 of [27] described above, and holds for the solution u in the limit, as in the
proof of Proposition 5.2 in [27]. (The constant C(T, α, κ, q) approaches infinity as q
approaches 2, so it is not possible to extend this result to p = 2.)

Finally, using Sobolev interpolation and Corollary 3.3.2,

‖u(t)‖C(Ω) ≤ C ‖u(t)‖θL2(Ω) ‖u(t)‖1−θH1,p(Ω)

≤ C ‖u(t)‖θL2(Ω) (‖ω(t)‖Lp(Ω) + ‖u(t)‖L2(Ω))
1−θ,

(3.7.2)

where θ = (p− 2)/(2p− 2). This norm is finite by Equation (3.6.1), so u is also in
L∞([0, T ];C(Ω)) and its norm is uniformly bounded over any finite range of viscosity,
as is its norm in L∞([0, T ];V ). Explicitly,

‖u‖L∞([0,T ];V ) = ‖∇u‖L∞([0,T ];L2(Ω)) ≤ C ‖∇u‖L∞([0,T ];Lq(Ω))

≤ C(‖ω‖L∞([0,T ];Lq(Ω)) + ‖u‖L∞([0,T ];L2(Ω)))

≤ C(T, α, κ)eC(α)νT ,

(3.7.3)

a bound we will use in Section 3.8. In the second inequality above we used Corol-
lary 3.3.2.

It is in the proof of Theorem 4.1 of [7] (which is extended in Proposition
5.2 of [27], upon which Theorem 3.7.3 is based) where a marked departure is made
from the classical approach. The approach in [7] relies upon Lemma 4.2 of [7]
(whose extension is Lemma 3.2 of [27]), which has no classical analog (fundamentally,
because the classical space V is not dense in our space V ). Also, there is no known
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classical analog to Equation (3.7.1), making impossible the compactness argument
in the proofs in [7] and [27] in the classical case.

3.8 Vanishing viscosity

We showed in Chapter 2 that having Yudovich initial vorticity (see Definition 2.1.3),
we can derive a bound on the rate of convergence in L∞([0, T ];L2(R2)) of solutions to
the Navier-Stokes equations in all of R2 to the unique solution to the Euler equations.
In this section we extend this result to bounded domains when the Navier-Stokes
equations have Navier boundary conditions.

Definition 3.8.1. Given an initial velocity u0 in V , u in L2([0, T ];V ) is a weak
solution to the Euler equations if u(0) = u0 and

d

dt

∫
Ω
u · v +

∫
Ω

(u · ∇u) · v = 0

for all v in V .

The existence of a weak solution to the Euler equations under the assumption
that the initial vorticity ω0 is in Lp(Ω) for some p > 1 (a weaker assumption than
that of Definition 3.8.1 when 1 < p < 2) was proved in [36]. These solutions have
the property that ω(u) is in L∞loc(R;Lp(Ω)). It is shown in [37] that Yudovich initial
vorticity is enough to insure uniqueness of solutions for which ω(u) and ∂tu are in
L∞loc(R;Lp(Ω)) for all p in [1,∞). (Yudovich’s uniqueness result in [37] applies to a
bounded domain in Rd, although existence is not known for d > 2. His approach
works, with only very minor changes, when applied to all of Rd; the particular case
of d = 2 we proved in Chapter 2.)

Lemma 3.8.2. Assume that Ω and α are as in Theorem 3.7.2. Let u0 be in V with
initial vorticity ω0 in Lp(Ω) for some p in (2,∞], and let u be the unique solution
to (NS) given by Theorem 3.7.3. Let T > 0 and v be in L2([0, T ];V ). Then for all
t in (0, T ),∫

Ω
∂tu · v +

∫
Ω

(u · ∇u) · v + ν

∫
Ω
∇u · ∇v − ν

∫
Γ
(κ− α)u · v = 0. (3.8.1)

Similarly, if u is a solution to the Euler equations, then∫
Ω
∂tu · v +

∫
Ω

(u · ∇u) · v = 0. (3.8.2)
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Proof. Since v is in L2([0, T ];V ), we can write

v =
∞∑
k=1

gk(t)wk,

where wk is an orthonormal basis of V and {gk} is in L2([0, T ]; l2). Then by Defini-
tion 3.5.1,∫

Ω
∂tu · wk +

∫
Ω

(u · ∇u) · wk + ν

∫
Ω
∇u · ∇wk − ν

∫
Γ
(κ− α)u · wk = 0.

Multiplying the above by gk(t) and summing gives∫
Ω
∂tu · vm +

∫
Ω

(u · ∇u) · vm + ν

∫
Ω
∇u · ∇vm − ν

∫
Γ
(κ− α)u · vm = 0,

where

vm =
m∑
k=1

gk(t)wk.

But vm → v in L2([0, T ];V ), from which Equation (3.8.1) follows (using Corol-
lary 3.2.3 for the boundary integral). The equality in Equation (3.8.2) follows simi-
larly.

Theorem 3.8.3. Assume that Ω and α are as in Theorem 3.7.2. Fix T > 0, let u0

be in V , and assume that ω0 is in Lp(R2) for all p in [2,∞), with ‖ω0‖Lp ≤ θ(p)
for some admissible function θ. Let {uν}ν>0 be the solutions to (NS) given by
Theorem 3.7.3 and u be the unique weak solution to the Euler equations for which
ω(u) and ∂tu are in L∞loc(R;Lp(Ω)), u and each uν having initial velocity u0. Then

uν(t)→ u(t) in L∞([0, T ];L2(Ω) ∩ L2(Γ)) as ν → 0.

Also, there exists a constant R = C(T, α, κ), such that if we define the function
f : [0,∞)→ [0,∞) by ∫ f(ν)

Rν

dr

β(r)
= cT,

where c > 1 and β is defined as in Equation (2.1.2), then

‖uν − u‖L∞([0,T ];L2(Ω)) ≤ f(ν)1/2 and

‖uν − u‖L∞([0,T ];L2(Γ)) ≤ C
′(T, α, κ)f(ν)1/4

(3.8.3)
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for all ν in (0, 1].

Proof. We let
w = uν − u,

apply both Equation (3.8.1) and Equation (3.8.2) of Lemma 3.8.2 with v = w, and
subtract to obtain ∫

Ω
w · ∂tw +

∫
Ω
w · (uν · ∇w) +

∫
Ω
w · (w · ∇u)

= ν

∫
Γ
(κ− α)uν · w − ν

∫
Ω
∇uν · ∇w.

(3.8.4)

Both ∂tuν and ∂tu are in L2([0, T ];V ′), so (see, for instance, Lemma 1.2 p.
176 of [33]), ∫

Ω
w · ∂tw =

1
2
d

dt
‖w‖2L2(Ω) .

Applying Lemma 3.2.1,∫
Ω
w · (uν · ∇w)

=
∫

Ω
wiujν∂jw

i =
1
2

∫
Ω
ujν∂j

∑
i

(wi)2 =
1
2

∫
Ω
uν · ∇ |w|2

=
1
2

∫
Γ
(uν · n) |w|2 − 1

2

∫
Ω

(div uν) |w|2 = 0,

since uν · n = 0 on Γ and div uν = 0 on Ω. Thus, integrating Equation (3.8.4) over
time,

‖w(t)‖2L2(Ω) ≤ A+ 2
∫ t

0

∫
Ω
|w|2 |∇u| , (3.8.5)

where

A = 2ν
∫ t

0

[∫
Γ
(κ− α)uν · w −

∫
Ω
∇uν · ∇w

]
.

Using Corollary 3.2.3, Equation (3.7.3), Equation (3.6.1), and the conserva-
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tion of energy for u, we have∣∣∣∣∫
Γ
(κ− α)uν · w

∣∣∣∣ ≤ ‖κ− α‖L∞(Γ) ‖uν · w‖L1(Γ)

≤ ‖κ− α‖L∞(Γ) ‖∇uν‖L2(Ω) ‖w‖L2(Ω) ≤ C(T, α, κ)eC(α)νT .

(3.8.6)

By Equation (3.7.3) we also have∣∣∣∣∫
Ω
∇uν · ∇w

∣∣∣∣ ≤ ‖∇uν‖L2(Ω) ‖∇w‖L2(Ω) ≤ C(T, α, κ)eC(α)νT , (3.8.7)

so A ≤ C(T, α, κ)eC(α)νT ν.
By Theorem 3.7.3, ‖uν‖L∞([0,T ]×Ω) ≤ C for all ν in (0, 1]. It is also true that

u is in L∞([0, T ]×Ω) (arguing, for instance, exactly as in Equation (3.7.2)). Thus,

M = sup
ν∈(0,1]

‖ |w|2 ‖L∞([0,T ]×Ω)

is finite.
Also, because vorticity is conserved for u, we have, by Corollary 3.3.2,

2 ‖∇u(t)‖Lp(Ω) ≤ Cp‖ω
0‖Lp(Ω) + C ‖u‖L2(Ω) ≤ Cp[θ(p) + 1/p] (3.8.8)

for all p ≥ 2. Because θ is admissible, so is p 7→ C[θ(p) + 1/p], and its associated β
function—call it β—is bounded by a constant multiple of that associated to θ. That
is, β ≤ cβ, where c = C(‖u‖L2(Ω)) > 1. Then, arguing as in Chapter 2, we have

2
∫

Ω
|w|2 |∇u| ≤ β(‖w‖2L2) ≤ cβ(‖w‖2L2).

Letting L(t) = ‖w(t)‖2L2(Ω), we have

L(t) ≤ A+ c

∫ t

0
β(L(r)) dr. (3.8.9)

Using Osgood’s lemma as in Chapter 2, we conclude that∫ L(t)

A

dr

β(r)
≤ ct, (3.8.10)

and that as ν → 0, A→ 0, and L(t)→ 0 uniformly over any finite time interval. The
rate of convergence given in L∞([0, T ];L2(Ω)) in Equation (3.8.3) can be derived
from Equation (3.8.10) precisely as in Chapter 2.
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By Corollary 3.2.3,

‖uν − u‖L2(Γ) = ‖w‖L2(Γ) ≤ C ‖∇w‖
1/2
L2(Ω)

‖w‖1/2
L2(Ω)

≤ C(T, α, κ)eC(α)νTL(t)1/4,

from which the convergence rate for L∞([0, T ];L2(Γ)) in Equation (3.8.3) follows.

The convergence rate in L∞([0, T ];L2(Ω)) established in Theorem 3.8.3 is the
same as that established for the entire plane in Chapter 2, except for the presence
of the constant c and the value of the constant R, which now increases more rapidly
with time.

3.9 No-slip boundary conditions

As long as α is non-vanishing, we can reexpress the Navier boundary conditions in
Equation (3.1.1) as

v · n = 0 and 2γD(v)n · τ + v · τ = 0 on Γ, (3.9.1)

where γ = 1/α. When γ is identically zero, we have the usual no-slip boundary con-
ditions. An obvious question to ask is whether it is possible to arrange for γ to ap-
proach zero in such a manner that the corresponding solutions to the Navier-Stokes
equations with Navier boundary conditions approach the solution to the Navier-
Stokes equations with the usual no-slip boundary conditions in L∞([0, T ];L2(Ω)).

Let u0 be an initial velocity in V , and assume that γ > 0 lies in L∞(Γ). Fix
a ν > 0 and let

uν,γ = the unique solution to the Navier-Stokes equations
with Navier boundary conditions for α = 1/γ and

ũν = the unique solution to the Navier-Stokes equations
with no-slip boundary conditions,

in each case with the same initial velocity u0. (In Theorem 3.8.3 we wrote uν,γ as
uν .)

If we let γ approach 0 uniformly on the boundary, we automatically have
some control over uν,γ on the boundary.

Lemma 3.9.1. For sufficiently small ‖γ‖L∞(Γ),

‖uν,γ‖L2([0,T ];L2(Γ)) ≤
‖u0‖L2(Ω)√

ν
‖γ‖1/2L∞(Γ) . (3.9.2)
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Proof. Assume that ‖γ‖L∞(Γ) is sufficiently small that α > κ on Γ. Then, as in the
proof of Theorem 3.6.1, we have

1
2
d

dt
‖uν,γ(t)‖2L2(Ω) + ν ‖∇uν,γ(t)‖2L2(Ω) = ν

∫
Γ
(κ− α)uν,γ · uν,γ ,

so,

‖uν,γ(t)‖2L2(Ω) ≤ ‖u
0‖2L2(Ω) + 2ν

∫ t

0

∫
Γ
(κ− α)uν,γ · uν,γ .

But, ∫
Γ
(κ− α)uν,γ · uν,γ ≤ − inf

Γ
{α− κ} ‖uν,γ(t)‖2L2(Γ) ,

so

‖uν,γ(t)‖2L2(Ω) ≤ ‖u
0‖2L2(Ω) − 2ν inf

Γ
{α− κ} ‖uν,γ‖2L2([0,t];L2(Γ))

and

‖uν,γ‖2L2([0,t];L2(Γ)) ≤ ‖u
0‖2L2(Ω)/(2ν inf

Γ
{α− κ}).

Since ‖γ‖L∞(Γ) infΓ {α− κ} → 1 as ‖γ‖L∞(Γ) → 0, Equation (3.9.2) follows.

If we assume enough smoothness of the initial data and of Γ, we can use
Equation (3.9.2) to establish convergence of uν,γ to ũν as ‖γ‖L∞(Γ) → 0.

Theorem 3.9.2. Fix T > 0, assume that u0 is in V ∩ H3(Ω) with u0 = 0 on Γ,
and assume that Γ is C3. Then for any fixed ν > 0,

uν,γ → ũν in L∞([0, T ];L2(Ω)) ∩ L2([0, T ];L2(Γ)) (3.9.3)

as γ → 0 in L∞(Γ).

Proof. First, uν,γ exists and is unique by Theorem 3.6.1; the existence and unique-
ness of ũν is a classical result. Because u0 is in H3(Ω) and Γ is C3, ũν is in
L∞([0, T ];H3(Ω)) by the argument on p. 205 of [33] following the proof of Theorem
3.6 of [33]. Hence, ∇ũν is in L∞([0, T ];H2(Ω)) and so in L∞([0, T ];C(Ω)).
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By the classical analog of Lemma 3.8.2 with w = uν,γ − ũν in place of v,∫
Ω
∂tũν · w +

∫
Ω

(ũν · ∇ũν) · w − ν
∫

Ω
∆ũν · w

=
∫

Ω
∂tũν · w +

∫
Ω

(ũν · ∇ũν) · w + ν

∫
Ω
∇ũν · ∇w − ν

∫
Γ
(∇ũνn) · w = 0.

Subtracting Equation (3.8.1) with w in place of v, we obtain∫
Ω
∂tw · w +

∫
Ω
w · (uν,γ · ∇w) +

∫
Ω
w · (w · ∇ũν) +

∫
Ω
∇w · ∇w

− ν
∫

Γ
(κ− α)uν,γ · w + ν

∫
Γ
(∇ũνn) · w = 0.

But ũν = 0 on Γ so w = uν,γ on Γ, and∫
Ω
∂tw · w +

∫
Ω
w · (w · ∇ũν) +

∫
Ω
|∇w|2 + ν

∫
Γ
(α− κ) |uν,γ |2

+ ν

∫
Γ
(∇ũνn) · uν,γ = 0.

Then, for ‖γ‖L∞(Γ) sufficiently small that α = 1/γ > κ on Γ,

‖w(t)‖2L2(Ω) ≤ A+ 2
∫ t

0

∫
Ω
|w|2 |∇ũν | , (3.9.4)

where

A = −2ν
∫ t

0

∫
Γ
(∇ũνn) · uν,γ .

By Equation (3.4.1), (∇ũνn) · τ = ω(ũν)− κũν · τ = ω(ũν) on Γ. But uν,γ is
parallel to τ on Γ, so (∇ũνn) · uν,γ = ω(ũν)uν,γ · τ . Thus,

−
∫

Γ
(∇ũνn) · uν,γ = −

∫
Γ
ω(ũν)uν,γ · τ ≤ ‖ω(ũν)‖L2(Γ) ‖uν,γ · τ‖L2(Γ)

≤ C ‖ũν‖H2(Ω) ‖uν,γ · τ‖L2(Γ) ,

so

A ≤ Cν ‖ũν‖L2([0,T ];H2(Ω)) ‖uν,γ‖L2([0,T ];L2(Γ)) .

By Theorem 3.10 p. 213 of [33], ‖ũν‖L2([0,T ];H2(Ω)) is finite (though the bound
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on it in [33] increases to infinity as ν goes to 0), so by Lemma 3.9.1,

A ≤ C1(ν) ‖γ‖1/2L∞(Γ) . (3.9.5)

Because ∇ũν is in L∞([0, T ];C(Ω)),∫ t

0

∫
Ω
|w|2 |∇ũν | ≤ C2(ν)

∫ t

0
‖w(s)‖2L2(Ω) ds,

where C2(ν) = ‖∇ũν‖L∞([0,T ]×Ω), and Equation (3.9.4) becomes

‖w(t)‖2L2(Ω) ≤ C1(ν) ‖γ‖1/2L∞(Γ) + C2(ν)
∫ t

0
‖w(s)‖2L2(Ω) ds.

By Gronwall’s Lemma,

‖w(t)‖2L2(Ω) ≤ C1(ν) ‖γ‖1/2L∞(Γ) e
C2(ν)t,

and the convergence in L∞([0, T ];L2(Ω)) follows immediately. Convergence, then,
in L2([0, T ];L2(Γ)) follows directly from Lemma 3.9.1, since ũν = 0 on Γ.

We cannot prove convergence in L∞([0, T ];L2(Γ)) as we did in Theorem 3.8.3,
because we do not have a bound on the vorticity of uν,γ that is uniform over suf-
ficiently small values of ‖γ‖L∞(Γ). But if we did have such a bound, we could also
establish convergence in L∞([0, T ];L2(Ω) ∩ L2(Γ)) when u0 in V ∩H2(Ω) has Yu-
dovich initial vorticity by combining the approaches in the proofs of Theorem 3.8.3
and Theorem 3.9.2.

Appendices

3A Compatible Sequences

For p in (1,∞), define the spaces

Xp
0 = H0 ∩H1,p(Ω) and Xp = H ∩H1,p(Ω) = Xp

0 ⊕Hc, (3A.1)

each with the H1,p(Ω)-norm.

Lemma 3A.1. Let p be in (1,∞]. For p < 2 let p̂ = p/(2−p), for p > 2 let p̂ =∞,
and for p = 2 let p̂ be any value in [2,∞]. Then for any v in Xp

0 ,

‖v‖Lbp(Γ) ≤ C(p) ‖ω(v)‖Lp(Ω) .
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Proof. For p < 2 and any v in Xp
0 , we have

‖v‖Lbp(Γ) ≤ C(p) ‖v‖1−λLp(Ω) ‖∇v‖
λ
Lp(Ω) ≤ C(p) ‖∇v‖Lp(Ω)

≤ C(p) ‖ω(v)‖Lp(Ω) ,

where λ = 2(p̂−p)/(p(p̂−1)) = 1 if p < 2 and λ = 2/p if p ≥ 2. The first inequality
follows from Theorem 3.1 p. 42 of [11], the second follows from Lemma 3.2.2, and
the third from Lemma 3.3.1.

Given a vorticity ω in Lp(Ω) with p in (1,∞), the Biot-Savart law gives a
vector field v in H whose vorticity is ω. (That v is in L2(Ω) follows as in the proof of
Lemma 3A.1, Ω being bounded.) Let v = v0 + vc, where v0 is in H0 and vc is in Hc.
Then ω(v0) = ω as well, so we can define a function KΩ: Lp(Ω) → H0 by ω 7→ v0

having the property that ω(KΩ(ω)) = ω. By Lemma 3.2.2 and Lemma 3.3.1, v0 is
also in H1,p(Ω), so in fact, KΩ: Lp(Ω) → Xp

0 and is the inverse of the function ω.
It is continuous by the same two lemmas.

Theorem 3A.2. Assume that Γ is C2 and α is in L∞(Γ). Let v be in Xp for some
p in (1,∞) and have vorticity ω. Then there exists a sequence {vi} of compatible
vector fields (Definition 3.7.1) whose vorticities converge strongly to ω in Lp(Ω).
The vector fields {vi} converge strongly to v in Xp and, if p ≥ 2, also in V .

Proof. We adapt the proof of Lemma 3.2 of [27]. Suppose that v = v0 + vc with
v0 ∈ Xp

0 and vc in Hc. Define β as in Equation (4) of [27], but let v = KΩ[β] + vc
and start the iteration with ω1 = ω. Then the fixed point argument goes through
unchanged because v1−v2 is in Xp

0 and we can apply Lemma 3A.1. The only further
change is the estimate on ‖Gn‖Lbp(Γ), which becomes

‖Gn‖Lbp(Γ) ≤ ‖2κ− α‖L∞ ‖KΩ[ωn] + vc‖Lbp(Γ)

≤ Cp(‖ω‖Lp(Ω) + ‖vc‖Lbp(Γ)) +
1
2
‖Gn‖Lbp(Γ) ,

for n sufficiently large, which is still sufficient to imply the required bound that
insures convergence of ωn to ω in Lp(Ω).

Letting vn = KΩ[ωn] + vc, we have

‖∇v −∇vn‖Lp(Ω) = ‖∇v0 +∇vc − (∇KΩ[ωn] +∇vc)‖Lp(Ω)

= ‖∇(v0 −KΩ[ωn])‖Lp(Ω)

≤ Cp ‖ω(v0 −KΩ[ωn])‖Lp(Ω) = Cp ‖ω − ωn‖Lp(Ω) ,

where we used Lemma 3.3.1. Then by Lemma 3.2.2, vn converges strongly to v in
Xp as well. Convergence in V for p ≥ 2 follows since Ω is bounded.
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We only require Theorem 3A.2 for p ≥ 2. We include all the cases, however,
for the same reason as in [27]: in the hope that if the vorticity bound in Lemma 4.1
of [27] can be extended to p in (1, 2), then the convergence in Proposition 5.2 of [27]
can also be extended (for non-simply connected Ω).

Corollary 3A.3. Assume that Γ is C2, and α is in L∞(Γ). Then there exists a
basis for V lying in W that is also a basis for H.

Proof. The space V = (V ∩ H0) ⊕ Hc is separable because V ∩ H0 is the image
under the continuous function KΩ of the separable space L2(Ω) and Hc is finite-
dimensional. Let {vi}∞i=1 be a dense subset of V . Applying Theorem 3A.2 to each
vi and unioning all the sequences, we obtain a countable subset {ui}∞i=1 of W that
is dense in V . Selecting a maximal independent set gives us a basis for V and for
H as well, since V is dense in H.
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Chapter 4

Vanishing viscosity for radially
symmetric initial vorticity in R2

4.1 Introduction

In this chapter we investigate the vanishing viscosity limit for radially symmetric
initial vorticity. We will obtain a bound on the convergence rate of order (νt)α, where
α in (0, 1] reflects an appropriate measure of smoothness of the initial vorticity. We
will then show that this same convergence rate holds for a finite superposition of
such radial vorticities (eddies), as long as each eddy is compactly supported with
total vorticity zero, and is a finite distance from the other eddies.

Because we will be dealing with the Navier-Stokes equations, the Euler equa-
tions, as well as the heat equations in this chapter, we will depart from the notation
used in the other chapters. We will use vN , vE , and vH for solutions to the Navier-
Stokes, Euler, and heat equations, respectively:

(NS)


∂tv

N + vN · ∇vN − ν∆vN = −∇pN
div vN = 0
vN |t=0 = v0,

(E)


∂tv

E + vE · ∇vE = −∇pE
div vE = 0
vE |t=0 = v0,

(H)
{
∂tv

H − ν∆vH = 0
vH |t=0 = v0.
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We let ωN = ω(vN ), ωE = ω(vE), and ωH = ω(vH) be the corresponding vorticities.
We will view the velocities vN and vE as being the solutions to (NS) and (E),
ignoring the pressures pN and pE , which will make no direct appearance in this
chapter.

The solution to (H) is given by vH = pνt ∗ v0 or, in vorticity form, by
ωH = pνt ∗ ω0, where pλ is the heat kernel,

pλ(x) =
1

4πλ
e−|x|

2/4λ. (4.1.1)

Throughout this chapter we assume that the initial velocity lies in Em for
some m. As we observed in Chapter 2 (shortly after the statement of Theorem 2.1.5),
this by itself is enough to insure that there exists a unique solution to (NS). More is
required to ensure the uniqueness of a solution to (E) (this was, in part, the topic of
Chapter 2); however, for radially symmetric initial vorticity, existence of a solution
to (E) is assured, since vE(t) = v0 is a stationary solution.

4.2 Bounds on convergence rate for circular symmetry

We start first with a simple, but important, case.

Theorem 4.2.1. Assume that ω0 is radially symmetric and that v0 is in Em with
ω0 in L2. Let vN be the unique solution to (NS). Then vN is also the solution to
the homogeneous heat equation, and

‖vN (t)− vE‖L2 = ‖vH(t)− vE‖L2 ≤ C‖ω0‖L2

√
νt. (4.2.1)

Proof. The velocity field, vE(t) = v0 is the steady state solution to (E) (for the same
reason that σ of Appendix 2A is a steady state solution). Also, ωN = ωH = pνt∗ω0 is
the solution to the homogeneous heat equation, as can be seen by using the vorticity
formulation of (NS) and observing that vN · ∇ωN ≡ 0.

Then vN = K ∗ωN , where K is the Biot-Savart kernel, so vN = K ∗pνt∗ω0 =
pνt ∗K ∗ ω0 = pνt ∗ v0.
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Then,

∂t‖vN − vE‖2L2 =
∫
∂t(vN − vE) · (vN − vE)

=
∫
∂tv

N · (vN − vE) = ν

∫
∆vN · (vN − vE)

= −ν
∫
∇vN · (∇vN −∇vE) ≤ ν

∫
∇vN · ∇vE

≤ ν
∥∥∇vN∥∥

L2

∥∥∇vE∥∥
L2 = ν ‖pνt ∗ ∇v0‖L2 ‖∇v0‖L2

≤ ν ‖pνt‖L1 ‖∇v0‖L2 ‖∇v0‖L2 = ν ‖∇v0‖2L2 ≤ Cν ‖ω0‖2 .

(4.2.2)

We justify the first equality as in the proof of Theorem 2.3.1: ∂t(vN −vE) = ∂tv
N =

ν∆vN is in L∞(R+;H−1) and vN is in L∞(R+;H1), so we can apply Lemma 1.2
p. 176 of [33]. Also, the use of the divergence theorem is valid because vN (t) and
vE(t) are in H1.

Integrating Equation (4.2.2) over time gives Equation (4.2.1).

Theorem 4.2.2 is a natural generalization of Theorem 4.2.1.

Theorem 4.2.2. Assume that v0 is in Em and that ω0 is in Ḣη for η in (−1, 1].
Then for all νt ≥ 0, ∥∥vN − vE∥∥

L2 ≤
√

2 ‖ω0‖Ḣη (νt)(1+η)/2. (4.2.3)

Proof. We have,∥∥vN − vE∥∥2

L2 =
∥∥F(vN − vE)

∥∥2

L2 = ‖F(pνt ∗ v0)−F(v0)‖2L2

=
∥∥∥(1− e−νt|ξ|

2

)v̂0(ξ)
∥∥∥2

L2
=
∫

R2

(1− e−νt|ξ|
2

)2 |v̂0(ξ)|2 dξ

≤
∫

R2

∣∣∣(1− e−νt|ξ|2)(1+η)/2v̂0(ξ)
∣∣∣2 dξ

≤
∫

R2

∣∣∣(νt |ξ|2)(1+η)/2v̂0(ξ)
∣∣∣2 dξ = (νt)1+η

∫
R2

∣∣∣|ξ|1+η v̂0(ξ)
∣∣∣2 dξ

≤ (νt)1+η
∥∥∥|ξ|1+η v̂0(ξ)

∥∥∥2

L2
≤ 2(νt)1+η ‖rηω̂0‖2L2

= 2(νt)1+η ‖ω0‖2Ḣη ,

where we used Lemma 4.2.3. From this, Equation (4.2.3) follows.
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Lemma 4.2.3. If ω̂ is a regular tempered distribution, then
√

2
2
r|v̂| ≤ |ω̂| ≤ r|v̂| (4.2.4)

almost everywhere. (This inequality does not require that ω be radially symmetric.)

Proof. As a distribution,

0 = F(div v) = F(∂1v
1 + ∂2v

2) = i(ξ1v̂1 + ξ2v̂2),

so ξ1v̂1 = −ξ2v̂2. Then,

ω̂ = F(∂1v
2 − ∂2v

1) = i(ξ1v̂2 − ξ2v̂1) = i

(
ξ1v̂2 − ξ2ξ1v̂1

ξ1

)

= i

(
ξ1v̂2 +

ξ2ξ2v̂2

ξ1

)
= i

r2

ξ1
v̂2.

Similarly,

ω̂ = i(
ξ1ξ2v̂2

ξ2
− ξ2v̂1) = −i

(
ξ1ξ1v̂1

ξ2
+ ξ2v̂1

)
= −ir

2

ξ2
v̂1.

Thus, |ω̂| ≥ r|v̂j | almost everywhere for j = 1, 2, and

|ω̂| =
√

2
2

√
|ω̂|2 + |ω̂|2 ≥

√
2

2

√
r2(v̂1)2 + r2(v̂2)2 ≥

√
2

2
r|v̂|

almost everywhere. Also, though,

|ω̂| =
∣∣ξ1v̂

2 − ξ2v̂
1
∣∣ ≤ |ξ · v̂| ≤ r |v̂|

almost everywhere, and we conclude that Equation (4.2.4) holds.

The condition in Theorem 4.2.2 that Ḣη be in ω0 is equivalent to requiring
that |D|1+η v0 be in L2. It is natural to ask whether it is possible to weaken this
assumption to |D|1+η v0 being in weak-L2 or, perhaps, r1+ηv̂0(r) being in weak-L2,
which is not quite the same thing. This is probably not possible, because we would
need to simultaneously control the size of (1− e−νtr2) and the size of v̂0, and weak-
L2 is a rearrangement-invariant space. But we can make an assumption that is
stronger than r1+ηv̂0(r) being in weak-L2, though it does not imply that r1+ηv̂0(r)
is in L2 (nor is it implied by it), and still obtain the same convergence rate as in
Theorem 4.2.2—though not for η = 1, and with a constant that is, in general, worse
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than that of Theorem 4.2.2 (and that becomes infinite in the limit as η → 1). This
result is contained in Theorem 4.2.4, the proof of which is motivated by the proof
in [1] that C(νt)3/4 is a lower bound for the convergence rate for a vortex patch.

Theorem 4.2.4. Assume that v0 is in Em and that r2+ηv̂0 is in L∞ for some η in
(−1, 1). Then for all νt ≥ 0,

∥∥vN − vE∥∥
L2 ≤

√
2π

1− η2
‖r2+ηv̂0‖L∞(νt)(1+η)/2. (4.2.5)

Proof. Let

γ =
(
A

νt

)x
,

where we will choose the values of A and x later. Then as in the proof of Theo-
rem 4.2.2,∥∥vN − vE∥∥2

L2 =
∫

R2

(1− e−νt|ξ|
2

)2 |v̂0(ξ)|2 dξ

= 2π
∫ ∞

0
(1− e−νtr2)2 |v̂0(r)|2 r dr

≤ 2π(νt)2

∫ γ

0
r4 |v̂0(r)|2 r dr + 2π

∫ ∞
γ
|v̂0(r)|2 r dr

≤ 2π(νt)2‖r2+ηv̂0‖2L∞
∫ γ

0
r5−2(2+η) dr + 2π‖r2+ηv̂0‖2L∞

∫ ∞
γ

1
r3+2η

dr

= C(νt)2 γ
2(1−η)

2(1− η)
+ C

(1/γ)2(1+η)

2(1 + η)

= C
[
(νt)2−2x(1−η)A2x(1−η) + (νt)2x(1+η)A−2x(1+η)

]
,

where C = 2π‖r2+ηv̂0‖2L∞ .
To obtain the best convergence rate, we must maximize the minimum of

2 − 2x(1 − η) and 2x(1 + η), which is the same as setting them equal. This gives
x = 1/2, independently of the value of η, so

∥∥vN − vE∥∥2

L2 ≤
C

2
(νt)1+η

[
A1−η

1− η
+
A−1−η

1 + η

]
,
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which is minimized when A = 1, independently of the value of η, giving

∥∥vN − vE∥∥2

L2 ≤
C

2
(νt)1+η

[
1

1− η
+

1
1 + η

]
= C(νt)1+η 1

1− η2
,

and Equation (4.2.5) follows.

In [1] it is proved that the convergence rate for a circular vortex patch is of
order (νt)3/4. For a circular vortex patch of radius 1, we can explicitly calculate,

ω̂0(ξ) =
2π
|ξ|
J1(|ξ|), v̂0(ξ) = − iξ

⊥

|ξ|3
J1(|ξ|),

where J1 is the Bessel function of the first kind of order 1 and ξ⊥ = (−ξ2, ξ1).
Because J1 is bounded, has a zero of order 1 at the origin, and J1(r) ≈ sin r/

√
r as

r →∞, it follows that v̂0 has a singularity of order 1/r at the origin and decays like
1/r5/2 at infinity. Such a vortex patch thus does not quite meet the requirements of
Theorem 4.2.2 with η = 1/2, but does meet the requirements of Theorem 4.2.4 with
η = 1/2. As we will see in Section 4.3, its vorticity is also in the Besov space Bη

2,∞,
but this by itself is insufficient to obtain the convergence rate of Theorem 4.2.2.

This example also shows that it is possible for v̂0 to have a singularity at
the origin and still satisfy the conditions of Theorem 4.2.4. The integral around the
origin in the proof of Theorem 4.2.4, however, is not controlling the contribution of
this singularity to

∥∥vN − vE∥∥2

L2 , but is controlling the contribution due to the rate
of decay of v̂0 at infinity, as, too, is the second integral. Therefore, we should not
expect to be able to improve this result by treating the nature of any singularity of
v̂0 at the origin differently from the decay of v̂0 at infinity. (Also, as we mentioned
earlier, it is shown in [1] that the convergence rate of (νt)3/4 for a vortex patch is
optimal.)

4.3 Besov spaces

We define inhomogeneous Besov spaces as in [1]:

Definition 4.3.1. For u in S ′, let

Iqu = F−1(ψqFu) for q = 0, 1, 2, . . . ,

where

ψ0 = 1{|ξ|≤1}, ψq = 1{2q−1≤|ξ|≤2q} for q = 1, 2, . . . .
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Then the inhomogeneous Besov space Bs
2,∞ is the set of all u in S ′ such that

‖u‖Bs2,∞ := sup
q≥0

2qs ‖Iqu‖L2 <∞.

We will also use paradifferential operators ∆q, q = −1, 0, 1, 2, . . . , defining
them as Chemin does in [6]. These operators are defined similarly to Iq of Defini-
tion 4.3.1, though in place of ψq, Chemin uses a C∞-function supported on a ball
for q = −1 and supported on an annulus of inner and outer radius proportional to
2q for q ≥ 0. The ball and the annuli cover all of R2 and no more than 3 of them
intersect at any point. (We make the change in indexing between Iq and ∆q to be
consistent with [6] and [1].)

The operators ∆q and Iq can be used interchangeably for defining L2-based
Besov spaces. Also, Hs = Bs

2,2 for all real s.
It will also be convenient to define the following spaces as in [1]:

Definition 4.3.2. For α in R and ρ in [1,∞), define the norms,

‖u‖eLρt (Bα2,∞)
= sup

q
2qα

(∫ t

0
‖∆qu(τ)‖ρ

L2 dτ

)1/ρ

and

‖u‖eLρt (Hα)
=

(∑
q

22qα

(∫ t

0
‖∆qu(τ)‖ρ

L2 dτ

)2/ρ
)1/2

,

and the associated subspaces, L̃ρt (B
α
2,∞) and L̃ρt (H

α) of S ′. We also make the similar
definitions for ρ =∞.

We observe, as in [1], that

‖∇u‖eLρt (Bα−1
2,∞ )

≤ C ‖u‖eLρt (Bα2,∞)
and ‖∇u‖eLρt (Hα−1)

≤ C ‖u‖eLρt (Hα)
, (4.3.1)

that

‖u‖eLρt (Hα)
≤ C ‖u‖θeLρt (B

α1
2,∞)
‖u‖1−θeLρt (B

α2
2,∞)

, (4.3.2)

where θ is in (0, 1), α = θα1 + θα2, and C depends only on θ, and, finally, that

‖∇u‖eL1
T (H1)

≤ C ‖ω‖eL1
T (H1)

. (4.3.3)

Lemma 4.3.3 relates our condition that r2+ηv̂0 be in L∞ to membership in
Bη

2,∞.
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Lemma 4.3.3. Assume that v is in Em and that r2+ηv̂(r) is in L∞ for some η in
(−∞, 0) ∪ (0,∞). Then ω = ω(v) is in Bη

2,∞, and

‖ω‖Bη2,∞ ≤

{ √
2π
|η|
∥∥r1+ηω̂

∥∥
L∞

, if η < 0,
√

2π
η (22η − 1)1/2

∥∥r1+ηω̂
∥∥
L∞

+ ‖ω0‖L2 , if η > 0.

(We are not requiring that ω be radially symmetric.)

Proof. For q ≥ 1,

‖Iqω‖L2 =
∥∥F−1(1{2q−1≤|ξ|≤2q}Fω)

∥∥
L2

=
∥∥1{2q−1≤|ξ|≤2q}Fω

∥∥
L2 =

(∫
B2q\B2q−1

|ω̂|2 dξ

)1/2

=

(∫
B2q\B2q−1

∣∣∣|ξ|1+η ω̂
∣∣∣2 |ξ|−2(1+η) dξ

)1/2

≤
∥∥r1+ηω̂

∥∥
L∞

(
2π
∫ 2q

2q−1

r−2(1+η)r dr

)1/2

=
C

−η

([
r−2η

]2q
2q−1

)1/2
=
C

η

(
2−2(q−1)η − 2−2qη

)1/2

=
C

|η|
(
2−2qη

∣∣1− 22η
∣∣)1/2 =

C

|η|
∣∣1− 22η

∣∣1/2 2−qη,

where C =
√

2π
∥∥r1+ηω̂

∥∥
L∞

. We used Lemma 4.2.3 to conclude that r1+ηω̂ is in
L∞.

If η < 0, then the above argument also works for q = −1, since
[
r−2η

]1
0

= 1.
It follows that for all q ≥ 0,

‖Iqω‖L2 ≤
C

|η|
2−qη,

so

‖ω‖Bη2,∞ = sup
q≥0

2qη ‖Iqω‖L2 ≤
C

|η|
sup
q≥0

2qη2−qη =
C

|η|

is finite, and we obtain the stated bound on ‖ω‖Bη2,∞ .
Assume that η > 0, and let v = σ + u where σ is a stationary vector field

and u is in L2, as in Appendix 2A. Then û is in L2 so rû is in L2(B1(0)). Also,
r2+ηv̂ = r2+ησ̂ + r2+ηû in L∞ implies that r1+η(rû) is in L∞ (since σ̂ is smooth
and compactly supported), so rû is in L2(R2 \ B1(0)), 1 + η being greater than 1;
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therefore, rû is in L2. But |ω̂(u)| ≤ r |û| by Lemma 4.2.3, so ω(u) and hence ω(v)
are in L2. But then ‖I0ω‖L2 ≤ ‖ω‖L2 , and again ‖ω‖Bη2,∞ is finite and has the stated
bound.

4.4 Convergence in Besov spaces

Theorem 4.4.1 follows from Theorem 1.1 of [1]; this theorem does not contain the
assumption that the initial vorticity is radially symmetric.

Theorem 4.4.1. Let ω0 be in L2 ∩ L∞ ∩ Bη
2,∞ with η in [0, 1), and assume that

∇vE and ∇vN are in L∞loc(R+;L∞). Then for all νt ≤ 1,∥∥(vN − vE)(t)
∥∥
L2 ≤ C(t)(‖ω0‖Bη2,∞ + ‖ω0‖L2)(νt)(1+η)/2.

More than this is established in Theorem 1.1 of [1], but the facts in Theo-
rem 4.4.1 are all that concern us in relation to radially symmetric vorticities. As
Abidi and Danchin observe in [1], a vortex patch with a C1-boundary belongs to
B

1/2
2,∞ and that for a vortex patch with a C1+ε-boundary, ε > 0, ∇vN and ∇vE are

both in L∞loc(R+;L∞). Thus, a vortex patch with a C1+ε-boundary has a bound on
the convergence rate given by Theorem 4.4.1 of order (νt)3/4. This result applies,
in particular, for a circular vortex patch.

We observed toward the end of Section 4.2 that for a circular vortex patch,
ω0 is bounded and decays like 1/r5/2 at infinity. It follows from Lemma 4.3.3 that
the vorticity for a circular vortex patch lies in B

1/2
2,∞ (since η = 1/2) and hence by

Theorem 4.4.1 that the convergence rate in the vanishing viscosity limit is order
(νt)3/4, as we concluded more directly in Section 4.2.

Because Bη
2,∞ ⊆ Hη−ε for all ε > 0, we can obtain the same bound on the

convergence rate as in Theorem 4.2.2 for initial vorticity in Bη
2,∞, but with a loss

of ε in the exponent. As it turns out, though, we can obtain the convergence rate
without any loss in the exponent by specializing the proof of Theorem 1.1 of [1] to
radially symmetric initial vorticity: the result is Theorem 4.4.2.

Theorem 4.4.2. Assume that v0 is in Em and that ω0 is in Bη
2,∞ for η in (−1, 1).

Then for all νt ≥ 0,∥∥vN − vE∥∥
L2 ≤ C

(
‖ω0‖Bη2,∞ + νt ‖∆−1ω0‖L2

)
(νt)(1+η)/2. (4.4.1)

Remark: When η is in [0, 1), it follows from Equation (4.4.1) that∥∥vN − vE∥∥
L2 ≤ C

(
‖ω0‖Bη2,∞ + νt ‖ω0‖L2

)
(νt)(1+η)/2.
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To prove Theorem 4.4.2 we must first establish two lemmas.

Lemma 4.4.3. Let v0 be as in Theorem 4.4.2. Then there exists a constant κ such
that for all t ≥ 0,

∥∥ωN (t)
∥∥
Bη2,∞

+ κν
∥∥ωN∥∥eL1

t (B
2+η
2,∞)
≤ ‖ω0‖Bη2,∞ + κν

∫ t

0

∥∥∆−1ω
N (τ)

∥∥
L2 dτ.

Proof. Because ωN = pνt ∗ ω0 and pνt is Schwartz-class in time and space for all
t > 0, ∆qω

N is C∞ in time and space. Thus we can write,

∂tω
N = ν∆ωN =⇒ ∂t∆qω

N = ν∆∆qω
N

=⇒ ∂t∆qω
N ·∆qω

N = ν∆∆qω
N ·∆qω

N

=⇒ 1
2
d

dt

∥∥∆qω
N
∥∥2

L2 + ν
∥∥∇∆qω

N
∥∥2

L2 = 0, (4.4.2)

where we used the divergence theorem in the last step.
But by Bernstein’s inequality, there exists a constant κ > 0 such that∥∥∇∆qω

N
∥∥2

L2 ≥ κ22q
∥∥∆qω

N
∥∥2

L2

for all q ≥ 0. Thus, for all q ≥ −1,∥∥∆qω
N
∥∥
L2

d

dt

∥∥∆qω
N
∥∥
L2 + κν22q

∥∥∆qω
N
∥∥2

L2 ≤ κνδ−1,q22q
∥∥∆qω

N
∥∥2

L2 .

If ‖∆qω
N‖L2 is nonzero, we can divide both sides of the above inequality by

‖∆qω
N‖L2 and multiply by 22ηq to obtain

d

dt
22ηq

∥∥∆qω
N
∥∥
L2 + κν2(η+2)q

∥∥∆qω
N
∥∥
L2

≤ κνδ−1,q2(η+2)q
∥∥∆qω

N
∥∥
L2 .

(4.4.3)

Integrating Equation (4.4.3) over time then taking the supremum of both sides
completes the proof.

Now suppose that ‖∆qω
N‖L2 is zero at least at one point in (0,∞). By our

initial observation that ∆qω
N is C∞ in time and space, f(t) := ‖∆qω

N (t)‖2L2 is
infinitely differentiable for all t > 0. It is also, of course, nonnegative, and it follows
from Equation (4.4.2) that f ′(t) < 0 except, possibly, when f(t) = 0.

Now suppose that f(t0) = 0. Then we must have f(t) = 0 for all t ≥ t0,
else f ′(t) would by necessity be positive for some t > t0 by the mean value theorem.
Thus, f is positive except possibly in an interval [a,∞) for some a ≥ 0. On the
interval [0, a), Equation (4.4.3) holds by our argument above since we avoid division
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by zero. But on the interval [a,∞), both f(t) and f ′(t) are identically zero and
Equation (4.4.3) holds trivially, except possible at t = a.

(Actually, more can be said. In fact, it follows from Equation (4.4.2) that
‖∆qω

N‖L2 is either positive for all time, or is identically zero.)

Lemma 4.4.4. Let v0 be as in Theorem 4.4.2. Then∥∥vN (t)− vE(t)
∥∥
L2 ≤ Cν

∥∥∆vN
∥∥eL1

t (H
0)
. (4.4.4)

Proof. Let w = vN−vE . Subtracting (E) from (NS), applying ∆q, taking the inner
product with ∆qw, and integrating over R2 gives∫

R2

∂t∆qw ·∆qw +
∫

R2

∇(∆q(pN − pE)) ·∆qw = ν

∫
R2

∆∆qv
N ·∆qw,

where there are no nonlinear terms since the solutions are radially symmetric. We
can treat the first integral exactly as in the proof of Theorem 4.2.1, and the second
integral on the left-hand side is zero because div ∆qw = ∆q divw = 0, so

‖∆qw‖L2

d

dt
‖∆qw‖L2 =

1
2
d

dt
‖∆qw‖2L2 ≤ ν ‖∆qw‖L2

∥∥∆∆qv
N
∥∥
L2

=⇒ d

dt
‖∆qw‖L2 ≤ ν

∥∥∆∆qv
N
∥∥
L2

=⇒ ‖∆qw(t)‖L2 ≤ ν
∫ t

0

∥∥∆∆qv
N (τ)

∥∥
L2 dτ.

Now, for any L2-function u, u 7→
(∑

q ‖∆qu‖2L2

)1/2
gives a norm that is

equivalent to the L2-norm (see, for instance, Section 2.2 of [6]). Thus, squaring our
last inequality and summing over q, we have

‖w(t)‖2L2 ≤ Cν2
∑
q

(∫ t

0

∥∥∆∆qv
N (τ)

∥∥
L2 dτ

)2

= Cν2
∥∥∆vN

∥∥2eL1
t (H

0)
.

Proof of Theorem 4.4.2: Using Equation (4.3.1), Equation (4.3.2) with θ =
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(1 + η)/2, α1 = η, and α2 = 2 + η (so that α = 1), and Equation (4.3.3), we have∥∥∆vN
∥∥eL1

t (H
0)
≤ C

∥∥∇vN∥∥eL1
t (H

1)
≤ C

∥∥ωN∥∥eL1
t (H

1)

≤ C
∥∥ωN∥∥(1+η)/2eL1

t (B
η
2,∞)

∥∥ωN∥∥(1−η)/2eL1
t (B

2+η
2,∞)

≤ Ct(1+η)/2
∥∥ωN∥∥(1+η)/2eL∞t (Bη2,∞)

∥∥ωN∥∥(1−η)/2eL1
t (B

2+η
2,∞)

,

where we used Hölder’s inequality in the last step.
We now apply Lemma 4.4.5 with θ = (1 + η)/2, a =

∥∥ωN∥∥eL∞t (Bη2,∞)
, b =∥∥ωN∥∥eL1

t (B
2+η
2,∞)

, and δ = κν to conclude that

κν
∥∥∆vN

∥∥eL1
t (H

0)
≤ C(κνt)(1+η)/2

(∥∥ωN∥∥eL∞t (Bη2,∞)
+ C ′κν

∥∥ωN∥∥eL1
t (B

2+η
2,∞)

)
≤ C(κνt)(1+η)/2

(∥∥ωN∥∥eL∞t (Bη2,∞)
+ κν

∥∥ωN∥∥eL1
t (B

2+η
2,∞)

)
.

From Lemma 4.4.3 and Lemma 4.4.4 it then follows that∥∥vN (t)− vE(t)
∥∥
L2 ≤ Cν

∥∥∆vN
∥∥eL1

t (H
0)

≤ C(κνt)(1+η)/2
(∥∥ωN∥∥eL∞t (Bη2,∞)

+ κν
∥∥ωN∥∥eL1

t (B
2+η
2,∞)

)
≤ C(κνt)(1+η)/2

(
‖ω0‖Bη2,∞ + κν

∫ t

0

∥∥∆−1ω
N (τ)

∥∥
L2 dτ

)
≤ C(κνt)(1+η)/2

(
‖ω0‖Bη2,∞ + νt ‖∆−1ω0‖L2

)
.

�

Remark: The proof of Theorem 4.4.2 fails for η = 1 because the interpolation
inequality, Equation (4.3.2), cannot be applied.

Lemma 4.4.5. Let θ be in (0, 1) and a, b, and δ be positive real numbers. Then

δaθb1−θ ≤ δθa+ Cδ1+θb = δθ(a+ Cδb),

where C = 1− θ.

Proof. We apply Young’s inequality in the form

xy ≤ xp

p
+
yq

q
,

for 1/p + 1/q = 1, with p = 1/θ, q = 1/(1 − θ), x = δθ
2
aθ/θθ, y = δ1−θ2b1−θ/θθ,
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giving

δaθb1−θ = xy ≤ θx1/θ + (1− θ)y1/(1−θ) = θ
δθa

θ
+ (1− θ) δ1+θb

θθ/(1−θ)
.

4.5 A superposition of confined eddies

We now consider superposition of a finite number of eddies, an eddy being circularly
symmetric vorticity whose total integral is zero.

Define the extent of an eddy to be the smallest closed annulus or disk that
contains the support of the eddy. For instance, if an eddy is supported on two
concentric annuli, then the extent is the union of the two annuli. If the vorticity on
each annulus integrates to zero, then we could alternately consider the eddy to be
two distinct eddies.

We assume that the extent of each eddy is separated by a finite distance from
the extent of each of the other eddies. We also assume that each eddy has compact
support. (In the special case of one eddy, the assumption of compact support and
of zero total vorticity can be dropped.)

There is not a unique way to decompose a superposition of radially symmetric
vorticities into eddies, but this will have no effect on our analysis.

We let v0,j and ω0,j = ω(v0,j) be the initial velocity and vorticity, respectively,
of the j-th eddy, and we let v0 and ω0 = ω(v0) be the total initial velocity and
vorticity, respectively.

The most striking feature of such a superposition of eddies is that it is a
stationary solution to the Euler equations. This is because each eddy is a stationary
solution (for the same reason that σ of Appendix 2A is a stationary solution), and
because by Equation (2A.2) and the remark that follows it, each eddy makes no
contribution to the velocity field outside its extent, its total vorticity being zero, or
inside its extent (assuming there is an inside—that is, its extent does not include a
disk).

It is not sufficient to assume that the supports of each eddy are separated by a
finite distance rather than the extents being so separated. For example, consider the
superposition of two eddies, with one eddy supported on concentric annuli, the inner
one of which has positive constant vorticity and the outer one of which has negative
constant vorticity, and with the other eddy lying entirely between the annuli of the
first eddy at a positive distance from each annuli. The supports of the two eddies
are separated by a positive distance, but the extents are not. This is not a steady
state solution to the Euler equations, since the velocity at points in the second eddy
will experience a nonzero contribution from the inner annulus of the first eddy, but
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no contribution from the outer eddy.
In [28], the strong convergence in L2 of the Navier-Stokes solutions for the

superposition of eddies to the steady state Euler solution is established for a specific
subclass of vorticities that are bounded measures in the plane. We combine the
bounds on convergence rates we obtained for radially symmetric initial vorticity in
the previous sections with an estimate from [28] for the interaction of the eddies to
obtain Theorem 4.5.1.

Theorem 4.5.1. Let ω0 be a superposition of confined eddies, as described above,
and assume that v0 and ω0 satisfy the conditions of Theorem 4.2.1, Theorem 4.2.2,
Theorem 4.2.2, or Theorem 4.4.2. Then for any δ > 0 there exists a T > 0 such that
the same bound on the convergence rate of ‖vN − vE‖L2 in each of these theorems
applies over the time range [0, T ], but with the constants in the convergence rates of
these theorems increased by δ.

Proof. The existence and uniqueness of the solution to (NS) is a classical result (see,
for instance, Theorems 3.1 and 3.2 of Chapter 3 of [33]). Because

∫
ω0,j = 0, v0,j

vanishes outside the extent of the j-th eddy (this is essentially (4) of Theorem 2A.3).
Then, since each ω0,j is a steady state solution to the Euler equations, it follows
that vE(t) = v0 is a steady state solution to the Euler equations.

Since the heat equation is linear, vH =
∑

i v
H
i , where vHi is the solution of

the heat equation for the i-th eddy by itself. Thus,

‖vH − vE‖L2 = ‖
∑
i

vHi −
∑
i

v0,i‖L2 = ‖
∑
i

(vHi − v0,i)‖L2

≤
∑
i

‖vHi − v0,i‖L2 .

But each of the bounds in Theorem 4.2.1, Theorem 4.2.2, Theorem 4.2.2, and The-
orem 4.4.2 is sublinear in ω0 and v0. For instance, it follows for Theorem 4.2.1
that

‖vH − vE‖L2 ≤
∑
i

C‖ω0,i‖L2

√
νt = C‖ω0‖L2

√
νt,

the last equality holding because the supports of the ω0,i are disjoint. We conclude
that each of Theorem 4.2.1, Theorem 4.2.2, Theorem 4.2.2, and Theorem 4.4.2
continue to hold without change for the superposition of eddies, if we use vH in
place of vN .

In Theorem 4.5.2, we establish the rate at which ‖vN − vH‖L2 converges to
0 by using a technique that appears in [28]. The convergence rate to 0 that we
obtain depends upon whether we are assuming the initial data of Theorem 4.2.1,
Theorem 4.2.2, Theorem 4.2.2, or Theorem 4.4.2, but in all cases is faster, over some
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finite range [0, T], than that of ‖vH − vE‖L2 to 0, and the theorem follows from the
observation that

‖vN − vE‖L2 ≤ ‖vH − vE‖L2 + ‖vN − vH‖L2 .

Theorem 4.5.2. For a superposition of confined eddies as we described above, as-
sume that v0 and ω0 satisfy the conditions of Theorem 4.2.1, Theorem 4.2.2, The-
orem 4.2.2, or Theorem 4.4.2. Then ‖vN − vH‖L2 → 0 exponentially fast over a
sufficiently small time interval. More explicitly, there exists an α < 1 such that for
any T > 0, we have, for all t in [0, T ],

∥∥vN − vH∥∥
L2 ≤

√
T
√
νt√

C2
exp

(
T

2
+
C ‖ω0‖Ḣ−α T
(νt)(1+α)/2

− C2

2νt

)
. (4.5.1)

Proof. Whether or not our initial data satisfies the conditions of Theorem 4.2.1,
Theorem 4.2.2, Theorem 4.2.2, or Theorem 4.4.2, in each case ω0 is in Ḣ−α for some
α < 1. Then,

‖pνs ∗ ω0,j‖L∞ = |〈pνs(x− ·), ω0,j(·)〉| ≤ ‖pνs‖Ḣα ‖ω0,j‖Ḣ−α
= C(νs)−(1+α)/2 ‖ω0,j‖Ḣ−α .

It is proven in [28] (see the equation following Equation (10) of [28]) that for
ω0 in P, if we let f(t) := ‖vN − vH‖2L2 , then

f(t) ≤
∫ t

0
(C(ν, s) + 1)f(s) ds+

∫ t

0
C1e

−C2/(νs) ds, (4.5.2)

where C(ν, s) = ‖pνs ∗ ω0‖L∞ . We have,

C(ν, s) ≤
N∑
j=1

‖pνs ∗ ω0,j‖L∞ ≤ C
N∑
j=1

(νs)−(1+α)/2 ‖ω0,j‖Ḣ−α

= C(νs)−(1+α)/2 ‖ω0‖Ḣ−α ,

the final equality holding because the supports of the eddies are disjoint. Then by
Gronwall’s lemma,

f(t) ≤
(∫ t

0
C1e

−C2/(νs) ds

)
exp

(∫ t

0
(C(ν, s) + 1) ds

)
.
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Integrating our expression for C(ν, s) and using (1 + α)/2 < 1 gives∫ t

0
(C(ν, s) + 1) ds = t+ C ‖ω0‖Ḣ−α

t

(νt)
1+α

2

.

Making the change of variables u = C2/(νs),∫ t

0
C1e

−C2/(νs) ds = −C2

ν

∫ C2/(νt)

∞

1
u2
e−u du =

C2

ν

∫ ∞
C2/(νt)

1
u2
e−u du

≤ C2

ν

(
νt

C2

)2 ∫ ∞
C2/(νt)

e−u du =
νt2

C2
e−C2/(νt).

Thus,

f(t) ≤ νt2

C2
exp

(
t+ C ‖ω0‖Ḣ−α

t

(νt)
1+α

2

− C2

νt

)
,

so

∥∥vN − vH∥∥
L2 ≤

√
νt√
C2

exp

(
t

2
+ C ‖ω0‖Ḣ−α

t

(νt)
1+α

2

− C2

2νt

)

=
√
t
√
νt√

C2
exp

(
t

2
+
C ‖ω0‖Ḣ−α t
(νt)(1+α)/2

− C2

2νt

)
.

From this, Equation (4.5.1) follows.
We see that the bound in Equation (4.5.1) decreases exponentially fast to 0

as νt → 0, because the term −C2/(2νt) dominates in the exponential for small νt,
(1 + α)/2 being less than 1.
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Chapter 5

Properties of the flow for
solutions to the Euler equations

in R2

5.1 Introduction

We return to the setting of deterministic solutions in the plane of Chapter 2 to
investigate the properties of the flow associated to the velocity field v that is a
solution to (E).

In [37], Yudovich establishes the uniqueness of solutions to (E) under the
assumptions on the initial vorticity that we described in Chapter 2. Yudovich is
working in a bounded domain in Rd, but the essence of his argument is unchanged
when applied to all of R2. Also, his uniqueness argument is the basis of the proof
of the existence of a solution (v, p) to (E) when working in R2.

Yudovich also proves in [37] that there exists a flow associated with the
velocity field v, though he does not explicitly state the regularity of the flow (though
the regularity would follow from his argument). This approach, in the special case
of bounded vorticity, is worked out in some detail by Chemin in Section 5.2 of [6].
It is also worked out in detail for bounded vorticity by Majda and Bertozzi in [29],
though there it is done in the context of establishing existence of a solution to (E)
(see Section 2.6). We modify the argument at it appears in [6] to prove the second
part of Theorem 5.1.1, below. For completeness, we include, in the terminology of
Chapter 2, a complete statement of the main result proved by Yudovich in [37] as
it applies to solutions in R2. In this form, it is a generalization of the statement of
Theorem 5.1.1 of [6] from bounded to unbounded vorticity.

Theorem 5.1.1 (Yudovich’s Theorem for Unbounded Vorticity). First part: Let
v0 in Em be a divergence-free vector field whose vorticity ω0 is bounded in Lp-norm
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by θ(p) for some admissible function θ (see Definition 2.1.2). Then there exists a
unique weak solution v of (E) (see Definition 2.1.4). Moreover, v is in C(R;Em)∩
L∞loc(R;L∞(R2)). Also,

‖ω(t)‖Lp = ‖ω0‖Lp for all 1 ≤ p ≤ ∞. (5.1.1)

Second part: Moreover, the vector field has a flow. More precisely, there exists a
unique mapping ψ, continuous from R× R2 to R2, such that

ψ(t, x) = x+
∫ t

0
v(s, ψ(s, x)) ds.

If Γt : [0,∞)→ [0,∞) is defined by∫ Γt(s)/4

s/4

dr

β1,φ(r)
= t,

then δ 7→ Γt(δ) is an upper bound on the modulus of continuity of the flow at time
t.

See Chapter 2 for the precise definition of a weak solution to the Euler equa-
tions and for a proof of uniqueness in the first part of the theorem. In Section 5.2
through Section 5.4, we prove the second part (what Chemin refers to as the “La-
grangian” part) of the theorem.

5.2 Replacement for log-Lipschitzian property of the
velocity

The first step in the classical approaches of [6] and [29] to deriving the exis-
tence, uniqueness, and regularity of the flow for bounded vorticity is to show that
the velocity field is log-Lipschitzian. This gives a function µ(r) = Cr(1− log r) that
satisfies the following five properties:

1. µ : [0, 1]→ [0,∞),

2. |v(t, x)− v(t, x′)| ≤ µ(|x− x′|) for all |x− x′| ≤ 1 and t ≥ 0,

3. µ(0) = 0,

4. µ is nondecreasing, and

5. µ satisfies: ∫ 1

0

da

µ(a)
=∞. (5.2.1)
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(We can also express the second property as saying that the function µ is a bound
on the modulus of continuity of v(t).)

These properties of µ allow us to apply the machinery of Osgood’s lemma to
prove the existence and uniqueness of a continuous flow associated with the velocity
field.

Our goal in this section is to establish that a function µ with all these prop-
erties also exists in the case of the solutions to (E) of Theorem 5.1.1. The properties
we use of this solution are that the Lp-norms of the vorticity are non-increasing over
time for all p in [1,∞] (of course, some of these norms might be infinite), and that
the initial vorticity is of Yudovich class (see Definition 2.1.3). Thus, our argument
applies equally well to the solutions to (NS) given by Theorem 2.1.5.

Before proceeding, we make a comment on the first property. To apply
Osgood’s lemma, we need µ to be defined on the domain [0,∞). We can always
extend µ to [0,∞), however, in such a way that it continues to obey the other four
properties by defining µ(x) = µ(x − n) + nµ(1), where n is the greatest integer
less-than-or-equal-to x. This clearly satisfies properties 3 through 5. To see that µ
satisfies property 2—for all |x− x′| ≥ 0—let n be the greatest integer less-than-or-
equal-to |x− x′| and let e = (x− x′)/ |x− x′| for |x− x′| > 0. Then∣∣v(t, x)− v(t, x′)

∣∣
≤
∣∣v(t, x)− v(t, x′ + ne)

∣∣+
n∑
j=1

∣∣v(t, x′ + je)− v(t, x′ + (j − 1)e)
∣∣

≤ µ(
∣∣x− x′∣∣− n) + nµ(1) = µ(

∣∣x− x′∣∣).
From the Biot-Savart law, we have

I : =
∣∣v(t, x)− v(t, x′)

∣∣
=

1
2π

∫
ω(t, y)

[
(x− y)⊥

|x− y|2
− (x′ − y)⊥

|x′ − y|2

]
dy

≤ 1
2π

√
(I1)2 + (I2)2,

where

I2 :=
∫
|ω(t, y)|

∣∣∣∣x1 − y1

|x− y|2
− (x′)1 − y1

|x′ − y|2

∣∣∣∣ dy,
and where I1 is defined similarly. The technique we use to bound I2 will clearly
apply equally well to I1, so we will deal only with I2.

Let a = |x− x′| /2, and let R and λ be fixed positive real numbers. We will
specify the values of R and λ later, but it will be true that R ≥ λ. Assume also
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that |x− x′| ≤ 1. Then we can split I2 into three integrals:

I2 = J +K + L,

where

J :=
∫
Bλa

|ω(t, y)| f(y) dy, K :=
∫
BR\Bλa

|ω(t, y)| f(y) dy,

and
L :=

∫
R2\BR

|ω(t, y)| f(y) dy,

with

f(y) :=
∣∣∣∣x1 − y1

|x− y|2
− (x′)1 − y1

|x′ − y|2

∣∣∣∣ .
We bound J , K, and L differently.

Let 2 < p <∞ and 1 < q < 2 be such that 1/p+ 1/q = 1. Then

J ≤
∫
Bλa

|ω(t, y)|

[∣∣x1 − y1
∣∣

|x− y|2
+

∣∣(x′)1 − y1
∣∣

|x′ − y|2

]
dy

≤ 2
∫
B2λa

|ω(t, y)|
∣∣y1
∣∣

|y|2
dy ≤ 2 ‖ω(t)‖Lp ‖1/ |y|‖Lq(B2λa) .

But,

‖1/ |y|‖Lq(B2λa) =
(∫

B2λa

1
|y|q

dy

)1/q

=
(

2π
∫ 2λa

0

1
rq
r dr

)1/q

=

(
2π
[
r2−q

2− q

]2λa

0

)1/q

=
(

2π(2λ)2−q

2− q

)1/q

a2/q−1.

Thus,

J ≤ C1(q)
∥∥ω0

∥∥
Lp
a2/q−1,

where

C1(q) = 2
(

2π(2λ)2−q

2− q

)1/q

.

To bound K, place the origin halfway between x and x′, with x′ placed at (a, 0) and
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x at (−a, 0). Then

(x′)1 − y1 = a− r cos θ, |x′ − y|2 = a2 + r2 − 2ar cos θ,
x1 − y1 = −a− r cos θ, |x− y|2 = a2 + r2 + 2ar cos θ,

so

f(y) = f(r, θ) =
∣∣∣∣ −a− r cos θ
a2 + r2 + 2ar cos θ

− a− r cos θ
a2 + r2 − 2ar cos θ

∣∣∣∣
=
∣∣∣∣ 2a(a2 + r2 − 2r2 cos2 θ

a4 + 2a2r2 + r4 − 4a2r2 cos2 θ

∣∣∣∣ , (5.2.2)

and

K ≤ ‖ω(t)‖Lp
(∫ 2π

0

∫ R

λa
f(r, θ)qr dr dθ

)1/q

. (5.2.3)

Now, the minimum value of r in the integrand of K is λa, so if we choose
λ ≥ 1, then a ≤ r so∣∣2a(a2 + r2 − 2r2 cos2 θ)

∣∣ ≤ ∣∣2a(r2 + r2 − 2r2 cos2 θ)
∣∣ ≤ 8ar2.

If, further, we choose λ so that

a4 + 2a2r2 + r4 − 4a2r2 = a4 − 2a2r2 + r4 ≥ 1
2
r4 (5.2.4)

for all r ≥ λa, then

a4 + 2a2r2 + r4 − 4a2r2 cos2 θ ≥ a4 + 2a2r2 + r4 − 4a2r2 ≥ 1
2
r4, (5.2.5)

and it follows from Equation (5.2.2) that

f(r, θ) ≤ 8ar2

1
2r

4
=

16a
r2

. (5.2.6)

The condition Equation (5.2.4) is equivalent to

1− 2
(r
a

)2
+
(r
a

)4
≥ 1

2

(r
a

)4
,

or (r
a

)4
− (5/2)

(r
a

)2
+ 1 ≥ 0,
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which, by the quadratic equation, will follow if r/a ≥
√

2, this in turn being insured
by the choice λ =

√
2. We can then choose R to be any fixed real number greater

than or equal to λ, so that R ≥ λa, a being no greater than 1. It will be convenient
to choose

R = λ =
√

2.

Then from Equation (5.2.3) and Equation (5.2.6),

K ≤ ‖ω(t)‖Lp
(

2π
∫ λ

λa

(
16a
r2

)q
rdr

)1/q

≤ 16
∥∥ω0

∥∥
Lp

(2π)1/q a

(∫ λ

λa
r1−2q dr

)1/q

= 16
∥∥ω0

∥∥
Lp

(2π)1/q a

([
r2−2q

2− 2q

]λ
λa

)1/q

= 16
∥∥ω0

∥∥
Lp

(
π

1− q

)1/q

a
(
λ2−2q − (λa)2−2q

)1/q
= 16

∥∥ω0
∥∥
Lp

(
π

q − 1

)1/q

λ2/q−2a
(
a2−2q − 1

)1/q
= C2(q)

∥∥ω0
∥∥
Lp
a

(
a2−2q − 1
q − 1

)1/q

,

where

C2(q) = 16π1/qλ2/q−2.

As with J and K, we bound L using Hölder’s inequality, but with a fixed
choice of complementary exponents p and q, with p0 ≤ p < ∞, where p0 is as in
Definition 2.1.2. This gives

L ≤ ‖ω(t)‖Lp(R2\BR) ‖f‖Lq(R2\BR) ≤ 16a‖ω0‖Lp
∥∥∥∥ 1
r2

∥∥∥∥
Lq(R2\BR)

,

where we used Equation (5.2.6). But,∥∥∥∥ 1
r2

∥∥∥∥
Lq(R2\BR)

=
(

2π
∫ ∞
λ

1
r2q

r dr

)1/q

= (2π)1/q

([
r2−2q

2− 2q

]∞
λ

)1/q

=
(

π

q − 1

)1/q

λ2/q−2.
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Thus,

L ≤ C3a,

where

C3 = 16‖ω0‖Lp
(

π

q − 1

)1/q

λ2/q−2.

From our bounds on J , K, and L, we have

I2 ≤ C1(q)
∥∥ω0

∥∥
Lp
a2/q−1 + C2(q)

∥∥ω0
∥∥
Lp
a

(
a2−2q − 1
q − 1

)1/q

+ C3a.

With the identical bound on I1, we can write

I ≤ 1
2π

√
(I1)2 + (I2)2

≤ 1
π

[
C1(q)

∥∥ω0
∥∥
Lp
a2/q−1 + C2(q)

∥∥ω0
∥∥
Lp
a

(
a2−2q − 1
q − 1

)1/q

+ C3a

]
.

(5.2.7)

We will reexpress this bound in terms of p rather than q, because it will
allow us to recognize the connection with Yudovich’s bounds on the Lp–norms more
easily.

Because the condition on admissibility in Definition 2.1.2 does not depend
on the choice of p0, we can assume that p0 > 2, in which case C1(q) and C2(q) are
bounded over p in [p0,∞) by constants that we will simply call C1 and C2.

Then, using

1
q

=
p− 1
p

, q =
p

p− 1
, q − 1 =

1
p− 1

,
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we have

a

(
a2−2q − 1
q − 1

)1/q

= a

(
a−2/(p−1) − 1

1/(p− 1)

)(p−1)/p

= a (p− 1)(p−1)/p
(
a−2/(p−1) − 1

)(p−1)/p

≤ a(p− 1)
(
a−2/(p−1) − 1

)(p−1)/p

≤ a(p− 1)
(
a−2/(p−1)

)(p−1)/p

= (p− 1)a1−2/p ≤ pa1−2/p.

But
2
q
− 1 =

2p− 2
p
− p

p
=
p− 2
p

= 1− 2
p
,

so from Equation (5.2.7), we have

I ≤ 1
π

[
C1

∥∥ω0
∥∥
Lp
a1−2/p + C2

∥∥ω0
∥∥
Lp
pa1−2/p + C3a

]
≤ C

∥∥ω0
∥∥
Lp
pa1−2/p ≤ Ca1−2/ppθ(p),

(5.2.8)

where
∥∥ω0

∥∥
Lp
≤ θ(p) as in Definition 2.1.2, and where we used the fact that for a

in (0, 1/2], a ≤ a1−2/p ≤ pa1−2/p.
Since Equation (5.2.8) holds for all p in [p0,∞), it follows that

I ≤ inf
{
Ca1−2/ppθ(p) : p ∈ [p0,∞)

}
,

or, ∣∣v(t, x)− v(t, x′)
∣∣ ≤ µ(

∣∣x− x′∣∣), (5.2.9)

where

µ(r) := inf
{
C
(r

2

)1−2/p
pθ(p) : p ∈ [p0,∞)

}
. (5.2.10)

The first three required properties of µ follow immediately from Equation (5.2.10).
To show that µ is nondecreasing, first observe that r 7→ (r/2)1−2ε is an

increasing function for all ε in (0, 1/p0], since, having assumed that p0 > 2, it
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follows that 1− 2ε > 0. Thus, if r < s then

µ(r) = inf
{
C(r/2)1−2εθ(1/ε)/ε : ε ∈ (0, 1/p0]

}
≤ inf

{
C(s/2)1−2εθ(1/ε)/ε : ε ∈ (0, 1/p0]

}
= µ(s).

Finally, to verify Equation (5.2.1), we express µ in terms of the function β
of Definition 2.1.2 with M = 1:

µ(r) = inf
{
C(r/2)1−2εθ(1/ε)/ε : ε ∈ (0, 1/p0]

}
= (C/r) inf

{
(r/2)2−2εθ(1/ε)/ε : ε ∈ (0, 1/p0]

}
= (C/r) inf

{
(r2/4)1−εθ(1/ε)/ε : ε ∈ (0, 1/p0]

}
= (C/r)β(r2/4).

(5.2.11)

Then, making the change of variables u = r2/4,∫ 1

0

dr

µ(r)
=
∫ 1

0

dr

(C/r)β(r2/4)
= C

∫ 1

0

r dr

β(r2/4)

= C

∫ 1/4

0

du

β(u)
>∞,

(5.2.12)

since β is an admissible function by assumption. Thus, µ satisfies the final of its
required properties. As we show in Section 5.4, this is enough to establish the
existence and uniqueness of a continuous flow.

It is worth observing that the function µ is independent of time, because the
Lp–norms of the vorticity are conserved and because the constant M that is used
in the definition of β in Equation (2.1.2) equals 1 for all time. Also, since µ(0) = 0,
the vector field v(t) is uniformly continuous (see, for instance, exercise 17 p. 14 of
[34]).

Finally, if the vorticity is bounded, then

β(r) := −e
∥∥ω0

∥∥
Lp0∩L∞ r log r,

for r ≤ e−p0 as in Section 2.4, where now M = 1. This gives

µ(r) = (C/r)β(r2/4) = (C/r)
(
−e
∥∥ω0

∥∥
Lp0∩L∞ (r2/4) log(r2/4)

)
= −C

∥∥ω0
∥∥
Lp0∩L∞ r (2 log r − log 4) ≤ C

∥∥ω0
∥∥
Lp0∩L∞ r(1− log r),

in accord with Chemin’s result for bounded vorticity in Section 5.2 of [6].
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5.3 Existence and uniqueness of the flow

We now give the details of the proof that given a function µ with the five properties
of Section 5.2, that a continuous flow associated with the velocity field v exists and
is unique. This approach is based upon that in Section 5.2 of [6], though it is slightly
less abstract.

Theorem 5.3.1. For all x0 in R2, there exists a unique continuous function x
mapping [0,∞) to R2—the trajectory of the point x0—such that

x(t) = x0 +
∫ t

0
v(s, x(s)) ds. (5.3.1)

Proof. First we prove uniqueness. Suppose x and x′ are two solutions to Equa-
tion (5.3.1). Let

ρ(t) =
∣∣x(t)− x′(t)

∣∣ .
Then

ρ(t) =
∣∣x(t)− x′(t)

∣∣ =
∣∣∣∣∫ t

0
v(s, x(s))− v(s, x′(s)) ds

∣∣∣∣
≤
∫ t

0

∣∣v(s, x(s))− v(s, x′(s))
∣∣ ds ≤ ∫ t

0
µ(
∣∣x(s)− x′(s)

∣∣) ds
=
∫ t

0
µ(ρ(s)) ds.

By Osgood’s lemma it follow that ρ is identically zero on [0, t]. Since t is an arbitrary
positive number, it follows that any solution that exists to Equation (5.3.1) is unique
on [0,∞).

To establish existence, we use a classical Picard scheme. We construct a
series of trajectories, {xk}∞k=1, inductively by

x1(t) = x0 +
∫ t

0
v(s, x0) ds

and

xk+1(t) = x0 +
∫ t

0
v(s, xk) ds.

We restrict ourselves to the interval [0, T ], where T > 0 is arbitrary. Since
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we know that v is bounded over such an interval by some constant, M ,

|xk+1(t)| ≤ |x0|+
∫ t

0
|v(s, xk(s))| ds ≤ |x0|+MT,

so the sequence {xk} is bounded over the interval [0, T ].
We now show that {xk} is a Cauchy sequence in the space of continuous

functions from the interval [0, T ] to R2. Let

ρk+1,n(t) = |xk+1+n(t)− xk+1(t)| .

Then

0 ≤ ρk+1,n(t) =
∣∣∣∣∫ t

0
v(s, xk+n)− v(s, xk) ds

∣∣∣∣
≤
∫ t

0
|v(s, xk+n)− v(s, xk)| ds ≤

∫ t

0
µ(|xk+n(s)− xk(s)|) ds

=
∫ t

0
µ(ρk,n(s)) ds.

Letting

ρk(t) = sup
n≥0

ρk+1,n(t),

we have

0 ≤ ρk+1(t) ≤ sup
n≥0

∫ t

0
µ(ρk,n(s)) ds ≤

∫ t

0
sup
n≥0

µ(ρk,n(s)) ds,

the last inequality being by Fatou’s lemma. Because µ is increasing, it follows that

ρ̃(t) := lim sup
k→∞

ρk(t) ≤
∫ t

0
µ(ρ̃(s)) ds.

By Osgood’s lemma, it follows that ρ̃ is identically zero on the interval [0, T ], which
means that the sequence {xk} is Cauchy in the complete space of continuous func-
tions from the interval [0, T ] to R2. Hence, x(t) = limk→∞ xk(t) exists and is
continuous—and also must satisfy Equation (5.3.1).

Since T > 0 was arbitrary, it follows that a unique continuous x satisfying
Equation (5.3.1) exists on the interval [0,∞).

The flow is now defined by

ψ(t, x0) := x(t).

84



The continuity of ψ in time follow from Theorem 5.3.1, the continuity in space by
the results of Section 5.4.

5.4 Bounding the modulus of continuity of the flow

The flow ψ that results from the argument in Section 5.3 can be written in the form

ψ(t, x) = x+
∫ t

0
v(s, ψ(s, x)) ds. (5.4.1)

To bound the modulus of continuity of the flow, we want to determine how far apart
two nearby points at time zero can become after time t. Toward this end, let x1 and
x2 be two points in the plane and let xi(t) = ψ(t, xi), i = 1, 2, be the corresponding
trajectories of these points along the flow. (So xi = xi(0), which is just slightly
confusing notation.) Then from Equation (5.4.1),

|x1(t)− x2(t)| ≤ |x1 − x2|+
∫ t

0
|v(s, ψ1(s, x))− v(s, ψ2(s, x))| ds

= |x1 − x2|+
∫ t

0
|v(s, x1(s))− v(s, x2(s))| ds

≤ |x1 − x2|+
∫ t

0
µ(x1(s)− x2(s)) ds.

Applying Osgood’s lemma in the the form of Lemma 2.1.7 with ρ(t) =
|x1(t)− x2(t)|, a = |x1 − x2|, and γ(t) = 1, we conclude that

−
∫ 1

|x1(t)−x2(t)|

dr

µ(r)
+
∫ 1

|x1−x2|

dr

µ(r)
=
∫ |x1(t)−x2(t)|

|x1−x2|

dr

µ(r)

=
∫ |x1(t)−x2(t)|/4

|x1−x2|/4

dr

β(r)
≤ t,

(5.4.2)

where in the last integration we changed variables as in Equation (5.2.12).
Let Γt : [0,∞)→ [0,∞) be defined by∫ Γt(s)

s

dr

µ(r)
=
∫ Γt(s)/4

s/4

dr

β(r)
= t.

It follows that |x1(t)− x2(t)| ≤ Γt(|x1 − x2|), so δ 7→ Γt(δ) is an upper bound on
the modulus of continuity of the flow at time t. Arguing much as in Section 2.4,
it follows that |x1(t)− x2(t)| ≤ Γt(|x1 − x2|) → 0 as |x1 − x2| → 0, but that the
bound on the convergence can be arbitrarily slow for initial vorticities that satisfy

85



Yudovich bounds on the growth of their vorticity.

5.5 An example at time zero

In Section 5.2 we showed that the modulus of continuity of the vector field, given
Yudovich bounds on the initial vorticity, is bounded by the same function (with a
change of variables—see Equation (5.2.11)), β, that was derived from the Yudovich
bounds. The analogous result for bounded vorticities is the log-Lipschitzian property
of the vector field derived, for instance, in Section 5.2 of [6]. The obvious question
arises of whether it is possible to achieve an analogous result to that of Section 5.3
of [6], where Chemin gives an explicit example of a bounded initial vorticity that is
log-Lipschitzian—and no better—for all nonnegative time.

We will show that such an analogous result does hold, at time zero, in that,
given any of Yudovich’s sequence of example admissible Lp-norm bounds,

θ0(p) := 1, θ1(p) := log p, θ2(p) := log p · log log p, . . . ,
θm(p) := θm−1(p) logm p,

(5.5.1)

that there exists an initial vorticity with such a bound (asympotically with p) for
which the resulting vector field has a modulus of continuity at the origin equal to a
constant times the corresponding βm function.

We will prove the following theorem, which is a generalization of Proposition
5.3.1 of Chemin:

Theorem 5.5.1. Assume that ω0 is symmetric by quadrant and, in the first quad-
rant, is nonnegative, square-symmetric, and non-increasing as a function of the
distance from the origin. (By square-symmetric in the first quadrant we mean that
ω0(x1, x2) = ω0(max {x1, x2} , 0).) Then for any λ in (0, 1) and any λ′ in (0, λ)
there exists a right-neighborhood of the origin on which

v1
0(x1, 0) ≥ −2(1− λ′)

π
ω0(xλ1 , 0)x1 log x1. (5.5.2)

Proof. We proceed by considering an initial vorticity that is symmetric by quadrant,
then progressively adding more and more of the symmetry assumptions.

Symmetry by quadrant. Assume that

1. ω0(x) = ω0(x1, x2) is odd in x1 and x2; that is, ω0(−x1, x2) = −ω0(x1, x2) and
ω0(x1,−x2) = −ω0(x1, x2)—so also ω0(−x) = ω0(x).

2. ω0 ≥ 0 in Q1.
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Here we number the quadrants Q1 through Q4, starting with

Q1 = {(x1, x2) : x1 ≥ 0, x2 ≥ 0} ,

and moving counterclockwise through the quadrants.
Then by the Biot-Savart law,

v0 =
1

2π

∫
R2

(x− y)⊥

|x− y|2
ω0(y) dy,

so

v1
0(x1, 0) =

1
2π

∫
R2

y2

|x− y|2
ω0(y) dy =

1
2π

∫
R2

y2

(x1 − y1)2 + y2
2

ω0(y) dy

=
1

2π

4∑
j=1

∫
Qj

y2

(x1 − y1)2 + y2
2

ω0(y) dy.

Making the changes of variables, u = (−y1, y2), u = −y, and u = (y1,−y2)
on Q2, Q3, and Q4, respectively, in all cases the determinant of the Jacobian is ±1,
and we obtain

v1
0(x1, 0) =

1
2π

[∫
Q1

y2

(x1 − y1)2 + y2
2

ω0(y) dy −
∫
Q1

u2

(x1 + u1)2 + u2
2

ω0(u) du

+
∫
Q1

u2

(x1 + u1)2 + u2
2

ω0(u) du−
∫
Q1

u2

(x1 − u1)2 + u2
2

ω0(u) du

]

=
1
π

∫
Q1

(f1(x1, y)− f2(x1, y))ω0(y) dy,

where

f1(x1, y) =
y2

(x1 − y1)2 + y2
2

, f2(x1, y) =
y2

(x1 + y1)2 + y2
2

.

It follows from (x1−y1)2+y2
2 ≤ (x1+y1)2+y2

2 onQ1 that f1(x1, y) ≥ f2(x1, y),
equality holding only when y1 = 0 or y2 = 0. Therefore,

v0
1(x1, 0) ≥ 0. (5.5.3)

Since ω0(x1,−x2) = −ω0(x1, x2), if ω(t, x1, x2) is a solution to (E) then
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−ω(t, x1,−x2) is also a solution. Then by the Biot-Savart law of Equation (2A.1),

v2(t, x1,−x2) = (K2 ∗ ω)(t, x1, x2)

=
∫

R2

K2(x1 − y1,−x2 − y2)ω(t, y1, y2) dy

= −
∫

R2

K2(x1 − y1, x2 + y2)ω(t, y1,−y2) dy

= −
∫

R2

K2(x1 − y1, x2 − (−y2))ω(t, y1,−y2) dy

= −v2(t, x1, x2),

where we used the fact that K2(x1,−x2) = K2(x1, x2) and the symmetry in ω
observed above. A similar calculation shows that v1(t,−x1, x2) = −v1(t, x1, x2).
Thus, the velocity along the x-axis is directed along the x-axis, and the velocity
along the y-axis is directed along the y-axis, so the axes are preserved by the flow.
In particular, the origin is fixed, and v(t, 0, 0) = 0 for all t ≥ 0.

Constant on squares, and symmetric by quadrant. Now make the additional
assumption that ω0 = 2π on the square [0, r]× [0, r]. Then

v1
0(x1, 0) = 2π

1
π

∫
[0,r]×[0,r]

(f1(x1, y)− f2(x1, y)) dy

= 2
∫ r

0

∫ r

0

y2

(x1 − y1)2 + y2
2

dy2 dy1 − 2
∫ r

0

∫ r

0

y2

(x1 + y1)2 + y2
2

dy2 dy1.

Both of the inner integrals above are of the form∫ r

0

y2

a2 + y2
2

dy2 =
1
2

∫ r2

0

du

a2 + u
du =

1
2
[
log(a2 + u)

]r2
0

=
1
2

log(a2 + r2)− 1
2

log(a2),

where a is x1 − y1 and x1 + y1 in the two integrals. This gives

v1
0(x1, 0) = 2

∫ r

0

[
1
2

log((x1 − y1)2 + r2)− 1
2

log((x1 − y1)2)

−1
2

log((x1 + y1)2 + r2) +
1
2

log((x1 + y1)2)
]
dy1

= ṽ1
0(x1, 0) + v1

0(x1, 0),

(5.5.4)
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where

ṽ1
0(x1, 0) =

∫ r

0
log((x1 + y1)2) dy1 −

∫ r

0
log((x1 − y1)2) dy1,

v1
0(x1, 0) = ψr(x1) =

∫ r

0
log

(x1 − y1)2 + r2

(x1 + y1)2 + r2
dy1.

(5.5.5)

But,∫ r

0
log((x1 − y2)2) dy1 = 2(r − x1) log |r − x1|+ 2x1 log x1 − 2r,

which we can verify by integrating separately for the case r ≤ x1 and for r ≥ x1

(where we split the integral into two parts), and∫ r

0
log((x1 + y2)2) dy1 = 2(r + x1) log(r + x1)− 2x1 log x1 − 2r,

so

ṽ1
0(x1, 0) = −4x1 log x1 + 2(r + x1) log(r + x1)− 2(r − x1) log |r − x1|

= −4x1 log x1 + φr(x1),

where

φr(x1) = 2(r + x1) log(r + x1)− 2(r − x1) log |r − x1| . (5.5.6)

So far, our analysis is much as in the proof of Proposition 5.3.1 p. 95 of
[6], the significant difference being that for Chemin r = 1. This allows Chemin to
conclude that v1

0(x1, 0) ≥ −2x1 log x1 in some right-neighborhood of the origin, but
we will find that for an arbitrary r in (0, 1), the size of this neighborhood shrinks
with r. This will be of importance when we ultimately consider an initial vorticity
that is a sum of vorticities that are square-symmetric by quadrant. We seek both
to refine Chemin’s bound slightly and to establish a lower bound on the size of the
right-neighborhood.

By Equation (5.5.4), Equation (5.5.5), and Equation (5.5.6),

v1
0(x1, 0) = −4x1 log x1 + φr(x1) + ψr(x1). (5.5.7)

Suppose we can show for x1 lying in (0, 1) but also bounded by some function of r,
that

φr(x1) + ψr(x1) ≥ C0x1 log x1, (5.5.8)
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where 0 < C0 < 4. (Observe that x1 log x1 < 0.) This will insure, that

v1
0(x1, 0) ≥ −C1x1 log x1 (5.5.9)

for the given range of x1, where C1 = 4− C0 is a positive constant.
We will first show that ψr(x1) is negligible compared to the other two terms

in Equation (5.5.7). Then we will show that φr(x1), while comparable in magnitude
to −4x1 log x1, can be made sufficiently smaller than it so that Equation (5.5.8) will
hold, as long as we restrict x1 so that x1 < rλ for some λ in (0, 1).

We have,

∂

∂r
ψr(x1) = −2 tan−1

(
x1 − r
r

)
− 2 tan−1

(
x1 + r

r

)
+ 4 tan−1

(x1

r

)
+ log

(
x2

1 + 2r2 − 2x1r

x2
1 + 2r2 + 2x1r

)
= −2 tan−1 (w − 1)− 2 tan−1 (w + 1) + 4 tan−1 (w)

+ log
(
w2 + 2− 2w
w2 + 2 + 2w

)
=: h(w),

where w = x1/r < 1, since 0 ≤ x1 < r. Also,

h′(w) = 4
w2(w2 − 4)

(w2 + 2− 2w)(w2 + 2 + 2w)(1 + w2)
,

which is is negative for w in (0, 2), is zero at w = 2, and is positive for w in (2,∞).
This means that h(w) decreases from a value of 0 at 0 to a negative value at w = 2,
then monotonically increases. However, it is also true that limw→∞ h(w) = 0, which
means that h(w) < 0 for all w > 0.

What we have shown is that that for all x1, r > 0,

∂

∂r
ψr(x1) = h(w) < 0,

so for a fixed value of x1, ψr(x1) is a decreasing function of r. Restricting r to lie in
the range (0, 1], we can therefore bound ψr(x1) from below by ψ1(x1). But ψ1(x1)
is a smooth function equal to zero at the origin, so

ψr(x1) ≥ ψ1(x1) ≥ −C3x1

for some positive constant C3 in a fixed neighborhood of the the origin that is
independent of the value of r. This means that by restricting x1 to a possibly
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smaller neighborhood of the origin, we can insure that the contribution of ψr(x1) to
the left-hand side of Equation (5.5.8) is as small as required. Hence, we can replace
Equation (5.5.8) by the requirement that

φr(x1) ≥ C0x1 log x1 (5.5.10)

for all x1 < r, where 0 < C0 < 4, and from this Equation (5.5.9) will follow.
We have,

φr(x1)
2

= (r + x1) log(r + x1)− (r − x1) log(r − x1)

= r(1 + w) log(r(1 + w))− r(1− w) log(r(1− w))
= r(1 + w) log r − r(1− w) log r + r(1 + w) log(1 + w)
− r(1− w) log(1− w)

= r log r + rw log r − r log r + rw log r
+ r [log(1 + w)− log(1− w)] + rw [log(1 + w) + log(1− w)]

= 2rw log r + r log
(

1 + w

1− w

)
+ rw log(1− w2).

Since

r log
(

1 + w

1− w

)
+ rw log(1− w2)

≥ r log
(

1 + w

1− w

)
+ r log(1− w2) = r log

(
1 + w

1− w
(1 + w)(1− w)

)
= 2r log(1 + w) ≥ 0,

it follows that

φr(x1) ≥ 4rw log r = 4x1 log r.

We now add the restriction that

xλ1 ≤ r

for some λ in (0, 1). Then

φr(x1) ≥ 4x1 log r ≥ 4x1 log xλ1 = 4λx1 log x1,

which is Equation (5.5.10) with C0 = 4λ. It follows that

v1
0(x1, 0) ≥ −(4− 4λ)x1 log x1 − C3x1. (5.5.11)
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Square symmetry by quadrant We now let our initial vorticity be a sum of
initial vorticities each defined as above on successively smaller squares. We will
write this as

ω0(x) = 2π
∞∑
k=1

ak1[0,rk]×[0,rk](x) (5.5.12)

on Q1, where rk ↘ 0 as k →∞, and where each ak ≥ 0. This implies that ω0(x1, 0)
is a non-increasing function of x1 > 0 and is “square-symmetric” by quadrant. We
also assume, for convenience in the bounds we obtain below, that r1 < 1, though
any positive value of r1 would work with a slight modification to our argument.

It follows from Equation (5.5.11) and Equation (5.5.3) that

v1
0(x1, 0) ≥

 ∑
k≤ηλ(x1)

ak

 (−4(1− λ)x1 log x1 − C3x1), (5.5.13)

where
ηλ(x1) = max

k∈Z+

{
rk ≥ xλ1

}
.

We can write ω0 as

ω0(x) = 2π
∫ 1

0
α(s)1[0,s]×[0,s](x) ds, (5.5.14)

for some measurable, nonnegative function α : (0, 1)→ [0,∞). This means that

ω0(x1, 0) = 2π
∫ 1

x1

α(s) ds. (5.5.15)

Approximating ω0 in Equation (5.5.14) by the sum in Equation (5.5.12), the
expression corresponding to Equation (5.5.13) is

v1
0(x1, 0) ≥

(∫ 1

xλ1

α(s) ds

)
(−4(1− λ)x1 log x1 − C3x1).

The bound in Equation (5.5.2) then follows from Equation (5.5.15). (Choosing
λ′ < λ allows us to ignore the factor −C3x1.)

Yudovich’s sequence of initial vorticities. The difficulty in applying Theo-
rem 5.5.1 lies in choosing a function ω0 that both gives a bound in Equation (5.5.2)
that is an admissible function in the sense of β in Definition 2.1.2, and is such that
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we can obtain an asymptotic formula for its Lp-norms that obeys Yudovich bounds
on the vorticity. We will show that each of the initial vorticities in Equation (5.5.1)
satisfy both these requirements.

That the first of the two requirements is satisfied is easily seen for m = 2, the
argument for m > 2 being essentially the same, just more difficult to write down.
We have from Equation (5.5.2) that

v1
0(x1, 0) ≥ −2(1− λ′)

π
log log

(
1/(xλ1)

)
x1 log x1

= −2(1− λ′)
π

log (λ log(1/x1)))x1 log x1

= −2(1− λ′)
π

[(log λ)x1 log x1 + (log log(1/x1))x1 log x1]

≥ Cx1 log(1/x1) · log log(1/x1),

the last bound applying for sufficiently small x1, where 0 < C < 1.
That the second of the two requirements is satisfied is shown in the following

theorem.

Theorem 5.5.2. Let ω0 have the symmetry described in Theorem 5.5.1 with

ω0(x1, 0) = θm(1/x1)/ log(1/x1) = log2(1/x1) · · · logm(1/x1),

for 0 < x1 < expm−1(−1), and ω0 equal to zero elsewhere in the first quadrant.
Then for all sufficiently large p,

e−2 log p · · · logm−1 p ≤ ‖ω0‖Lp ≤ C log p · · · logm−1 p,

where C = 1 for m ≥ 2 and is asymptotically equal to 1 for large p when m = 1.

Proof. Because of the symmetry of ω0,

‖ω0‖pLp = 4
∫ expm−1(−1)

0
2
∫ x1

0
(ω0(x1, 0))p dx2 dx1

= 8
∫ expm−1(−1)

0
x1

[
log2(1/x1) · · · logm(1/x1)

]p
dx1.

(5.5.16)

Making the change of variables, u = log(1/x1) = − log x1, it follows that x1 = e−u
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and du = −(1/x1) dx so dx1 = −e−u du. Thus,

‖ω0‖pLp = 8
∫ expm−2(1)

∞
e−u

[
log u · · · logm−1 u

]p (−e−u) du

= 8
∫ ∞

expm−2(1)
e−2u

[
log u · · · logm−1 u

]p
du.

Making the further change of variables x = u/p, so that u = px and du =
p dx, we have

‖ω0‖pLp = 8p
∫ ∞

expm−2(1)/p
e−2xp

[
log(xp) · · · logm−1(xp)

]p
dx. (5.5.17)

(Note that p is eventually large enough that the lower bound of integration in
Equation (5.5.17) is less than 1.)

Obtaining an upper bound on ‖ω0‖Lp is easy. For x ≥ 1,

log(xp) · · · logm−1(xp) ≥ log p · · · logm−1 p,

so

‖ω0‖pLp ≥ 8p
∫ ∞

1
e−2xp

[
log p · · · logm−1 p

]p
dx

= 8p
[
log p · · · logm−1 p

]p ∫ ∞
1

e−2xp dx

= 8p
[
log p · · · logm−1 p

]p(− 1
2p

)[
e−2xp

]∞
1

= 4
[
e−2 log p · · · logm−1 p

]p
.

Thus, for all sufficiently large p,

‖ω0‖Lp ≥ e
−2 log p · · · logm−1 p.

We now obtain a lower bound on ‖ω0‖Lp . For x ≤ 1,

log(xp) · · · logm−1(xp) ≤ log p · · · logm−1 p,
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while for x ≥ 1 and sufficiently large p, Equation (5.5.18) holds. Thus,

‖ω0‖pLp = 8p

(∫ 1

expm−2(1)/p
+
∫ ∞

1

)
e−2xp

[
log(xp) · · · logm−1(xp)

]p
dx

≤ 8p
∫ 1

expm−2(1)/p
e−2xp

[
log p · · · logm−1 p

]p
dx

+ 8p
∫ ∞

1
e−2xp

[[
log p · · · logm−1 p

]
ex−1

]p
dx

≤ 8p
[
log p · · · logm−1 p

]p [∫ 1

expm−2(1)/p
e−2xp dx+ e−p

∫ ∞
1

e−xp dx

]

= 8p
[
log p · · · logm−1 p

]p [ 1
2p

(
e−p expm−1(1)/p − e−p

)
+ e−p

e−p

p

]
≤ 8

expm(1)
[
log p · · · logm−1 p

]p
.

It follows that for sufficiently large p,

‖ω0‖Lp ≤
(

8
expm(1)

)1/p

log p · · · logm−1 p,

which completes the proof.

Remark: Essentially the same proof gives the same result for radial or other sym-
metries (except that e−2 might become a different constant), as well as for any
spatial dimension. In dimension n with radial symmetry, for example, the factor of
x1 in the original integration in Equation (5.5.16) would become rn and the factor
of 8 would become the surface area of the unit sphere. The rn factor would become
e−nxp (even for n = 1) in Equation (5.5.17), which does not materially affect the
rest of the argument.

Lemma 5.5.3. Let m be a positive integer. Then for sufficiently large p,

log(xp) · · · logm(xp) ≤ [log p · · · logm p] ex−1. (5.5.18)

Proof. We prove this for m = 2, the proof for other values of m being entirely
analogous. First, Equation (5.5.18) holds if and only if

f(x) := log log(xp) + log log log(xp) ≤ g(x) := log(log p log log p) + x− 1.

Because equality holds for x = 1, our result will follow if we can show that f ′ ≤ g′
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for all x ≥ 1 and sufficiently large p. This is, in fact, true, since

f ′ =
1

x log(xp)
+

1
x log(xp) log log(xp)

≤ 1 = g′

for all x ≥ 1 and p ≥ ee.

5.6 The same example over time

Theorem 5.6.1. Assume that ω0 is symmetric by quadrant and, in the first quad-
rant, is nonnegative, radially-symmetric, and non-increasing as a function of the
distance from the origin. Then for any λ in (0, 1) and any λ′ in (0, λ) there exists
a right-neighborhood N of the origin on which

v1(t, x1, 0) ≥ −2(1− λ′)
π

ω0(2λ/2Γt(x1)λ)x1 log x1 (5.6.1)

for all time t ≥ 0, where Γt is defined as in Theorem 5.1.1.
Further, if x1(t) is the solution to

dx1(t)
dt

= −2(1− λ′)
π

ω0(2λ/2Γt(x1(t))λ)x1(t) log x1(t)

with x1(0) = a in N , then ψ1(t, a, 0) ≥ x1(t) for all t ≥ 0.

Remark: We state the theorem for ω0 radially-symmetric within each quadrant
rather than square-symmetric because the derivation is simpler. But it is clear that
a nearly identical result holds for square-symmetric functions as well. In fact, using
reasoning entirely analogous to that of the proof, a similar result holds as long as
the level sets of ω0 have a nonzero lower bound and a finite upper bound on the
ratio of their closest distance to the origin to the their furthest distance from the
origin.

Proof of Theorem 5.6.1. First observe that ω0 ≥ ω̃0 where ω̃0 is square-symmetric
and

ω̃0(x1, 0) = ω0(
√

2 |x1|).

Examining the proof of Theorem 5.5.1, we see that

v1
0(x1, 0) ≥ −2(1− λ′)

π
ω̃0(xλ1 , 0)x1 log x1,

because the positivity of ω0 in the first quadrant, and the symmetry by quadrant,
makes all the estimates in the proof of Theorem 5.5.1 with ω̃0 in place of ω0 under-
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estimates for v1
0(x1, 0). Thus,

v1
0(x1, 0) ≥ −2(1− λ′)

π
ω0(2λ/2xλ1)x1 log x1 (5.6.2)

is the equivalent of Theorem 5.5.1 for initial vorticities radially-symmetric within
each quadrant.

Our approach will be to show that the flow can only move the vorticity by a
limited amount over time, and that the maximum possible movement in the worst
possible direction results in the bound in Equation (5.6.1).

From the second part of Theorem 5.1.1,

ψ(t, x) = x+
∫ t

0
v(s, ψ(s, x)) ds.

Because v1(t, 0, 0) = 0 for all time t ≥ 0, it follows from Equation (5.2.9) that

|v(s, ψ(s, x))| = |v(s, ψ(s, x))− v(s, 0, 0)| ≤ µ(|ψ(s, x)|).

We can then obtain upper and lower bounds on ψ(t, x) using the triangle
inequality:

|ψ(t, x)| ≤ |x|+
∫ t

0
|v(s, ψ(s, x))| ds ≤ |x|+

∫ t

0
µ(|ψ(s, x)|) ds,

and

|ψ(t, x)| ≥ |x| −
∫ t

0
|v(s, ψ(s, x))| ds ≥ |x| −

∫ t

0
µ(|ψ(s, x)|) ds. (5.6.3)

To achieve a lower bound on ω0(t) and hence a lower bound on v1
0(x1, 0), we

assume that Equation (5.6.3) holds for all x and t. This will minimize the lower
bound on v1

0(x1, 0) in Equation (5.5.2), since ω0 decreases with the distance from
the origin. (This is a physically unrealizable flow, since it is not measure preserving.
It still gives us a perfectly valid point-by-point bound, however.) Letting a = |x|
and ρ(t) = ψ(t, x), it follows in this worst case that

ρ(t) = a−
∫ t

0
µ(ρ(s)) ds,

with the restriction that ρ remain continuous (which would follow from the conti-
nuity of the integral even if ρ remained only measurable).
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Since ρ is continuous and µ is continuous, ρ is, in fact, differentiable, with

ρ′(t) = −µ(ρ(t)).

Thus,

d

dt
ρ(t) = −µ(ρ(t)) =⇒ dρ

µ(ρ)
= −dt

=⇒
∫ ρ(t)

ρ(0)

ds

µ(s)
=
∫ ρ(t)

a

ds

µ(s)
= −t

=⇒
∫ a

ρ(t)

ds

µ(s)
= t,

or in general, since this is the worst case estimate, that∫ |x|
|ψ(t,x)|

ds

µ(s)
≤ t.

Inverting the roles of x and ψ(t, x), it follows that∫ |ψ−1(t,x)|

|x|

ds

µ(s)
=
∫ |ψ−1(t,x)|/4

|x|/4

dr

β(r)
≤ t,

as in Equation (5.4.2). Thus, ∣∣ψ−1(t, x)
∣∣ ≤ Γt(|x|),

where Γt is as in the statement of Theorem 5.1.1, and

ω(t, x) = ω0(
∣∣ψ−1(t, x)

∣∣) ≥ ω0(Γt(|x|)),

since ω0 decreases with increasing distance from the origin. Therefore, arguing as
in Equation (5.6.2), we obtain Equation (5.6.1).

The lower bound on the flow, ψ1(t, a, 0) ≥ x1(t), follows from using the min-
imum possible value of v1(t, x1, 0) in Equation (5.6.1), setting it equal to dx1(t)/dt,
and integrating over time. �

We now apply Theorem 5.6.1 to the first two in the sequence of Yudovich’s
vorticity bounds in Section 2.2. The first of these is for bounded vorticity—say
|ω0| = 1B1/2

so that ‖ω0‖L1∩L∞ = 1. This gives (see Section 2.4)

β(r) = −er log r
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for r < 1, so for x1 > 0,∫ Γt(s)/4

s/4

dr

β(r)
= −

∫ Γt(s)/4

s/4

dr

er log r
= −1

e
[log(− log r)]Γt(s)/4s/4 = t

=⇒ log(− log(s/4))− log(− log(Γt(s)/4)) = et

=⇒ Γt(s) = 4(s/4)e
−et
.

Thus, Theorem 5.6.1 gives

v1(t, x1, 0) ≥ −2(1− λ′)
π

ω0(2λ/24(x1/4)λe
−et

)x1 log x1

≥ −2(1− λ′)
π

x1 log x1

as long as 2λ/24(x1/4)λe
−et

< 1/2. (This also implies that 4Γt(xλ1/4) < 1, which is
required for our expression for β to be valid.)

Solving dx1(t)/dt = −(2(1− λ′)/π)x1 log x1 with x1(0) = a gives

ψ1(t, a, 0) ≥ x1(t) = aexp(−2(1−λ′)t/π).

Since ψ(t, 0, 0) = 0,

|ψ(t, a, 0)− ψ(t, 0, 0)|
aα

≥
∣∣ψ1(t, a, 0)

∣∣
aα

≥ aexp(−2(1−λ′)t/π)−α,

so the flow can be in no Hölder space with exponent α > exp(−2(1−λ′)t/π). (This
is essentially as in Theorem 5.3.1 p. 94 of [6].)

The second example bound in Yudovich’s sequence is θ(p) = log p, which is
produced asymptotically when ω0(x) = log(− log x) on the unit ball. (This is by
Theorem 5.5.2 and the comment following it.) As mentioned in Section 2.4 (using
Yudovich’s argument),

β(r) ≤ er log(1/r) log log(1/r).

Then,

−1
e

[log log(− log r)]Γt(s)/4s/4 =
∫ Γt(s)/4

s/4

dr

er log(1/r) log log(1/r)

≤
∫ Γt(s)/4

s/4

dr

β(r)
= −1

e
[log log(− log r)]Γt(s)/4s/4 = t

=⇒ log(− log(Γt(s)/4)) ≥ e−et log(− log(s/4)).
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Ignoring the factors of 1/4, the factor 2λ/2, and using x1 in place of xλ1 would
give, for x1 > 0,

v1(t, x1, 0) ≥ −2(1− λ′)
π

ω0(Γt(x1))x1 log x1

= −2(1− λ′)
π

log(− log(Γt(x1)))x1 log x1

≥ −2(1− λ′)
π

e−et log(− log x1)x1 log x1,

which we note is e−et times the lower bound for v1
0(x1, 0). (Without ignoring the

factors above, we introduce a small additional time-varying factor.)
It would be reasonable to think that this exponentially decreasing lower

bound on v1(t, x1, 0) would persist for the rest of Yudovich’s example vorticity
bounds, but it does not: at least it does not follow from Theorem 5.6.1.

Solving for

dx1(t)
dt

= −2(1− λ′)
π

e−et log(− log x1)x1 log x1

with x1(0) = a, we get

log log(− log x1(t)) = log log(− log a) +
2(1− λ′)

πe

(
e−et − 1

)
,

so

ψ1(t, a, 0) ≥ x1(t) = exp
(
−(− log a)exp(2(1−λ′)(e−et−1)/πe)

)
= e−(− log a)γ ,

where γ = exp
(
2(1− λ′)(e−et − 1)/πe

)
.

Observe that γ < 1 for all t > 0. Thus, for any α in (0, 1) and all t > 0,

‖ψ − Id‖Cα ≥ lim
a→0+

ψ1(t, a, 0)− ψ1(t, 0, 0)
aα

≥ lim
a→0+

x1(t)
aα

= lim
a→0+

e−(− log a)γ

e(− log a)α
= lim

u→∞

e−u
γ

e−αu
= lim

u→∞
eαu−u

γ
=∞.

We conclude that the flow lies in no Hölder space of positive exponent for all positive
time, a result that we state explicitly as a corollary of Theorem 5.6.1.

Corollary 5.6.2. There exists initial velocities satisfying the conditions of Theo-
rem 2.1.5 for which the unique solution to (E) has an associated flow lying, for all
positive time, in no Hölder space of positive exponent.
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