
THINGS I SHOULD OR SHOULD NOT HAVE SAID IN
MY THESIS

JAMES P. KELLIHER

Abstract. We give a list of things I wish I had said in my thesis ([8])
and things I wish I hadn’t said. References are to the single-spaced
version of my thesis available on my home page.

Compiled on August 11, 2006

1. Concerning Chapter 1

p. 1“...a bounded domain in the plane in Chapter 3...”

I really should have pointed out that I am using Navier boundary condi-
tions not the more usual no-slip boundary conditions in Chapter 3, in case
someone were to read only my very brief overview and get a false impres-
sion. After all, if I had done this for no-slip boundary conditions, even in
two dimensions, I would have solved one of the biggest open problems in
mathematical fluid mechanics.

p. 5Convention on ∇vu in Section 1.3

I should have just stuck with the one convention of using only u ·∇v, but the
Navier boundary conditions are often written D(v)n · τ , so I started using
∇vu for boundary integrals. Having both notations was confusing.

2. Concerning Chapter 2

p. 11Definition of M

The
∑

in the definition of M should be sup (this was a LaTeX typo, using
\sum in place of \sup), so the definition should read

M = sup
ν>0

‖ |wν |2 ‖L∞(R×R2) = sup
ν>0

‖ |vν |2 − 2vνv
′
ν +

∣∣v′ν∣∣2 ‖L∞(R×R2).

p. 11Long string of inequalities in the middle of the page
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There are two obvious typos here. This string of inequalities should read:∫
R2

∣∣∇v′ν(s, x)∣∣ |wν(s, x)|2 dx =
∫

R2

AB =
∫

R2

AεA1−εB ≤M ε

∫
R2

A1−εB

≤M ε
∥∥A1−ε

∥∥
L1/(1−ε) ‖B‖L1/ε = M ε ‖A‖1−ε

L1 ‖B‖L1/ε

= M εLν(s)1−ε
∥∥∇v′∥∥

L1/ε ≤ C0M
εLν(s)1−ε 1

ε
‖ω0‖L1/ε

≤ C0M
εLν(s)1−ε 1

ε
θ(1/ε).

p. 14 Last paragraph in Section 2.4

The units do work out, but my comment on them here is totally off. The
first observation is that the units of θ(1/ε) is the same as the units of

‖ω0‖L1/ε =
(∫

R2

∣∣ω0
∣∣1/ε

)ε

which is

(d2)ε units(ω0) = d2ε units(∇ω0) = d2ε(v/d) = d2ε−1v,

where d is distance and v is velocity (and later t will be time).
From their defining relations, we also have

units(R) = units(‖ω0‖L2) = d2(v/d)2 = v2,

units(Rνt) = v2d2, units(Lν) = v2d2, units(M) = v2.

These units result in units of v3d for β in the inequalities on p. 11.
The units of s in β(s) must be v2d2 from Equation (2.4.1) p. 12 and

we can see that both sides of this equation have units of time. Letting x
have the units of v2d2 in Equation (2.1.2) p. 7, the defining equation for
β, returns units of v3d for β, in agreement with the units derived from the
inequalities on p. 11.

p. 18 Second paragraph in Section 2.6

There are three issues in this paragraph. First, in the second sentence,
I should just have said (E) not (E) or (NS). Second, as I point out in
my comment on the last paragraph in Chapter 2 (p. 25-26) below, one
needs to assume that the initial vorticity is in La for some a < 2, though
not necessarily for a = 1. Third, I should have included a proof of the
conservation of the Lp-norms of the vorticity for solutions to (NS), which
can be done using elementary means, though the argument is a little more
delicate than one might expect (unless there is an easier way). I will probably
write this up and include it in a later version of these comments.

p. 25-26 Last paragraph in Chapter 2
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My comments in the last paragraph of Chapter 2 are not quite right. First,
for (NS) there is another way (in fact, essentially the classical way) to derive
the energy bound in Equation (2B.2) that avoids the L2-norm of the vorticity
(or gradient). However, the only way I know to prove the conservation of the
Lp-norms of the vorticity for (NS) in R2 for p > 2 requires “bootstrapping”
up from the L2-bound on vorticity. Thus, I might be right in the end about
(NS), though I am not sure.

As regards my comments about (E) in this paragraph, though, I am
almost certainly wrong. One can have the initial vorticity in Lp for all p
in [a,∞) with Yudovich vorticity and have conservation of the Lp-norms
of vorticity only if a < 2, as far as I know. At least, the straightforward
modification of Majda’s proof of the existence of a solution to (E) (see p.
311-319 of [12] for instance) requires a < 2. Thus, it would appear that the
requirements for (E) are stronger than those for (NS), not the other way
around.

3. Concerning Chapter 3

p. 30Corollary 3.2.3

The second inequality in this corollary is correct, but the first is not. Thus,
each use of the first inequality needs to be replaced by a use of the second,
as we explain in separate notes below. The corollary and its proof should
read:

Corollary 3.2.3. For all v in V ,

‖v‖L2(Γ) ≤ C(Ω) ‖v‖1/2
L2(Ω)

‖∇v‖1/2
L2(Ω)

≤ C(Ω) ‖v‖V . (3.1)

Proof. This follows from the following claim, since div u = 0 and u · n = 0
on Γ give

∫
Ω u = 0. �

Claim. Assume that Ω is a bounded domain in R2 with C2-boundary Γ. Let
f be a scalar-valued function in H1(Ω) with

∫
Ω f = 0. Then

‖f‖2
L2(Γ) ≤ C ‖f‖L2(Ω) ‖∇f‖L2(Ω) .

Proof. We prove this for f in C∞(Ω) with
∫
Ω f = 0, the result then following

from the density of the space of all such functions in the space of all functions
f in H1(Ω) with

∫
Ω f = 0.

Let Σ be a tubular neighborhood of Γ of uniform width δ, where δ is half
of the maximum possible width. Place coordinates (s, r) on Σ where s is arc
length along Γ and r is the distance of a point in Σ from Γ, with negative
distances being inside of Ω. Then s is piecewise linear, being discontinuous
across each component of Γ, and r ranges from −δ to δ, with points (s, 0)
lying on Γ. Also, because Σ is only half the maximum possible width, |J | is
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bounded from below, where

J = det
∂(x, y)
∂(s, r)

is the Jacobian of the transformation from (x, y) coordinates to (s, r) coor-
dinates.

Let ϕ in C∞(Ω) equal 1 on Γ and equal zero on Ω \ Σ. Then if a is the
arc length of Γ,

‖f‖2
L2(Γ) =

∫ a

0

∫ 0

−δ

∂

∂r
(ϕf(s, r))2 dr ds ≤

∫ a

0

∫ 0

−δ

∣∣∣∣ ∂∂r (ϕf(s, r))2
∣∣∣∣ dr ds

≤
∫ a

0

∫ 0

−δ

∣∣∇(ϕf(s, r))2
∣∣ dr ds

=
1

inf |J |

∫ a

0

∫ 0

−δ

∣∣∇(ϕf(s, r))2
∣∣ inf |J | dr ds

≤ 1
inf |J |

∫ a

0

∫ 0

−δ

∣∣∇(ϕf(s, r))2
∣∣ |J | dr ds

= C

∫
Σ∩Ω

∣∣∇(ϕf(x, y))2
∣∣ dx dy = C

∥∥∇(ϕf)2
∥∥

L1(Σ∩Ω)

= C
∥∥∇(ϕf)2

∥∥
L1(Ω)

= C ‖ϕf∇(ϕf)‖L1(Ω)

≤ C ‖ϕf‖L2(Ω) ‖∇(ϕf)‖L2(Ω)

≤ C ‖f‖L2(Ω) ‖ϕ∇f + f∇ϕ‖L2(Ω)

≤ C ‖f‖L2(Ω)

(
‖ϕ∇f‖L2(Ω) + ‖f∇ϕ‖L2(Ω)

)
≤ C ‖f‖L2(Ω)

(
‖∇f‖L2(Ω) + ‖f‖L2(Ω)

)
≤ C ‖f‖L2(Ω) ‖∇f‖L2(Ω) .

In the last step we used Poincaré’s inequality.
�

Remark 3.1. This is not a two-dimensional result; the claim holds for a
bounded domain in Rd for d ≥ 1, the proof being essentially unchanged.

p. 30 First equation on page 30

The first “=” should be a “≤” in this series of inequalities, not that this
matters one bit.

p. 32 Hc ⊆ C∞(Ω) in discussion of basis for Hc

Actually, this is only C∞(Ω). What I should have pointed out is that the
basis vectors are in V , which is all we need here (but see next comment).
Also, instead of taking Temam’s approach using the multi-valued functions
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qi, I would have been better off defining harmonic functions ψi that are equal
to zero on all boundary components except for one then defining hi = ∇⊥ψ,
because it is easier to apply standard elliptic regularity results. This is the
approach I take in [9].

p. 33Statement of Lemma 3.3.1

This lemma should have been stated more generally, assuming that v is in
H0 with ω(v) in Lp(Ω). In fact, this is what we actually prove. The only
place we need this added generality is on p. 50 (see comment below).

p. 33Statement of Corollary 3.3.2

This corollary should have been stated more generally, assuming that v is
in H with ω(v) in Lp(Ω). In fact, this is what we actually prove, though we
do not need this little bit of extra generality.

p. 33Statement and proof of Corollary 3.3.2

First, I need to add more regularity to the boundary here: I need to assume
that the boundary is C2,ε for some ε > 0. Then, using the functions ψi

described in the previous comment, I can apply elliptic regularity theory to
conclude that that each ψi is in C2,ε(Ω) (applying, for instance, Theorem
6.14 p. 101 of [7])). Then each basis element hi = ∇⊥ψi for Hc is in C1,ε(Ω)
and so ∇hi is in L∞(Ω), which is all I need in the argument that follows,
which is unchanged except for the next comment. This is how I do it in [9].

(The assumption of extra regularity is not a problem, since I only apply
this theorem under that assumption the the boundary is C2,1/2+ε anyway.)

p. 33Proof of Corollary 3.3.2

In the proof of Corollary 3.3.2 I write, “But, H0 = H⊥
c , so ‖v‖L2(Ω) =

‖v0‖L2(Ω)+‖vc‖L2(Ω) and thus ‖vc‖L2(Ω) ≤ ‖v‖L2(Ω).” This should have said,
“But, H0 = H⊥

c , so ‖v‖2
L2(Ω) = ‖v0‖2

L2(Ω) + ‖vc‖2
L2(Ω) and thus ‖vc‖L2(Ω) ≤

‖v‖L2(Ω).”

p. 36The bound on | 〈Au, v〉V,V ′ |.
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Corollary 3.2.3 should have been applied as follows:

| 〈Au, v〉V,V ′ | ≤
∣∣∣∣∫

Ω
∇u · ∇v

∣∣∣∣ +
∣∣∣∣∫

Γ
(κ− α)u · v

∣∣∣∣
≤ ‖u‖V ‖v‖V + C ‖u · v‖L1(Γ)

≤ ‖u‖V ‖v‖V + C ‖u‖L2(Γ) ‖v‖L2(Γ)

≤ ‖u‖V ‖v‖V + C ‖u‖1/2
L2(Ω)

‖∇u‖1/2
L2(Ω)

‖v‖1/2
L2(Ω)

‖∇v‖1/2
L2(Ω)

≤ C ‖u‖V ‖v‖V .

p. 41 “This is to insure that u lying in C1/2([0, T ]; (H1(Ω))2) implies that (κ −
α/2)u · τ lies in C1/2([0, T ];H1(Ω)).”

This should read: “This is to insure that u lying in C1/2([0, T ]; (H1(Ω))2)
implies that (κ− α/2)u · τ lies in C1/2([0, T ];H1/2(Γ)).”

p. 41 “...but with the extra regularity assumed on Γ (and the lower regularity
assumed on α).”

The regularity of Γ is extra over that of Theorem 3.6.1, the regularity of
α is lower than that of [5] and [10] (references [7] and [27] in my thesis).
In [5], an unspecified regularity of Γ is assumed (they just say “sufficiently
smooth”) and in [10] Γ is assumed to be smooth, which I take to mean C∞.

p. 46 The bound in Equation (3.8.6).

This bound should read:∣∣∣∣∫
Γ
(κ− α)uν · w

∣∣∣∣ ≤ ‖κ− α‖L∞(Γ) ‖uν · w‖L1(Γ)

≤ ‖κ− α‖L∞(Γ) ‖uν‖L2(Γ) ‖w‖L2(Γ)

≤ C ‖κ− α‖L∞(Γ) ‖∇uν‖L2(Ω) ‖∇w‖L2(Ω) ≤ C(T, α, κ)eC(α)νT .

where we used (3.1) above.

p. 48 Theorem 3.9.2

It is clear from the proof of Theorem 3.9.2, that we also have convergence
of uν,γ to ũν in L2([0, T ]; Ḣ1(Ω).

p. 49
∫
Ω |∇w|

2

There is a missing factor of ν on this term in the two equations in which it
appears; this has no effect on the proof.
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p. 49Bound on −
∫
Γ(∇ũνn) · uν,γ

It was totally unnecessary to bring in the vorticity using Equation (3.4.1);
the bound is actually more direct just sticking with the gradient.

p. 50Use of Lemma 3.3.1 in paragraph following the proof of Lemma 3A.1

The use of Lemma 3.3.1 to prove that v0 is in H1,p(Ω) and that KΩ is
continuous require, when p < 2, the slight strengthening of the statement of
Lemma 3.3.1 that we described above.

4. Concerning Chapter 4

I do not have much to say on Chapter 4 yet, having had no reason to reex-
amine it since I defended. I will say, however, that the motivation for this
chapter was twofold. First, it was my own curiosity about the best possible
convergence rates one can obtain for circularly symmetric initial vorticities,
which I could not find clearly stated in the literature (though they must be
there somewhere, because for circularly symmetric initial vorticity solutions
to the Navier-Stokes equations are just solutions to the heat equation). The-
orem 4.2.1 was the first observation I made along these lines. I decided not
to include my original proof, which is longer and references the proof of the
energy argument from Chapter 2, but I regret this now. What I like about
the proof is that it highlights the role of νt: the only fact it uses about the
heat kernel is that it depends only upon νt and does not bring in any of the
technicalities of what the heat kernel actually is. I include this proof in a
comment below.

The second motivation, having read [11], was to establish the rate of
convergence for a superposition of confined eddies. This turned out to be
a lot easier than I had at first thought, because all the hard stuff was done
in [11]. But I still think the results themselves are interesting, even if the
difficulties involved are insufficient to try publishing the results.

As for convergence in Besov spaces, I came across Abidi’s and Danchin’s
paper ([1]) in the middle of writing this chapter, and I couldn’t resist spe-
cializing their paper to circularly symmetric initial vorticities.

p. 54Section 4.2 title: Bounds on convergence rate for circular symmetry

In earlier drafts I used “circular symmetry” where I should have used “radial
symmetry,” and this is a holdover that I overlooked while editing. It should
read, “Bounds on convergence rate for radial symmetry.”

p. 54Bottom of page: vN = vH
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I am really using that vN = vH , which I should perhaps have been more
careful to demonstrate. One way to show this is as follows.

The solution vH = pνt ∗ v0 to (H) satisfies

∂tv
H = ν∆vH , div vH = pνt ∗ div v0 = 0.

Observe that
ω(vH · ∇vH) = vH · ∇ωH = 0

by the radial symmetry of ωH = ω(pνt ∗ v0) = pνt ∗ω(v0) = pνt ∗ω0, because
vH is perpendicular to ∇ωH by the Biot-Savart law. (See, for instance, p.
11 of [4].)

But for all t > 0,

‖vH‖L∞ ≤ ‖pνt‖L1 ‖v0‖L∞ <∞,

‖∇vH‖L2 ≤ ‖∇pνt‖L1 ‖v0‖L2 <∞,

so vH · ∇vH is in L2 for all positive time. By Theorem 2A.5, there is
unique divergence-free vector field in L2 whose vorticity is 0. But the zero
vector field is in L2 with zero vorticity, so the unique vector field is the zero
vector field. Hence, vH · ∇vH = ∇h for some scalar field h by the Hodge
decomposition.

Letting p = −h, we see that

∂tv
H + vH · ∇vH +∇p = ∂tv

H +∇h−∇h = ∂tv
H = ν∆vH .

Since we have already shown that div vH = 0, we see that vH is, in fact, a
solution to (NS) as well.

p. 54 A slight twist on the proof of Theorem 4.2.1

The following proof does not use the heat kernel at all. This makes the exten-
sion to a bounded domain as in the situation investigated in Remark (4.2)
particularly transparent, since the boundary integrals vanish. [Bona and
Wu, however, also show convergence of the vorticity, which is more of an
issue.]

We have

(∂t(vN − vE)) · (vN − vE) = ∂tv
N · (vN − v0)

= (ν∆vN −∇pN ) · (vN − v0).

Integrating over R2 and applying the divergence theorem gives
1
2
d

dt
‖vN − vE‖2

L2 + ν‖∇vN‖2
L2 = ν

∫
R2

∇vN · ∇v0

≤ ν‖∇vN‖L2‖∇v0‖L2 ≤
ν

2
‖∇vN‖2

L2 +
ν

2
‖∇v0‖2

L2 .

It follows that

‖(vN − vE)(t)‖2
L2 + ν

∫ t

0
‖∇vN‖2

L2 ≤ ν

∫ t

0
‖∇v0‖2

L2 = νt‖∇v0‖2
L2 ,
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from which Theorem 4.2.1 follows.

p. 54My original proof of Theorem 4.2.1

As in the proof on p. 55 of my thesis, vE(t) = v0 is the steady state solution
to (E), and vN = vE .

We assume first that ω0 is in L2 ∩ La for some a in [2,∞]. We apply
Theorem 2.3.1 p. 11 of my thesis, justifying its application below, giving∫

R2

∣∣vN (t, x)− vE(t, x)
∣∣2 dx =

∫
R2

∣∣vN (t, x)− v0(x)
∣∣2 dx

≤ Rνt+ 2
∫ t

0

∫
R2

|∇v0(x)|
∣∣vN (s, x)− v0(x)

∣∣2 dx ds,
where R = C‖ω0‖2

L2 and C is an absolute constant. Using Cauchy-Schwarz’s
inequality, ∫

R2

∣∣vN (t, x)− vE(t, x)
∣∣2 dx

≤ Rνt+ 2
∫ t

0
‖∇v0‖L2‖vN (s, ·)− v0(·)‖2

L4 ds,

≤ Rνt+ 2t‖∇v0‖L2‖vN − v0‖2
L∞([0,t],L4(R2)).

(4.1)

But, ‖∇v0‖L2 ≤ C‖ω0‖L2 , and

‖vN − v0‖L∞([0,t],L4(R2)) ≤ ‖vN‖L∞([0,t],L4(R2)) + ‖v0‖L4 ≤ 2‖v0‖L4 ,

since

‖vN (s)‖L4 = ‖pνs ∗ v0‖L4 ≤ ‖pνs‖L1 ‖v0‖L4 = ‖v0‖L4 .

Also, by Lemma 2B.1 p. 23 of my thesis, since ω0 is in La for a > 2 and
v0 is in Em, we conclude that v0 is in Lp ∩ L∞ for all p > 2, so v0 is in L4.
Thus, (4.1) gives

‖vN (t)− v0‖2
L2 ≤ Rνt+ 8Ct‖ω0‖L2‖v0‖2

L4 = Rνt+ Ct.

But vN (t) depends only upon νt (since pνt only depends upon νt), and
the steady-state solution v0 to the Euler equations does not depend upon t
or upon ν, so the best bound for ‖vN (t)− v0‖L2 is achieved in the limit as
t goes to zero while νt remains fixed. This gives Equation (4.2.1) p. 54 of
my thesis.

To remove the assumption that ω0 is in La, we can use a sequence of
vorticities in L2 ∩La approaching ω0 in L2, and use the fact that the bound
in Equation (4.2.1) p. 54 of my thesis depends only upon the L2-norm of
ω0.

It remains to justify the use of Theorem 2.3.1 of my thesis. If we examine
its proof on p. 14-18 of my thesis, we can see that we can apply it if we can
establish that:

(i) vN and v0 are in L∞loc(R;L∞(R2));
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(ii) vN − v0 is in L∞loc(R;L2(R2));
(iii) ∇vN and ∇v0 are in L∞loc(R;L2).

[In an earlier version of my thesis I had a remark to this effect following the
statement of the thesis.]

To establish these properties, let σ be a stationary solution to (E) with
total vorticity m, as in Appendix 2A p. 19-23 of my thesis. Then v0 − σ is
in L2, as is vN − σ, since∥∥vN − σ

∥∥
L2 = ‖pνt ∗ v0 − σ‖L2 ≤ ‖pνt ∗ (v0 − σ)‖L2 + ‖pνt ∗ σ − σ‖L2

≤ ‖pνt‖L1 ‖v0 − σ‖L2 + ‖pνt ∗ σ − σ‖L2 ,

which is finite by Lemma 2A.6 p. 22 of my thesis. (This shows that vN

remains in Em.) Also, ω0 is in La, as is ωN , since

‖ωN‖La = ‖pνt ∗ ω0‖ ≤ ‖pνt‖L1 ‖ω0‖La = ‖ω0‖La .

Property (i) then follows from Lemma 2B.1 p. 23 of my thesis applied to
v0−σ and to vN −σ, since σ is in L∞. Similarly, ω0 and ωN are both in L2,
and property (iii) follows from the Calderon-Zygmund inequality. Finally,
property (ii) holds because Em is an affine space (see Appendix 2A p. 19-23
of my thesis).

�

Remark 4.1. This alternate proof of Theorem 4.2.1 does not depend upon
the specific form of, or even existence of, the heat kernel, only that the
solution to the homogeneous heat equation depends only upon the product
of the viscosity and the time. (Except, that is, for the value of the constant
in Equation (4.2.1) p. 54 of my thesis.)

Remark 4.2. In [2], Bona and Wu consider vanishing viscosity in the setting
of radially symmetric initial vorticity in the unit diskD, with the very special
additional condition that

∫ 1
0 rω

0(r) dr = 0. This condition is equivalent to
assuming that v0 = vE = 0 on ∂D. This means that the integration by
parts in Equation (4.2.2) p. 55 and in the slight variation of the proof of
Theorem 4.2.1 given above—as well as the appeal to the proof of Theorem
2.3.1 in my original proof—are valid on D as well. Since the solution to
the heat equation on D depends only upon νt, my original proof gives the
vanishing viscosity result of [2] very easily. Or, if we use the fact that the
heat kernel on D is bounded in L2, the proof in my thesis gives this result
more easily still. But the slight variation of the proof I gave above has the
simplest translation to D.

Remark 4.3. In the comment following Proposition 2.3 p. 49 of [12], Majda
and Bertozzi state a result with the same convergence as in Equation (4.2.1)
p. 54 of my thesis under the much stronger assumption that the initial
vorticity is Lipschitz. An implication of Theorem 1 of [6] (see also Theorem
1.5 of [3]) is that for a single compactly supported eddy with ω0 in L2 ∩
L∞, vN → vE in L∞([0, t];L2) at a rate bounded by C(t)

√
νt, but with
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C(t) increasing with t. In [1], Abidi and Danchin show that for a radially
symmetric vortex patch in R2—meaning that ω0 = 1Ω, where Ω is a disk—∥∥vN (t)− vE

∥∥
L2 ≤ C(νt)3/4 for all νt ≤ 1.

p. 65“circularly symmetric”

The phrase “circularly symmetric” in the first sentence in Section 4.5 should
read “radially symmetric.” See comment on title of Section 4.2 p. 54.

5. Concerning Chapter 5

I gave a talk on the material in Chapter 5 on 14 September 2005 at Brown.
This was the first such talk, and so I found a lot of things I should or should
not have said!

p. 70Expression for Γt

There is a missing constant in the expression∫ Γt(s)/4

s/4

dr

β1,φ(r)
= t,

and a missing square. It should read∫ Γt(s)2/4

s2/4

dr

β1,φ(r)
= Ct.

The constant C is a unitless absolute constant and ultimately derives from
Equation (5.2.12) p. 77. The missing squares came from an error in a change
of variables: see comment on p. 80, below.

p. 74-76The bound on L

The bound on L needs to be done not for a fixed value of p but for a general
value of p in [p0,∞], because the bound in Equation (5.2.8) the term C3a
needs to include a factor of ‖ω0‖Lp . This is not too much of a problem,
though. The bound on L on the top of p. 75 becomes

L ≤ 16‖ω0‖Lp

(
π

q − 1

)1/q

λ2/q−2a.

Using the relations between p and q on p. 75 and 76, we have(
π

q − 1

)1/q

λ2/q−2 =
(

π

1/(p− 1)

)1−1/p

λ2/q−1−1 = (π(p− 1))1−1/pλ1−2/p−1

= (π(p− 1))1−1/pλ−2/p.

But,

(π(p− 1))1−1/p ≤ π(p− 1) ≤ πp
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and

λ−2/p ≤ a−2/p

since λ ≥ 1 (in fact, λ =
√

2) and we have assumed that |x− x′| = 2a ≤ 1
(on the top of p. 72) so λ > a. Thus,

L ≤ 16π‖ω0‖Lppa1−2/p,

which is what we need in place of the term C3a to make the second inequality
in Equation (5.2.8) valid.

p. 78 Typo in the last equation on the page

I forgot the argument s in this equation. It should read:

xk+1(t) = x0 +
∫ t

0
v(s, xk(s)) ds.

p. 80 Last equation on page

In the change of variables, I forgot the square (though I included the division
by 4!). This equation should read:∫ Γt(s)

s

dr

µ(r)
=

∫ Γt(s)2/4

s2/4

dr

β(r)
= t.

p. 81 The paragraph containing Equation (5.5.1)

This paragraph is stating something I intended to show, but only properly
showed for the first two of Yudovich’s examples. And even for the second
example, this is a charitable view of things, since my constant decreases
exponentially in time (which isn’t such a big deal). For the higher examples,
it may not even be quite true, as time enters in in a more complicated way.
So I should have struck this paragraph.

Also, the more important question is what happens to the modulus of
continuity of the flow, though it is admittedly driven, in the examples I
construct, by the upper bound on the modulus of continuity of the velocity.

p. 83 First equation on the page and the sentence before it

There is a double sign error here that cancel each other out, and the argu-
ment is perhaps a little unclear.

First, I never stated the conclusion of the sentence preceding this equation,
which is that ω(t, x1,−x2) = −ω(t, x1, x2), which follow from the uniqueness
of our solutions to (E).
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Second, we are using the fact that K2(x1,−x2) = −K2(x1, x2): I dropped
the negative sign. In the third equality, this leads to no change in sign since
both factors in the integrand change sign.

Third, the change of variables in the final equality introduces a negative
sign. Thus, the equation should read:

v2(t, x1,−x2) = (K2 ∗ ω)(t, x1,−x2)

=
∫

R2

K2(x1 − y1,−x2 − y2)ω(t, y1, y2) dy

=
∫

R2

K2(x1 − y1, x2 + y2)ω(t, y1,−y2) dy

=
∫

R2

K2(x1 − y1, x2 − (−y2))ω(t, y1,−y2) dy

= −v2(t, x1, x2).

Fourth, I am bringing in the issue of time here prematurely, as I should
just be dealing with the symmetry of ω0, then making this observation
concerning the symmetry of ω at time t later.

p. 84The two equations between Equations (5.5.5) and (5.5.6)

In both of these equations, y2 should be y1.

p. 87The equation before Equation (5.5.14)

This equation would be better written as

ηλ(x1) = max
k∈Z+

{k : rk ≥ xλ
1}.

p. 87Equation (5.5.14)

The “1” in Equation (5.5.14) should be bolded.

p. 87“The difficulty in applying Theorem 5.5.1 lies in choosing a function ω0 that
both gives a bound in Equation (5.5.2) that is an admissible function in the
sense of β in Definition 2.1.1,. . . ”

I believe I meant to say, “The difficulty in applying Theorem 5.5.1 lies in
choosing a function ω0 that gives a bound in Equation (5.5.2) that is both
an admissible function in the sense of β in Definition 2.1.1,. . . ” That is, I
put the word “both” in the wrong place.

This is still a somewhat silly statement, though. The sentence as a whole
should just have read, “The difficulty in applying Theorem 5.5.1 lies in
choosing a function ω0 that is both an admissible function in the sense of β
in Definition 2.1.1, and is such that we can obtain an asymptotic formula for
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its Lp-norms that obeys Yudovich bounds on the vorticity.” The resulting
bound in Equation (5.5.2) will then always be there (assuming ω0 is chosen
to have the right symmetries).

p. 92 “To achieve a lower bound on ω0(t) and hence a lower bound on v1
0(x1, 0),

we assume that Equation (5.6.3) holds for all x and t. This will minimize
the lower bound on v1

0(x1, 0) in Equation (5.5.2), since ω0 decreases with
the distance from the origin.”

First, the 0 subscripts here are a mistake.
Second, the phrase “minimizes the lower bound” is ridiculous; it should

say “gives a lower bound.” But the real problem is that this is not much
of an explanation, and misses the point. What I produce by assuming that
Equation (5.6.3) holds is a point-by-point lower bound on the magnitude of
the vorticity. Call this lower bound ω(t, x), and observe that it obeys all
the symmetry conditions in Section 5.5. Now, the actual vorticity ω(t, x) we
should not expect to obey all of the symmetry conditions of Section 5.5, but
it will obey the first one—what we called symmetry by quadrant—because
of the space-time symmetries of the Euler equations themselves.

Thus, ω − ω obeys symmetry by quadrant, where we note in particular
that ω − ω ≥ 0 in the first quadrant because ω is a point-by-point lower
bound. If u = K ∗ (ω − ω), it follows from Equation (5.5.3) p. 82 of [8]
that u1(x1, t) ≥ 0, since symmetry by quadrant was all that was required
to derive this equation. So, for the associated velocities v = K ∗ ω and
v = K ∗ ω, v1(x1, t) ≥ v1(x1, t), which shows that assuming that Equation
(5.6.3) holds gives a lower bound on v1

0(x1, t) in Equation (5.5.2) (which is
what I really meant by v1

0(x1, 0), believe it or not).

p. 92 ρ(t) = ψ(t, x)

This should be ρ(t) = |ψ(t, x)|.

p. 94 Equation in middle of page

The first “≥” is actually an “=,” since ψ2(t, x11, 0) = 0 (because v2(t, x1, 0) =
0 for all t and x1. Thus, the equation could be written

|ψ(t, a, 0)− ψ(t, 0, 0)|
aα

=

∣∣ψ1(t, a, 0)
∣∣

aα
≥ aexp(−2(1−λ′)t/π)−α.
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