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Abstract. The 3D incompressible Euler equations in a bounded domain are most often
supplemented with impermeable boundary conditions, which constrain the fluid to neither
enter nor leave the domain. We establish well-posedness with inflow, outflow of velocity when
either the full value of the velocity is specified on inflow, or only the normal component is
specified along with the vorticity (and an additional constraint). We derive compatibility
conditions to obtain arbitrarily high Hölder regularity of the solution, and allow multiply
connected domains. Our results apply as well to impermeable boundaries, establishing higher
regularity of solutions in Hölder spaces, filling a gap in the literature.
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Part I: Overview

1. Introduction

Let Ω be a bounded domain in R3, possibly multiply connected, having a boundary that is
at least C2 regular. We define n to be the outward unit normal vector to the boundary,
Γ := ∂Ω, and follow the convention that for any vector field v,

vn := v · n, vτ := v − vnn on Γ. (1.1)

Fixing T > 0, the Euler equations on Q := (0, T )× Ω can be written,
∂tu+ u · ∇u+∇p = f in Q,

divu = 0 in Q,

u(0) = u0 on Ω.

(1.2)

Here, u is the velocity field of a constant-density incompressible fluid, p its scalar pressure, f
the divergence-free external force tangential to the boundary, and u0 the initial velocity.

To complete the system of equations in (1.2) we impose inflow, outflow boundary conditions
in the spirit of [2]. We partition the boundary Γ into three portions, Γ+, Γ−, and Γ0,
corresponding to inflow, outflow, and impermeability, respectively. Each portion consists of
a finite number of components (with Γ0 = ∅ or Γ0 = Γ allowed—see Remark 12.1). We fix a
vector field U on [0, T ]× Γ and assume that

Un < 0 on Γ+, Un > 0 on Γ−, Un = 0 on Γ0.

We then define inflow, outflow boundary conditions as{
un = Un on [0, T ]× Γ,

u = U on [0, T ]× Γ+.
(1.3)

We also impose on U the constraint that
∫
Γ+

Un = −
∫
Γ−

Un, required to allow divu = 0.

(We choose to impose inflow, outflow boundary conditions in terms of a vector field U
defined on all of Γ—in fact on all of Ω—because it will be productive for us to view U as a
background flow as done in [7, 24, 28]. If we wish, we can choose U to be divergence-free as
done in [7], though this is not necessary for our purposes.)

Defining the vorticity,

ω := curlu,

applying curl to both sides of (1.2)1 yields the vorticity equation,

∂tω + u · ∇ω − ω · ∇u = g := curl f . (1.4)

It follows from (1.4) that the vorticity is transported and stretched (pushedforward) by the
flow map for u (when g ≡ 0).

In particular, the vorticity is brought into the domain from the inflow boundary, making
inflow, outflow substantially more difficult to treat than impermeable boundaries: the mech-
anism for generating vorticity on the inflow boundary must be understood and controlled.
This is a key reason for using Hölder spaces, as there is no loss of regularity of the trace of
the vorticity on the boundary over that in the domain.

Higher regularity solutions for inflow, outflow boundary conditions are employed, for in-
stance, in Prandtl-type boundary layer expansions (such as [7, 28] and work in progress of
the authors). The validity of such expansions for inflow, outflow boundary conditions results
from a stability mechanism of injection, suction in boundary layers. These applications were
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the original motivation for this work: because of this, in Appendix C we give the explicit
form of the compatibility conditions for those works.

More commonly, (1.2) is supplemented with impermeable boundary conditions, u · n = 0,
on all of Γ, meaning that fluid neither enters nor exits the domain. This places one constraint
on the velocity field, as is usual for first-order equations. The condition in (1.3)2, however,
specifies the full velocity on the inflow boundary. This condition is natural in view of (1.4),
which demonstrates that the vorticity is brought into the domain from the inflow boundary.

The system of equations we study, then, are (1.2) with (1.3):

∂tu+ u · ∇u+∇p = f in Q,

divu = 0 in Q,

u(0) = u0 on Ω,

un = Un on [0, T ]× Γ,

u = U on [0, T ]× Γ+.

(1.5)

We can state the main result of this paper informally as follows, where throughout, we
fix α ∈ (0,1):

Theorem (Informal statement of main result). Assume that for some integer N ⩾ 0, u0

is a divergence-free vector field in the classical Hölder space CN+1,α(Ω), satisfies (1.3), and
satisfies a compatibility condition to be described below. There is a T > 0 such that there
exists a solution to (1.5) with u(t) ∈ CN+1,α(Ω) for all t ∈ [0, T ].

To state our main result rigorously, we must define the function spaces in which we will
work, determine proper conditions on the forcing, and determine the required compatibility
conditions. In addition, a careful study of the pressure will be needed.

Function spaces. For any N ⩾ 0 we define the affine hyperplanes of CN+1,α(Ω) and
CN+1,α(Q),

CN+1,α
σ (Ω) := {u ∈ CN+1,α(Ω): divu = 0,u · n = Un(0) on Γ},

CN+1,α
σ (Q) := {u ∈ CN+1,α(Q) : divu = 0,u · n = Un on [0, T ]× Γ}.

(1.6)

Since only the normal component of u is specified on the entire boundary, only the boundary
condition in (1.5)4 is included in the definition of these spaces.

We also employ the classical space,

H := {u ∈ L2(Ω)3 : divu = 0, u · n = 0 on Γ} = H0 ⊕Hc, (1.7)

where

Hc := {v ∈ H : curlv = 0}, H0 := H⊥
c . (1.8)

For u ∈ H, PHcu is termed the harmonic component of u.
We define the boundary values (via U) and the forcing f for all time on Q∞ := [0,∞)×Ω).

We will prove existence only for short time.

Definition 1.1. We say that the data has regularity N for an integer N ⩾ 0 if

• Γ is CN+2,α, U ∈ CN+2,α
σ (Q∞), f ∈ CN+1,α(Q∞) ∩ C([0,∞);H0);

• u0 ∈ CN+1,α
σ (Ω), uτ0 = Uτ

0 on Γ+.

We assumed that U has one more derivative than u for two somewhat related reasons, as
explained in Remarks 3.2 and 9.4.



4 G.-M. GIE, J. KELLIHER, AND A. MAZZUCATO

Compatibility conditions. The vorticity generated at the inflow boundary is carried by the
flow into the interior; at the same time, the flow pushes the initial vorticity forward in time.
The interaction between these two sources of vorticity may potentially lead to a singularity.
The main thrust of this work is to show that it is possible to avoid such singularities, at least
for short time, by imposing suitable conditions on the data. We refer to these conditions as
compatibility conditions, satisfying two primary principles:

(1) They depend only upon the initial data, U, and f .
(2) They are compatible with being a solution to (1.5); that is, a solution to (1.5) could,

in principle, satisfy them.

The conditions we develop will ensure regularity of the solution for short time. It remains an
open question whether a regular solution persists for all time even in 2D.

Given u with data regularity N for some N ⩾ 0, we define the N th compatibility condition,

cond−1 : u
τ
0 = Uτ

0 on Γ+,

condN : condN−1 and ∂N+1
t Uτ |t=0 = ∂̃N+1

t uτ0 on Γ+.
(1.9)

For integers n ⩾ 0, we define ∂̃n
t u0 inductively by setting ∂̃0

t u0 = u0, while for n ⩾ 1, we take

the time derivative of ∂̃n−1
t u at time zero and replace each instance of ∂tu in the resulting

expression by −u0 · ∇u0 − ∇q + f(0). Here, q is an approximate pressure, whose detailed
description, along with a more complete description of compatibility conditions in general,
we present in Section 3.

For N = 0, (1.9) is the compatibility condition in (1.10), (1.11) of Chapter 4 of [2]:

cond0 : ∂tU
τ |t=0 = [−u0 · ∇u0 −∇q + f(0)]τ on Γ+.

Main result. We can now rigorously state the main result of this paper as follows:

Theorem 1.2. Assume the data has regularity N for some integer N ⩾ 0 as in Definition 1.1
and satisfies condN of (1.9). There is a T > 0 such that there exists a solution (u, p) to (1.5)

with (u,∇p) ∈ CN+1,α
σ (Q) × CN,α(Q), which is unique up to an additive constant for the

pressure.

Remark 1.3. It follows from the proof of Theorem 1.2 that T is bounded below by a con-
tinuous, increasing function of the norms of Γ, U, f , and u0 in the spaces appearing in
Definition 1.1. The explicit form of the estimate is, however, involved and not optimal.

Vorticity boundary condition. We also consider solutions (u, p, z) to the Euler equations
with vorticity boundary conditions, where the value of the vorticity on the inflow boundary
is given by a function H on [0, T ]× Γ+:

∂tu+ u · ∇u+∇p = f + z in Q,

divu = 0 in Q,

u(0) = u0 on Ω,

un = Un on [0, T ]× Γ,

curlu = H on [0, T ]× Γ+.

(1.10)

Here, z ∈ Hc is an harmonic vector field. We can either treat it as part of the data or as part
of the solution. That is, we can either: (1) choose z or (2) choose the harmonic component of
u(t), from which the value of z can be obtained. We choose the latter option in Theorem 1.4,
as it allows for the uniqueness of solutions.
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Theorem 1.4. Fix uc ∈ CN+1,α(Q) ∩ C([0, T ];Hc). Assume that the data has regularity N
for some integer N ⩾ 0 as in Definition 1.1, that condN holds, and that uc(0) = PHcPHu0.

Also assume that H ∈ Cmax{N,1},α([0, T ]× Γ+) and

Hn = 0, divΓ[U
nHτ ] + curl f · n = 0 on [0, T ]× Γ+. (1.11)

There is a T > 0 such that there exists a solution (u, p, z) in CN+1,α
σ (Q) × CN,α(Q) ×

(CN+1,α(Q) ∩ C([0, T ];Hc) to (1.5) for which PHcPHu = uc on Q. If N ⩾ 1 the solution is
unique up to an additive constant for the pressure. In addition, z(0) = 0.

Remark 2.3 explains why the condition in (1.11) is imposed; divΓ is the divergence operator
on the boundary (see Appendix B).

What is novel in our approach. There are many proofs of well-posedness of the Euler
equations taking different approaches. To the authors’ knowledge, all such proofs in Hölder
spaces in a 3D domain with boundary, including this paper, and many in the whole space
or a periodic domain, follow in the tradition of McGrath [20,21] and Kato [11], in which the
solution is obtained as a fixed point of an operator A derived from a linearization of the Euler
equations, employing Schauder’s fixed point theorem.

For inflow, outflow boundary conditions, this approach was taken in Chapter 4 of [2],
which establishes Theorem 1.2 for N = 0 and simply connected domains. The operator A
is derived from a linearization of the vorticity equation (1.4) with prescribed values on the
inflow boundary. This leads to linear compatibility conditions based on vorticity, whereas the
nonlinear boundary conditions are based on the velocity. In fact, one challenge is to ensure
that the nonlinear compatibility conditions at the level of the velocity imply the linear ones
at the level of the vorticity.

To handle inflow, outflow boundary conditions, the authors of [2] make many adaptations
to the Kato-McGrath approach, but we would identify their two key innovations as the
following:

• They obtain estimates on the operator A under the simple linear compatibility condi-
tion that on the inflow boundary, the vorticity matches the prescribed inflow vorticity
at time zero (akin to the Rankine-Hugoniot condition).

• They show how to achieve the needed regularity of the inflow vorticity from the
pressure.

For N ⩾ 1, several complications arise. We can still use the same operator A as in [2],
but now the linear compatibility conditions becomes more involved (see (2.3) and (2.4)).
This linear issue was resolved in [9], but deriving and relating the nonlinear compatibility
conditions to the linear ones remained a significant challenge, which we address here.

Moreover, unlike the N = 0 case, data satisfying the N ⩾ 1 compatibility condition is by
itself insufficient to insure that the corresponding linear compatibility condition is satisfied.
To address this, we must restrict the domain of the operator A by imposing an additional
condition on the time derivative of the initial velocity (as in (4.1)) and show that, in fact,
the resulting domain is nonempty.

The estimates on the operator A that result become much more complex for the higher
regularity we treat here. This is in contrast to proving existence in the full space or a periodic
domain, where one can bootsrap as in Section 4.4 of [16], which takes advantage of the simple
form of Biot-Savart kernel for the full space. And in 2D, where the vorticity equation has no
stretching term, one can bootstrap as Marchioro and Pulvirenti do in [19] (which originates
in their earlier text [18]).
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Instead, we must obtain existence directly in the higher-regularity spaces, and the resulting
estimates are much more involved than the N = 0 case.

Indeed, even in the impermeable boundary case, which is also covered by our results, there
is, to the authors’ knowledge, no result in the literature for higher regularity in Hölder spaces
(for higher regularity in Sobolev spaces, see, for example, the seminal works [12,29]). Hence,
we fill a gap in the literature even for the impermeable case.

Other Prior work. In addition to [2], we also drew ideas from [15], which proves well-
posedness of the 3D Euler equations for impermeable boundary conditions in Hölder spaces
(the equivalent of our N = 0 regularity). We mention also the work of Petcu [24], who
presents a version of the argument in Chapter 4 of [2], specializing it to a 3D channel with a
constant U, which simplifies and makes clearer some of the arguments in [2].

Section 1.4 of [17] contains an extensive survey of results, both 2D and 3D, related to the
problem we are studying here. We also mention the 2D work of Boyer and Fabrie [3, 4] and
the recent works [5, 23].

Vorticity boundary conditions were studied in 2D by Yudovich in [10]. We refer in addition
to the historical comments in Section 1.4 of [17] concerning partial results in 3D.

Structure of this paper. This paper consists of three parts, along with three appendices.
In Part I, following this introduction, we begin in Section 2 by summarizing results from [9]

on the linearization of (1.5), a key tool at the heart of all of our arguments. In Section 3,
we explore in-depth the nonlinear compatibility conditions condN as they apply to (1.5) and
their counterparts for the linearized equations. We then give the proof of our main result,
Theorem 1.2, in Section 4. This proof relies upon three propositions, Propositions 4.5 to 4.7:
the rest of the paper is devoted to proving these propositions.

In Part II, we summarize additional background material from [9] and present identities
and estimates on the flow map, on the vorticity generated on the boundary, and on the
pressure.

In Part III, we use results primarily from the second part to prove Proposition 4.5, then
leverage it to obtain Proposition 4.6. We also give the proof of Proposition 4.7. In the
final section of this part, we describe how Theorem 1.4 follows from a simplification of the
estimates obtained in Part II.

Appendix A contains a number of estimates in Hölder spaces, some very standard, some
specific to this paper. In Appendix B we construct a convenient coordinate system in an
ε-neighborhood of Γ+. We use this system to develop properties of the operators ∇Γ, divΓ,
and curlΓ we use in the body of the paper. This allows us to treat the various calculations on
the boundary in a coordinate-free manner, which makes the calculations more transparent.
Finally, in Appendix C, we discuss the compatibility conditions in the special case in which
Uτ ≡ 0 and Un is constant along Γ+ (as occurs in [7, 28]).

We have structured this paper so as to allow the reader to grasp the overall structure of the
proof of Theorem 1.2 without it being obscured by the many technical details. It is possible
to read only Part I and get the gist of the proof. A more in-depth reading would involve at
least examining the key pressure estimates in Section 9 and a reading of [9], to understand
how the linear compatibility conditions arise.

On notation. Our notation, while fairly standard, has a few subtleties. If M is a matrix,
M i

n refers to the entry in row i of M , column n; vi refers to the ith entry in the vector v, which
we always treat as a column vector for purposes of multiplication. If M and N are matrices
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of the same dimensions then M · N := M i
nN

i
n, where here, and elsewhere, we use implicit

sum notation. If u and v are vectors then the matrix u⊗v has components [u⊗v]in = uivn.
We define the divergence of a matrix row-by-row, so divM is the column vector with

components [divM ]i = ∂nM
i
n. Hence, [div[u⊗ v]]i = div[u⊗ v]i = ∂n(u

ivn), where ∂n is the
derivative with respect to the nth spatial variable. The notation ∇ means the gradient with
respect to the spatial variables only; by D we mean the gradient with respect to all variables,
time and space. When applied to the flow map η(t1, t2,x), we write ∂t1η, ∂t2η to mean the
derivative with respect to the first, second time variable. Finally, for vector fields u and v,
we will interchangeably write u · ∇v and ∇vu, as they both are vectors with ith component
um∂mvi.

For any tangent vector field v on Γ, v⊥ = n× v is the tangent vector field v on Γ rotated
90 degrees counterclockwise around the normal vector n when viewed from outside Ω.

2. The linearized problem

The linearized Euler equations corresponding to the vorticity form of (1.5)1 are
∂tω + u · ∇ω − ω · ∇u = g in Q,

ω = H on [0, T ]× Γ+,

ω(0) = ω0 on Ω.

(2.1)

Here, H is given on [0, T ]×Γ+, ω0 is given on Ω, u and g are given on Q, and (2.1) is to be
solved for ω. In application, we will set ω0 = ω0 := curlu(0), though then ω(t) ̸= curlu(t)
in general for t > 0.

We employ the following three types of solution to (2.1):

(1) Classical Eulerian or simply classical solutions to (2.1), by which we mean that (2.1)1
holds pointwise, and each term is continuous.

(2) Weak Eulerian solutions, defined as follows:

Definition 2.1. We say that ω ∈ C(Q) is a weak (Eulerian) solution to (2.1) if
ω = H on [0, T ]×Γ+ pointwise, ω(0) = ω0 in CN,α, and ∂tω+div(ω⊗u)−ω ·∇u = g
in D′(Q).

Note that ω has sufficient time and boundary regularity that we do not need to enforce
the initial and boundary conditions weakly. Also, ω ⊗ u is a regular distribution, so
div(ω ⊗ u) is a distribution even for N = 0.

(3) Lagrangian solutions, adapted to accommodate the inflow of vorticity from Γ+. Be-
cause we must first introduce some concepts related to this inflow, we defer to Defi-
nition 7.4.

As shown in [9], the constraint,

∂tH
n + divΓ[H

nuτ − UnHτ ]− g · n = 0, (2.2)

is required to obtain a solution to (2.1) for which ω(t) lies in the range of the curl. We hence
define the linear compatibility conditions,

lincond0 : H(0) = ω0 on Γ+,
lincond1 : lincond0 and ∂tH|t=0 = ω0 · ∇u0 − u0 · ∇ω0 + g(0) on Γ+,

(2.3)

where u0 := u(0). In lincond1, we formally replaced ∂tω(0) with the value it would have
were ω an actual classical solution to (2.1). Continuing this process inductively on higher
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derivatives, we define a formal operator ∂̃t (see Definition 3.3 for the details), and define, for
all N ⩾ 2,

lincondN : lincondN−1 and ∂N
t H|t=0 = ∂̃N

t ω0 on Γ+. (2.4)

We define the space

C̊N+1,α
σ (Q) := {u : Q → R3 : divu = 0,u · n = Un, ∂j

t ∂
γ
xu ∈ Cα(Q),

j + |γ| ⩽ N + 1, j ⩽ N},
(2.5)

endowed with the natural norm induced by the regularity of its elements. That is, C̊N+1,α
σ (Q)

is defined as CN+1,α
σ (Q), but we require one fewer derivative in time.

Theorem 2.2 ( [9]). Assume that the data has regularity N for some N ⩾ 0 and that

• g := curl f ,

• u ∈ C̊N+1,α
σ (Q),

• H ∈ Cmax{N,1},α([0, T ]× Γ+),
• lincondN holds,
• ω0 is in the range of the curl,
• (2.2) is satisfied on (0, T ]× Γ+.

There exists a solution ω to (2.1) in CN,α(Q), such that ω(t) is in the range of the curl for
all t ∈ [0, T ]. When N ⩾ 1, the solution is classical Eulerian and unique. When N = 0, the
solution is Lagrangian and is also the unique weak Eulerian solution as in Definition 2.1 for
which ω(t) is in the range of the curl for all t ∈ [0, T ].

Moreover, there exists a unique v ∈ CN+1,α
σ (Q) with curlv = ω and v(0) = u0, and a

mean-zero pressure field π with ∇π ∈ CN,α(Q) satisfying

∂tv + u · ∇v − u · (∇v)T +∇π = f . (2.6)

Recalling (1.8), the harmonic component vc of v is given explicitly as

vc(t) := PHcu(0) +

∫ t

0
PHcf(s) ds−

∫ t

0
PHcPH (Ω(s)u(s)) ds, (2.7)

where the antisymmetric matrix Ω := ∇K[ω] − (∇K[ω])T . Here, K is the Biot-Savart
operator, as in Section 6.

Remark 2.3. As applied to the solution of the linearized problem given by Theorem 2.2, the
condition in (2.2) is a condition on the data, not on the solution, since u is given. Applied to
the fully nonlinear problem, however, the appearance of uτ in (2.2) makes (2.2) a condition
on the solution. Eliminating the term involving uτ by requiring that the normal component
of the vorticity on inflow vanish gives (1.11), which is a condition on the data, u0, f , U,
alone at time zero.

In what follows, we will use ω as a Lagrangian solution, but we will need to estimate
v, which is obtained from the Eulerian solution. Hence, it is crucial that Eulerian and
Lagrangian solutions agree.

3. Compatibility conditions: linear and nonlinear

For the linear problem (2.1), H is a given value of the vorticity on the inflow boundary. For
the nonlinear problem (1.5) that we wish to solve, however, H at the inflow boundary must
be obtained from the flow itself. We start with a formula for H that holds if (u, p) is a
classical solution to (1.5).
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Proposition 3.1. Assume that (u, p) satisfies (1.5)1 in a classical sense and let ω := curlu.
Then on [0, T ]× Γ,

unωτ =

[
−∂tu

τ −∇Γ

(
p+

1

2
|u|2

)
+ f

]⊥
+
(
curlΓ u

τ )uτ , ωn = curlΓ u
τ .

Here, ∇Γ is the tangential derivative, and curlΓ is the curl operator on the boundary. (See
Appendix B.)

Proof. As on p. 155 of [2], we start with the Gromeka-Lamb form of the Euler equations,

∂tu+∇
(
p+

1

2
|u|2

)
− u× ω − f = 0. (3.1)

The equivalence of (3.1) and (1.5)1 follows from the identity,

u · ∇u = −u× ω +
1

2
∇|u|2, (3.2)

which holds as long as ω = curlu.
From Lemma B.2

[u× ω]τ = un[ωτ ]⊥ − ωn[uτ ]⊥,

so restricting (3.1) to [0, T ]× Γ+, we have

∂tu
τ +∇Γ

(
p+

1

2
|u|2

)
− un[ωτ ]⊥ + ωn[uτ ]⊥ − fτ = 0.

Hence, since (v⊥)⊥ = −v for any tangent vector v,

unωτ =

[
−∂tu

τ −∇Γ

(
p+

1

2
|u|2

)
+ fτ

]⊥
+ ωnuτ .

The proof is completed by observing that ωn = curlΓ u
τ by (B.2). □

We see from Proposition 3.1 that for a solution to (1.5)1-4 with ω := curlu, we have

ω = W[u, p] on [0, T ]× Γ+, (3.3)

where W[u, p] is defined on [0, T ]× Γ+ by

Wτ [u, p] :=
1

Un

[
−∂tu

τ −∇Γ

(
p+

1

2
|u|2

)
+ fτ

]⊥
+

1

Un
curlΓ u

τuτ ,

Wn[u, p] := curlΓ u
τ .

(3.4)

Now let u be any element of C̊N+1,α
σ (Q), not necessarily a solution of (1.5). We seek to

define a function H in CN,α([0, T ] × Γ+) as a modification of the expression for W[u, p] in
such a way that when the data has regularity N , at least the following two properties hold:

(P1) H at time zero can be defined in terms of the initial data and U only.

(P2) If (u, p) solves (1.5)1-4 and H = W[u, p] on [0, T ]× Γ+ then (u, p) satisfies (1.5)5 as
well—and so solves (1.5).

We define the function H for all N ⩾ 0 as done in [2] for N = 0. First obtain q from u via{
∆q = −div(u · ∇u) in Q,

∇q · n = −∂tU
n −N [u] on [0, T ]× Γ,

(3.5)
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where

N [u] :=

{
(u · ∇u) · n on [0, T ]× (Γ− ∪ Γ0),

(u · ∇u) · n+ divΓ(U
n(uτ −Uτ )) on [0, T ]× Γ+.

(3.6)

We explore the properties of N [u] in Section 8, but it is clear from its definition that if (u, p)
solves (1.5) then N [u] = (u · ∇u) · n on [0, T ]× Γ, so that ∇q = ∇p on Q.

Finally, define H on [0, T ] × Γ+ by replacing uτ with Uτ in all terms in the expression
for W[u, p] having a derivative on uτ . This gives

Hτ :=
1

Un

[
−∂tU

τ −∇Γ

(
q +

1

2
|U|2

)
+ fτ

]⊥
+

1

Un
curlΓU

τuτ ,

Hn := curlΓU
τ ,

(3.7)

and we see that property (P1) of H holds. We show property (P2) in Proposition 4.7.

Remark 3.2. Because we assumed that U has higher regularity than u, the function H has
one more derivative than W[u, p] in (3.4). This higher regularity will persist in the limiting
solution, where H equals W[u, p]. Such higher regularity is needed to solve the linearized
problem in Theorem 2.2 only for N = 0, but we will see later that it is also needed to handle
the pressure estimates for all N ⩾ 0: see Remark 9.4.

Now, if (u, p) solves (1.5)1-4 and ω := curlu, then, of course,

∂tω(0) = ω0 · ∇u0 − u0 · ∇ω0 + g,

∂tu(0) = −u0 · ∇u0 −∇q0 + f ,
(3.8)

where g := curl f . This simple observation is behind both condN and lincondN , which are
based upon applying ∂t, N − 1 times, each time replacing ∂tu or ∂tω with the relation in
(3.8), thereby replacing all time derivatives with spatial derivatives. The resulting relation
would be an identity for any actual solution to the Euler equations, and condN consists of
assuming that the identity holds at time zero. We now describe this process precisely.

Definition 3.3. Let N ⩾ 0 and assume that the data has regularity N as in Definition 1.1,

and let u ∈ C̊N+1,α
σ (Q) with u(0) = u0. Because the forcing and U are independent of the

solution, we simply define ∂̃n
t f := ∂n

t f , ∂̃
n
t g := ∂n

t g, and ∂̃n
t U = ∂n

t U, where we recall that
g := curl f . In accord with (3.8), we define

∂̃tu := −u · ∇u−∇q + f , ∂̃tω := −u · ∇ω + ω · ∇u+ g,

where q satisfies (3.5).
We then define

∂̃2
t u := −∂̃t(u · ∇u)−∇∂̃tq + ∂tf ,

∂̃2
tω := −∂̃tu · ∇ω − u · ∇∂̃tω + ∂̃tω · ∇u+ ω · ∇∂̃tu+ ∂tg,

(3.9)

where

∂̃t(u · ∇u) := ∂̃tu · ∇u+ u · ∇∂̃tu,

and define ∂̃tq to be the unique mean-zero solution to (see Remark 3.4, below){
∆∂̃tq = −div ∂̃t(u · ∇u) in Q,

∇∂̃t · n = −∂tU
n − ∂̃tN [u] on [0, T ]× Γ,
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with

∂̃tN [u] :=

{
∂̃t(u · ∇u) · n on [0, T ]× (Γ− ∪ Γ0),

∂̃t(u · ∇u) · n+ divΓ(U
n(∂̃tu

τ − ∂tU
τ )) on [0, T ]× Γ+.

We note, then, that

∂̃2
t u = −(−u · ∇u−∇q + f) · ∇u− u · ∇(−u · ∇u−∇q + f)−∇∂̃tq + ∂tf .

For ∂̃n
t , we repeat this process inductively, up to order N +1 for ∂̃tu and order N for ∂̃tω.

Remark 3.4. In the inductive extension of ∂̃n
t q in Definition 3.3, we can see that ∂̃n

t q is the
unique mean-zero solution to{

∆∂̃n
t q = −div ∂̃n

t (u · ∇u) in Q,

∇∂̃n
t q · n = −∂n

t U
n − ∂̃n

t N [u] on [0, T ]× Γ,
(3.10)

where

∂̃n
t N [u] :=

{
∂̃n
t (u · ∇u) · n on [0, T ]× (Γ− ∪ Γ0),

∂̃n
t (u · ∇u) · n+ divΓ(U

n(∂̃n
t u

τ − ∂n
t U

τ )) on [0, T ]× Γ+.

Then ∫
Γ

[
∂n
t U

n + ∂̃n
t N [u]

]
=

∫
Ω
div ∂̃n

t (u · ∇u),

since divU = 0 and divΓ(U
n(∂̃n

t u
τ − ∂n

t U
τ )) integrates to zero over each boundary compo-

nent. Hence, (3.10) is solvable.

In Definition 3.3, ∂̃n
t does not represent a derivative. Rather, it is a shorthand notation to

properly account for the combinatorial nature of lincondN and condN . From the manner in

which ∂̃tq was defined, we have

condn−1 =⇒ ∂̃n
t u0 · n = ∂n

t U
n(0) on Γ. (3.11)

Moreover, if (u, p) is a solution to (1.5) with (u,∇p) ∈ CN+1,α
σ (Q)×CN,α(Q) then ∂̃n

t u = ∂n
t u

on Q for all n ⩽ N + 1, ∂̃n
t ω = ∂n

t ω on Q for all n ⩽ N , and ∂̃n
t N [u] = ∂n

t (u · ∇u) · n on
[0, T ]× Γ for all n ⩽ N .

Unlike actual time derivatives, we cannot write ∂̃t(∂̃tu) = ∂̃2
t u, for we have not even

defined how ∂̃t would act on ∂̃tu. But the following simple proposition, which will be useful

for treating condN for N ⩾ 1, follows immediately from the definition of ∂̃n
t in Definition 3.3:

Proposition 3.5. Let u be as in Definition 3.3 for some N ⩾ 1 and let t ∈ [0, T ]. If

∂n
t u = ∂̃n

t u on {t} × Ω for all 0 ⩽ n ⩽ N , then

∂t∂̃
n
t u = ∂̃n+1

t u on {t} × Ω for 1 ⩽ n ⩽ N.

Proposition 3.6 shows that, formally, ∂̃n
t curlu = curl ∂̃n

t u.

Proposition 3.6. Let u be as in Definition 3.3. Then div ∂̃n
t u = 0 for all 0 ⩽ n ⩽ N , and

∂̃n
t ω = curl ∂̃n

t u for all 0 ⩽ n ⩽ N − 1. (3.12)

For all 0 ⩽ n ⩽ N − 1, ∂̃n
t ω is in the range of the curl. Finally, if u ∈ CN+1,α

σ (Q) then

div ∂̃N+1
t u = 0, (3.12) also holds for n = N , and ∂̃N

t ω is in the range of the curl.
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Proof. We constructed the pressure q in Definition 3.3 so that div ∂̃n
t u = 0. Then, for n = 1,

(3.12) follows from the identity, curl(u · ∇u+∇q) = u · ∇ω − ω · ∇u.
For n = 2, we will use the identity,

curl(u · ∇v + v · (∇u)T ) = u · ∇ curlv − curlu · ∇v,

valid for any u,v ∈ C2(Ω) with divu = 0, which we prove in Lemma 3.10. We will also use,

∂̃tu · ∇(curlu)T + curlu · (∇∂̃tu)
T = ∇(∂̃tu · curlu).

Since curl∇ = 0, we know that the curl of the left-hand side is zero. From (3.9) and (3.12)
for n = 1, we can write

∂̃2
tω = −∂̃tu · ∇ω − u · ∇ curl(∂̃tu) + curl(∂̃tu) · ∇u+ ω · ∇∂̃tu+ g

= curl(∂̃tu) · ∇u− u · ∇ curl(∂̃tu) + ω · ∇∂̃tu− ∂̃tu · ∇ω + g

= − curl(∂̃tu · ∇u+ ∂̃tu · (∇u)T )− curl(u · ∇∂̃tu+ u · (∇∂̃tu)
T ) + g

= curl(−∂̃tu · ∇u− u · ∇∂̃tu−∇∂̃tq + ∂tf) = curl ∂̃2
t u.

Equality in (3.12) follows inductively for higher values of n.

It follows directly from (3.12) that ∂̃n
t ω is in the range of the curl for all 0 ⩽ n ⩽ N − 1.

Finally, if u ∈ CN+1,α
σ (Q)—as opposed to u ∈ C̊N+1,α

σ (Q), as in Definition 3.3—then u and

ω have one more time derivative, giving that div ∂̃N+1
t u = 0, (3.12) also holds for n = N ,

and ∂̃N
t ω is in the range of the curl. □

Since u is given in the linearized problem, lincondN is a condition on the data. For the
nonlinear problem, a different condition is needed to avoid the appearance of ∂N

t uτ |t=0 in
the expression for ∂N

t Hτ |t=0. We begin the exploration of this issue by examining closely
the N = 0 case.

Using Lemma B.2 along with curlΓU
τ = Hn, on [0, T ]× Γ+, we have

−[[u×H]τ ]⊥ = UnHτ −Hnuτ =

[
−∂tU

τ −∇Γ

(
q +

1

2
|U|2

)
+ fτ

]⊥
,

so,

[u×H]τ = ∂tU
τ +∇Γ

(
q +

1

2
|U|2

)
− fτ

= ∂tU
τ +∇Γ

(
q +

1

2
|u|2

)
− fτ +

1

2
∇Γ

(
|U|2 − |u|2

)
.

Then using the vector identity in (3.2)

∇Γ

(
q +

1

2
|u|2

)
− fτ = [u · ∇u+∇q − f ]τ + [u× ω]τ = −∂̃tu

τ + [u× ω]τ . (3.13)

Hence,

[u×H]τ = ∂tU
τ − ∂̃tu

τ +
1

2
∇Γ

(
|U|2 − |u|2

)
+ [u× ω]τ . (3.14)

Note that (3.14) holds on all of [0, T ]×Γ+ for any u ∈ C̊1,α
σ (Q) when the data has regularity

0, without assuming any compatibility conditions.

Proposition 3.7. Assume the data has regularity 0, u ∈ C̊1,α
σ (Q), and cond0 in (1.9) holds.

Then lincond0 in (2.4) holds.
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Proof. All the calculations in this proof apply at time zero on Γ+.

We have ∂tU
τ − ∂̃tu

τ = 0 by cond0. Since also u(0) = U(0) on Γ+, we know that
∇Γ|U|2 = ∇Γ|u|2, and (3.14) reduces to [U×H]τ = [U× ω]τ , or,

[U× (H− ω)]τ = 0.

Also from (3.7)2, H
n = curlΓU

τ = curlΓ u
τ = ωn. Then, since Hn = ωn and only (H−ω)τ

contributes to n×(H−ω), we can apply the vector identity, A×(B×C) = (A·C)B−(A·B)C
to give

0 = n× [U× (H− ω)]τ = n× [U× (H− ω)]

= [n · (H− ω)]U− [n ·U](H− ω) = −Un(H− ω).

Since Un never vanishes on Γ+, we conclude that H = ω on {0}×Γ+, meaning that lincond0
is satisfied. □

The next proposition shows that our choice of H does, in fact, satisfy the constraint in
(2.2), necessary to ensure that curlu = ω.

Proposition 3.8. Assume that the data has regularity 0 as in Definition 1.1. For u ∈
C̊1,α
σ (Q), the condition in (2.2) is satisfied on (0, T ]× Γ+.

Proof. From (3.7) and using that curlΓU
τ = Hn we have

UnHτ −Hnuτ =

[
−∂tU

τ −∇Γ

(
q +

1

2
|U|2

)
+ fτ

]⊥
.

By (B.2), divΓ v = −divΓ(v
⊥)⊥ = curlΓ v

⊥ for any tangent vector v. Hence,

∂tH
n+divΓ[H

nuτ − UnHτ ]− g · n = ∂tH
n + curlΓ[(H

nuτ − UnHτ )⊥]− g · n
= ∂t curlΓU

τ − ∂t curlΓU
τ + g · n− g · n = 0,

where curlΓ f
τ = (curl f) · n = g · n by (B.2). This gives (2.2). □

Next, let us consider what happens if we try to extend Proposition 3.7 to condN for N = 1.
Returning to (3.14), suppose that u ∈ C̊1+1,α

σ (Q). Differentiating both sides in time gives

[∂tu×H]τ + [u× ∂tH]τ = ∂ttU
τ − ∂t∂̃tu

τ +
1

2
∇Γ∂t

(
|U|2 − |u|2

)
+ [∂tu× ω]τ + [u× ∂tω]τ

(3.15)

on [0, T ]×Γ+. We know from the N = 0 result that if cond0 holds then H = ω on {0}×Γ+,
so two terms above cancel, leaving

[u× ∂tH]τ =

[
∂ttU

τ − ∂t∂̃tu
τ +

1

2
∇Γ∂t

(
|U|2 − |u|2

)]
+ [u× ∂tω]τ on {0} × Γ+. (3.16)

If we could satisfy the hypotheses of Proposition 3.5 then we would also have that ∂t∂̃tu
τ =

∂̃2
t u

τ . Assuming additionally cond1, the term in brackets would vanish. If, finally, we could

replace ∂tω in this expression with ∂̃tω then, arguing just as in the proof of Proposition 3.7, it
would follow that cond1 implies lincond1. But with our definition of H, we cannot make this
replacement. In order to extend Proposition 3.7 to condN for N = 1, we need to make one
further assumption, leading to the following proposition for all N ⩾ 1 (and see Remark 4.1):
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Proposition 3.9. Assume that the data has regularity N as in Definition 1.1 for some N ⩾ 1

with u ∈ C̊N+1,α
σ (Q). Suppose that condN in (1.9) holds and that also ∂n

t u(0) = ∂̃n
t u0 on Ω

for all 1 ⩽ n ⩽ N . Then lincondN in (2.4) holds.

Proof. Let N = 1. From Proposition 3.7, we know that lincond0 holds. From Proposition 3.6,

∂̃tω0 = curl ∂̃tu0 = curl ∂tu(0) = ∂t curlu(0) = ∂tω(0), and from Proposition 3.5 we know

that ∂t∂̃tu = ∂̃2
t u at time zero. Thus, the term in the brackets in (3.16) vanishes because of

cond1, and we are left with

[u× ∂tH]τ = [u× ∂tω]τ on {0} × Γ+.

As in the proof of Proposition 3.7, this gives that ∂tH = ∂tω on {0} × Γ+, and hence that

∂tH = ∂̃tω on {0} × Γ+, which is lincond1.
The result for N ⩾ 2 follows inductively. □

We used the following lemma in the proof of Proposition 3.6:

Lemma 3.10. For any u,v ∈ C2(Ω)3 with divu = 0,

curl(u · ∇v + v · (∇u)T ) = u · ∇ curlv − curlv · ∇u.

Proof. Follows from a direct calculation. □

Generating Compatible Initial Data. We can construct examples of initial data satisfy-
ing the compatibility conditions as follows: choose any u0 and f having sufficient regularity,
obtain q0 from u0 via (3.5), then choose Uτ (0) so that on Γ+ we have U(0) = u0 and the

values of ∂tU(0), . . . , ∂N+1
t U(0) are chosen in accordance with the compatibility condition.

See also Appendix C.

4. Proof of well-posedness with inflow, outflow

In this section, we give the proof of Theorem 1.2. We prepare for the proof by defining
an operator A whose fixed point will be a solution to (1.5), and then define a subspace of

C̊N+1,α
σ (Q) in which the fixed point will lie. We then present the three key propositions on

which the proof of Theorem 1.2 relies, before finally giving the proof itself.

The operator A. Fixing u0 ∈ CN+1,α
σ (Ω) satisfying condN , we define

DomN (A) := {u ∈ CN+1,α
σ (Q) : u(0) = u0, ∂

n
t u(0) = ∂̃n

t u0 on Ω, 0 ⩽ n ⩽ N}, (4.1)

where ∂̃n
t is as in Definition 3.3. We will show in Lemma 6.4 that DomN (A), which will serve

as the domain of the operator A, is a nonempty, convex subset of C̊N+1,α
σ (Q).

Remark 4.1. The condition in DomN (A) that ∂n
t u(0) = ∂̃n

t u0 on Ω for all 1 ⩽ n ⩽ N arises
from Proposition 3.9. For N = 0, H(0) depends only upon the data and only H(0) appears

in lincond0, so there is no need to restrict the domain of A beyond C1,α
σ (Q). For N ⩾ 1, we

must impose ∂n
t u(0) = ∂̃n

t u0 on Ω for all 1 ⩽ n ⩽ N as an additional condition and show
that the resulting domain is, in fact, nonempty, as we do in Lemma 6.4.

To define A, let u ∈ DomN (A) and defineH as in (3.7). We know from Proposition 3.9 that
lincondN is satisfied for any u ∈ DomN (A), so we can obtain from Theorem 2.2 the unique
solution ω ∈ CN,α(Q) to (2.1) with ω0 = ω0 = curlu0. Proposition 3.8 shows that (2.2) is
satisfied, so by Theorem 2.2, ω is in the range of the curl and there exists a unique velocity
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field v ∈ CN+1,α
σ (Q) and pressure π with curlv = ω satisfying ∂tv+u·∇v−u·(∇v)T+∇π = f .

Finally, we set

Au := v, (4.2)

and define also

Λu := curlAu = ω. (4.3)

Proposition 4.2. A maps DomN (A) to itself.

Proof. Let u ∈ DomN (A) and let v = Au. Theorem 2.2 shows that v ∈ CN+1,α
σ (Q) and

v(0) = u0, so it remains only to show that ∂n
t v(0) = ∂̃n

t u0 for 1 ⩽ n ⩽ N .
Suppose N = 1. Then since v(0) = u(0), (2.6) gives

∂tv(0) = −u0 · ∇u0 + u0 · (∇u0)
T −∇π(0) + f(0).

But u0 · (∇u0)
T = (1/2)∇|u0|2, so we have

∂tv(0) = −u0 · ∇u0 −∇r + f(0)

for some “pressure” r. But r is recovered in the same manner as p, which is the same as q at

time zero. We see, then, that ∂tv(0) = ∂̃tu0.
The result for N > 1 follows inductively. □

We will apply Schauder’s fixed point theorem to obtain the existence of a fixed point of A,
but this requires that A be continuous. Estimates on A in [9] would give that A is bounded

as a map from DomN (A) to DomN (A) in the C̊N+1,α
σ (Q) norm, as long as we can obtain

sufficient control of the pressure so as to control H. But A, which is nonlinear, need not

be continuous in the C̊N+1,α
σ (Q) norm. To ensure continuity, we need to work in some new

spaces, which we introduce next.

Definition 4.3. For a fixed β1, β2 ∈ (0, 1) and any integer N ⩾ 0, let

XN
β1,β2

:= {u ∈ CN,β1(Q) : curlu ∈ CN,β2(Q)},
∥u∥XN

β1,β2

:= ∥u∥CN,β1 (Q) + ∥curlu∥CN,β2 (Q).

Remark 4.4. It will follow from Lemma 6.3 that XN
α,α = C̊N+1,α

σ (Q).

Fixing α′ ∈ (α, 1), we will show that A is continuous as a map from XN
β,β ∩ DomN (A) to

XN
β,β ∩DomN (A) for any β < α, and there exists a convex set K lying in XN

α′,α ∩DomN (A)

that is a compact subset of XN
α′,α that is fixed by A. Applying Schauder’s fixed point theorem

gives the existence of a fixed point. We will show a posteriori that the full inflow, outflow
boundary conditions in (1.5)4,5 are satisfied.

In constructing solutions, XN
α,α = C̊N+1,α

σ (Q) would seem the most natural. Then, once a
solution is obtained, the Euler equations themselves easily yield one more derivative in time,

giving a solution in CN+1,α
σ (Q). Indeed, this is how it works for the linearized problem, (2.1).

But there are two difficulties for the full problem: We need the extra time regularity of
XN

α′,α to establish (non-classical) estimates on the pressure, and A is not continuous in XN
α′,α.
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Three key Propositions. We will show that Theorem 1.2 follows from Propositions 4.5
to 4.7. To streamline the presentation, we defer the proofs of these technical lemmas to later
sections.

Proposition 4.5. Assume that the data has regularity N ⩾ 0 and u0 ∈ CN+1,α
σ (Ω). For any

M > ∥u0∥CN+1,α
σ (Ω)

there exists T > 0 for which the set

K := {u ∈ XN
α′,α ∩DomN (A) : ∥u∥XN

α′,α
⩽ M} (4.4)

is invariant under A. That is, u ∈ DomN (A) with ∥u∥XN
α′,α

⩽ M implies that Au ∈ DomN (A)

with ∥Au∥XN
α′,α

⩽ M .

Proof. Given in Section 10. □

Proposition 4.6. For any β ∈ (0, α), A : K → K is continuous in the XN
β,β norm.

Proof. Given in Section 11, and follows from Proposition 4.5. □

Proposition 4.7. Assume that (u, p) ∈ C1,α
σ (Q)×Cα(Q) solves (1.5)1-4 and ω := curlu = H

on [0, T ]× Γ+, with H given in (3.7). Then (1.5)5 also holds.

Proof. Given in Section 12. □

Proof of well-posedness. Theorem 1.2 we now see is a consequence of Propositions 4.6
and 4.7:

Proof of Theorem 1.2. Choose any β ∈ (0, α). Because CN,α is compactly embedded in
CN,β, and also using Lemma 6.4, below, we see that K is a convex compact subset of XN

β,β .

By Proposition 4.6, A is continuous as a map from K to K in the XN
β,β norm, and so has a

fixed point u by Schauder’s Fixed Point Theorem. It follows that Au = u with u ∈ Xα′,α

and hence, in particular, u ∈ CN+1,α
σ (Q).

Since v := Au = u, Theorem 2.2 implies that ∂tu + u · ∇u + ∇p = f for some pressure
p. Hence, (u, p) is a solution to (1.5)1-4. But since u = Au, we have ω := curlu = H.
Proposition 4.7 thus gives that (1.5)5 holds, so (u, p) is a solution to (1.5).

To prove uniqueness, let (u1, p1), (u2, p2) be two solutions to (1.5) with the same initial
velocity in C1,α (so we prove uniqueness for N = 0 and it then follows for all N ⩾ 0). Letting
w = u1 − u2, subtracting (1.5)1 for (u2, p2) from (1.5)1 for (u1, p1),

∂tw + u1 · ∇w +w · ∇u2 +∇(p1 − p2) = 0.

Multiplying by w and integrating over Ω, we obtain

1

2

d

dt
∥w∥2 = −

∫
Ω
(w · ∇u2) ·w − 1

2

∫
Ω
u1 · ∇|w|2 ⩽ ∥∇u2∥L∞(Q)∥w∥2 − 1

2

∫
Ω
u1 · ∇|w|2.

But,

−
∫
Ω
u1 · ∇|w|2 = −

∫
Γ
(u1 · n)|w|2 = −

∫
Γ−

(u1 · n)|w|2 ⩽ 0,

since w = 0 on Γ+, u1 · n = 0 on Γ0, and u1 · n > 0 on Γ−. Hence,

d

dt
∥w∥2 ⩽ 2∥∇u2∥L∞(Q)∥w∥2,

and we conclude thatw = 0 by Grönwall’s Lemma, giving the uniqueness in Theorem 1.2. □
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When Γ0 = Γ—that is, when classical impermeable boundary conditions are imposed on
the entire boundary—Theorem 1.2 gives well-posedness of the 3D Euler equations in CN,α(Q)
for any N ⩾ 0. The proof simplifies, as we discuss briefly in Remark 12.1.

Part II: Preliminary Estimates

Organization of Part II. We introduce in Section 5 some conventions that we will use
throughout the remainder of this paper to streamline the presentation. We summarize in
Sections 6 and 7 some of the results from [9], describe the generation of vorticity on the
boundary in Section 8, and obtain critical estimates on the pressure in Section 9.

5. Some conventions

Pressures. We employ three distinct pressure functions:

p: The “true” pressure recovered by (9.1), appearing in a solution to (1.5)1-4.
q: The “approximate” pressure recovered by (3.5), used to obtain H on [0, T ]× Γ+.
π: The “linearized” pressure of (2.6), obtained by recovering the velocity from the vor-

ticity for the linearized Euler equations.

The true and approximate pressures, p and q, are key, with the majority of our estimates
involving q.

Constants. To simplify notation, we write M as a universal but unspecified bound on
∥u∥XN

α′,α
. Thus, we assume that

∥u∥XN
α′,α

⩽ M for some M ⩾ 1 (5.1)

in what follows. (Having M ⩾ 1 simplifies the form of some estimates.)

Definition 5.1. We define the following two types of positive “constant”:

c0 = c0(∥u0∥CN+1,α
σ (Ω)

, U−1
min, ∥U∥

CN+2,α
σ (Q)

, ∥curl f∥CN,α(Ω)),

cX = cX(c0,M),

where

Umin := min{|Un(t,x)| : (t,x) ∈ [0, T ]× Γ+}. (5.2)

Both c0 and cX are continuous, increasing functions of each of their arguments. Each ap-
pearance of c0 and cX may have different values, even within the same expression.

In the process of obtaining constants c0 and cX , it will be clear that they increase with
their arguments. The value of c0 will increase with T because all of its arguments increase
with T ; in particular, c0 determines inversely the size of the initial data.

Remark 5.2. Many of our estimates contain factors of the form C1T
e1 + C2T

e2 + C3T
e3,

0 < e1 < e2 < e3, where C1, C2, and C3 may depend upon the norms of the data or the
solution, but have no explicit dependence on time. To simplify matters, we will assume that
T ⩽ T0 for some fixed but arbitrarily large T0 > 0. Then

C1T
e1 + C2T

e2 + C3T
e3 ⩽ C1T

e1 + C2T
e1T e2−e1

0 + C3T
e1T e3−e1

0 ⩽ C ′T e1 ,

C ′ := (1 + T e2−e1
0 + T e3−e1

0 )max{C1, C2, C3}.
Hence, in the final forms of estimates, we will only keep the lowest exponents of T and,
similarly, of |t1 − t2| for t1, t2 ∈ [0, T ].
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6. Recovering velocity from vorticity

We need a few facts from [9] related to the Biot-Savart law, which we present now. We use
the spaces H, Hc, and H0 of (1.7) and (1.8),

Lemma 6.1. Assume that Γ is Cn,α-regular and let X be any function space contained in
Cn,α(Ω)3. For any v ∈ H,

∥PHcv∥X ⩽ C(X)∥v∥H
and if also v ∈ X then

∥v∥X ⩽ ∥PH0v∥X + C(X)∥v∥H , ∥PH0v∥X ⩽ ∥v∥X + C(X)∥v∥H .

Letting h ∈ Cn,α(Γ) for some n ⩾ 1, we define the subspace,

Cn,α
σ,h := {u ∈ Cn,α(Ω): divu = 0,u · n = h on Γ}.

Corollary 6.2. If u1,u2 ∈ Cn,α
σ,h for some n ⩾ 1 have the same vorticity and harmonic

component then u1 = u2.

For any ω in the range of the curl, curl(H1
0 (Ω)

3), there exists a unique u = K[ω] ∈
H0 ∩H1(Ω)3 for which curlu = ω. The operator K, which recovers the unique divergence-
free vector field in H0 having a given curl, encodes the Biot-Savart law.

There exists a vector field V as regular as U with divV = 0, curlV = 0, and V · n = Un

on [0, T ]× Γ. We define

KUn [ω] := K[ω] + V . (6.1)

Define the solution space for vorticity,

V N,α
σ (Q) := {ω : CN,α(Q) : ω(t) ∈ curl(H1(Ω)3) for all t ∈ [0, T ]}.

Lemma 6.3. Assume that U ∈ CN+2,α
σ (Q) and Γ is CN+2. For all t ∈ [0, T ], KUn(t)

maps CN,α(Ω)∩ curl(H1(Ω)3) continuously onto CN+1,α
σ,Un(t)∩ (H0+V(t)) and maps WN,p(Ω)∩

curl(H1(Ω)3) continuously into WN+1,p(Ω) for any p ∈ (1,∞). Also, KUn maps V N,α
σ (Q)

continuously onto

C̊N+1,α
σ,0 (Q) := {u ∈ C̊N+1,α

σ (Q) : u(t) ∈ H0 + V(t) for all t ∈ [0, T ]}.
We now have the tools needed to to prove Lemma 6.4:

Lemma 6.4. Assuming condN holds, DomN (A) is a nonempty, convex subset of C̊N+1,α
σ (Q).

Proof. We first show that DomN (A) is convex. Let a, b ∈ [0, 1] with a + b = 1, let v, w be
in DomN (A), and let u = av + bw. Then u(0) = au0 + bu0 = u0, and so also condN is

satisfied. Similarly, ∂n
t u|t=0 = a∂n

t v|t=0+ b∂n
t w|t=0 = a∂̃n

t u0+ b∂̃n
t u0 = ∂̃n

t u0. It follows that
DomN (A) is convex.

To show that DomN (A) is nonempty, let ω0 := curlu0 and define

ω(t) := ω0 +
N∑

n=1

tn

n!
∂̃n
t ω0,

so that for all 0 ⩽ n ⩽ N , ∂n
t ω(0) = ∂̃n

t ω0. Because ω(t) is in the range of the curl for all
t ∈ [0, T ] by Proposition 3.6, we can define

u(t) := KUn [ω] +

N∑
n=0

tn

n!
PHc ∂̃

n
t u0,
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which we note lies in CN+1,α
σ (Q). Then u(0) = u0 by Corollary 6.2, since they have the same

vorticity and harmonic component and both lie in CN+1,α
σ (Ω). Moreover, for 1 ⩽ n ⩽ N ,

curl ∂n
t u(0) = ∂n

t ω(0) = ∂̃n
t ω0 = curl ∂̃n

t u0

by Proposition 3.6. Also, PHc∂
n
t u(0) = PHc ∂̃

n
t u0. That is, ∂n

t u(0) and ∂̃n
t u0 have the same

curl and same harmonic component, and ∂n
t u(0) and, by (3.11), ∂̃n

t u0 lie in Cn,α
σ,∂tUn . Hence, it

follows from Corollary 6.2 that ∂n
t u(0) = ∂̃n

t u0, and we see that u ∈ DomN (A), demonstrating
that DomN (A) is nonempty. □

The estimates we will need are given in Lemma 6.5.

Lemma 6.5. Assume U ∈ CN+1,α
σ (Q). Let ω ∈ Cα(Ω) be a divergence-free vector field

on Ω having vanishing external fluxes. For any u ∈ H there exists uc ∈ Hc such that
u := KUn [ω] + uc, and for all t ∈ [0, T ],

∥u(t)∥WN+1,p(Ω) ⩽ C∥ω(t)∥WN,p(Ω) + ∥U(t)∥WN+1,p(Ω) + ∥uc(t)∥WN+1,p(Ω),

∥u(t)∥
CN+1,α

σ (Ω)
⩽ C∥ω(t)∥CN,α(Ω) + ∥U(t)∥CN+1,α(Ω) + ∥uc(t)∥CN+1,α(Ω),

∥∇u(t)∥Lp(Ω) ⩽ Cp∥ω(t)∥Lp(Ω) + ∥∇U(t)∥Lp(Ω) + ∥∇uc(t)∥Lp(Ω),

∥u(t)∥Lp(Ω) ⩽ Cp∥ω(t)∥Lp(Ω) + ∥U(t)∥Lp(Ω) + ∥uc(t)∥Lp(Ω)

for all p ∈ (1,∞). In each case, the final term can be replaced by C∥u∥H .

Proof. The first three inequalities follow from Lemma 6.3. The fourth inequality follows from
the third and Poincaré’s inequality, since elements of H have mean zero. Lemma 6.1 allows
us to replace each of the final terms by C∥u∥H . □

In Section 10, we will require a bound on ∥u∥CN+1(Q) that is better than just M of (5.1).
To obtain such a bound, first observe that, setting ω = curlu,

∥ω∥L2(Q) ⩽

(∫ T

0
M2

) 1
2

⩽ MT
1
2 .

In analogy with C̊N+1,α
σ (Q), we define C̊N+1

σ (Q) to be the space CN+1
σ (Q), but with one

fewer time derivatives, and similarly for C̊N+1(Q). Then, using Lemmas 6.5 and A.5, for any
0 < β < α,

∥u∥C̊N+1
σ (Q) ⩽ ∥V∥C̊N+1(Q) + ∥u− V∥C̊N+1(Q) ⩽ c0 + ∥u− V∥C̊N+1(Q)

⩽ c0 + Cβ∥ω∥CN,β ⩽ c0 + Cβ∥ω∥L∞(Q) + Cβ∥ω∥aCN,α(Q)∥ω∥1−a
L2(Q)

⩽ c0 + Cβ∥ω∥L∞(Q) + CβMT b,

(6.2)

where 0 < b < 1 (its exact value being unimportant). Here, we used our assumptions that
M ⩾ 1 and T ⩽ T0 to simplify the form of the estimates coming from Lemma A.5 (see
Remark 5.2).

7. Flow map estimates

The pushforward of the initial vorticity by the flow map meets, along a hypersurface S in
Q, the pushforward of the vorticity generated on the inflow boundary. This requires some
analysis at the level of the flow map. For the most part, the analysis in [9], which we
summarize here, suffices. The coarse bounds developed on the flow map in [9], however,
would only be sufficient for us to obtain small data existence of solutions: for the short time
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result for general data that we desire, we will require more explicit and refined bounds, which
we develop in Lemma 7.2.

We assume throughout this section that U ∈ CN+2,α
σ (Q),u ∈ C̊N+1,α

σ (Q) for some N ⩾ 0.
As in [9], we extend u to be defined on all of R×R3 using an extension operator like that in
Theorem 5′, chapter VI of [25]. This extension need not be divergence-free, and is used only
as a matter of convenience in stating results; it is only the value of u on Q that ultimately
concerns us.

We define η : R × R × R3 → R3 to be the unique flow map for u, so that ∂t2η(t1, t2;x) =
u(t2, η(t1, t2;x)). Then η(t1, t2;x) is the position that a particle starting at time t1 at position
x ∈ R3 will be at time t2 as it moves under the action of the velocity field u.

For any (t,x) ∈ Q let

• γ(t,x) be the point on Γ+ at which the flow line through x at time t intersects Γ+;
• let τ(t,x) be the time at which that intersection occurs.

For our purposes, we can leave τ and γ undefined if the flow line never intersects with Γ+.

Remark 7.1. We will often drop the (t,x) arguments on τ and γ for brevity.

We define the hypersurface,

S := {(t,x) ∈ Q : τ(t,x) = 0},

which is nonempty since it contains at least Γ+ × {0}, and the open sets U± ⊆ Q,

U− := {(t,x) ∈ Q : (t,x) /∈ domain of τ,γ},
U+ := {(t,x) ∈ Q : τ(t,x) > 0}.

Then S is of class CN+1,α as a hypersurface in Q and S(t) := {x ∈ Ω: (t,x) ∈ S} is of class
CN+1,α as a surface in Ω.

The estimates on the flow map in Lemma 7.2 are more explicit than in [9], where we re-
quired only coarse estimates. We note that η has one more derivative in both time variables
than has u, which we can see in the explicit estimates. In Lemma 7.2, Ċα(Q) is the homo-
geneous Hölder norm and the subscripts x and t refer to norms only in those variables (see
(A.3) for detailed definitions).

Lemma 7.2. The flow map η ∈ CN+1,α([0, T ]2 × R3). Define µ : U+ → [0, T ]× Γ+ by

µ(t,x) = (τ(t,x),γ(t,x)).

The functions τ , γ, µ lie in CN+1,α(U+ \ {0} × Γ+). Moreover,

∥∂t1η(t1, t2;x)∥L∞
x

⩽ ∥u∥L∞(Q)h(t1, t2),

∥∇η(t1, t2;x)∥L∞
x

⩽ h(t1, t2),

∥∇η(0, t2;x)∥Ċα
t2
(Q) ⩽ ∥∇u∥L∞(Q)h(0, T )T

1−α,

∥∇η(0, t2;x)∥Ċα
x (Q) ⩽ h(0, T )1+2α

∫ T

0
∥∇u(s)∥Ċα ds,

∥∇η(0, T ;x)∥Ċα(Q) ⩽ e(1+2α)MTMT 1−α,

(7.1)

where

h(t1, t2) := exp

∣∣∣∣∣
∫ t2

t1

∥∇u(s)∥L∞ ds

∣∣∣∣∣ ⩽ eMT .
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Also,

∥Dµ∥L∞(Q) ⩽ CU−1
min[1 + ∥u∥2L∞(Q)]h(0, T ), (7.2)

where Umin is as in (5.2).
More generally, for any N ⩾ 0, defining expn to be exp composed with itself n times,

∥∂N+1
t1

η(t1, t2;x)∥L∞([0,T ]2×Ω) ⩽ C∥u∥CN (Q) exp
N+1(MT ),

∥∇N+1η(t1, t2;x)∥L∞([0,T ]2×Ω) ⩽ expN+1(MT ),

∥∇N+1η(0, t2;x)∥Ċα
t2
(Q) ⩽ ∥∇N+1u∥L∞(Q) exp

N+1(MT )T 1−α,

∥∇N+1η(0, t2;x)∥Ċα
x (Q) ⩽ expN+1(CMT )

∫ T

0
∥∇N+1u(s)∥Ċα ds,

∥∇N+1η(0, T ;x)∥Ċα(Q) ⩽ expN+1(CMT )MT 1−α,

∥DN+1µ∥L∞(Q) ⩽ c0[1 + ∥u∥2(N+1)

CN (Q)
] expN+1(MT ).

(7.3)

Proof. We will apply Lemma A.2 multiple times without explicit reference.
Taking the gradient of the integral expression in (3.2) of [9],

∇η(t1, t2;x) = I +

∫ t2

t1

∇u(s, η(t1, s;x))∇η(t1, s;x) ds. (7.4)

Thus,

∥∇η(t1, t2;x)∥L∞
x

⩽ 1 +

∣∣∣∣∣
∫ t2

t1

∥∇u(s)∥L∞∥∇η(t1, s;x)∥L∞
x
ds

∣∣∣∣∣.
Grönwall’s Lemma, applied with fixed t1, gives (7.1)2. Lemma 3.1 of [9] gives ∂t1η(t1, t2;x) =
−u(t1,x) · ∇η(t1, t2;x), from which (7.1)1 follows.

It also follows from (7.4) that

∥∇η(0, t2;x)∥ ˙C(Q)
α

t2

⩽ sup
t2 ̸=t′2

∥∇u∥L∞(Q)∥∇η∥L∞(Q)

|t2 − t′2|α
|t2 − t′2|

⩽ ∥∇u∥L∞(Q)h(0, T )T
1−α,

giving (7.1)3.
Returning once more to (7.4),

∥∇η(t1, t2;x)∥Ċα
x
⩽
∫ t2

0
∥∇u(s, η(t1, s;x))∇η(t1, s;x)∥Ċα

x
ds.

But, using Lemma A.1,

∥∇u(s, η(t1, s;x))∇η(t1, s;x)∥Ċα
x

⩽ ∥∇u(s, η(t1, s;x))∥Ċα
x
∥∇η(t1, s;x)∥L∞

x
+ ∥∇u(s, η(t1, s;x))∥L∞

x
∥∇η(t1, s;x)∥Ċα

x

⩽ ∥∇u(s)∥Ċα∥η(t1, s;x)∥αLipx∥∇η(t1, s;x)∥L∞
x
+ ∥∇u(s)∥L∞∥∇η(t1, s;x)∥Ċα

x

⩽ ∥∇u(s)∥Ċαh(t1, s)
2α + ∥∇u(s)∥L∞∥∇η(t1, s;x)∥Ċα

x
,

so

∥∇η(0, t2;x)∥Ċα
x
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⩽
∫ t2

0
∥∇u(s)∥Ċαh(0, s)

2α ds+

∫ t2

0
∥∇u(s)∥L∞(Ω)∥∇η(0, s;x)∥Ċα

x
ds

⩽ h(0, t2)
2α

∫ t2

0
∥∇u(s)∥Ċα ds+

∫ t2

0
∥∇u(s)∥L∞(Ω)∥∇η(0, s;x)∥Ċα

x
ds.

Applying Grönwall’s Lemma gives

∥∇η(0, t2;x)∥Ċα
x
⩽

[
h(0, t2)

2α

∫ t2

0
∥∇u(s)∥Ċα ds

]
exp

∫ t2

0
∥∇u(s)∥L∞(Ω) ds

= h(0, t2)
1+2α

∫ t2

0
∥∇u(s)∥Ċα ds,

which is (7.1)4.
From Lemma 3.5 of [9],

∂tτ = −Un(τ,γ)−1∂t1η(t, τ ;x) · n(γ), ∇τ = −Un(τ,γ)−1(∇η(t, τ ;x))Tn(γ),

∂tγ = ∂t1η(t, τ ;x) + ∂tτu(τ,γ), ∇γ = u(τ,γ)⊗∇τ +∇η(t, τ ;x).

We use these expressions to calculate,

∥∂tτ∥L∞(Q) ⩽ CU−1
min∥∂t1η∥L∞(Q) ⩽ CU−1

min∥u∥L∞(Q)h(0, T ),

∥∇τ∥L∞(Q) ⩽ CU−1
min∥∇η∥L∞(Q) ⩽ CU−1

minh(0, T ),

∥∂tγ∥L∞(Q) ⩽ CU−1
min∥∂t1η∥L∞(Q) + ∥u∥L∞(Q)∥∂tτ∥L∞(Q)

⩽ CU−1
min[∥u∥L∞(Q) + ∥u∥2L∞(Q)]h(0, T ),

∥∇γ∥L∞(Q) ⩽ ∥u∥L∞(Q)∥∇τ∥L∞(Q) + ∥∇η∥L∞(Q) ⩽ [1 + CU−1
min∥u∥L∞(Q)]h(0, T ).

Summing these estimates gives the bound on Dµ = (∂tµ,∇µ).
The bounds for higher N follow from inductive extension of these arguments. □

Remark 7.3. The exact bounds in Lemma 7.2 are not so important, but it is important that
M only appear in the exponentials, while other factors contain norms of u lower than XN

α′,α,

as these can be bounded a little better (by (6.2), primarily).

We are now in a position to give the definition of a Lagrangian solution to (2.1), as it
appears in [9]. For this purpose, define

γ0 = γ0(t,x) := η(t, 0;x). (7.5)

As with τ and γ (see Remark 7.1) we will often drop the (t,x) arguments on γ0.

Definition 7.4 (Lagrangian solution to (2.1)). Define ω± and G± on U± by

ω−(t,x) = ∇η(0, t;γ0)ω0(γ0) +G+(t,x),

ω+(t,x) = ∇η(τ, t;γ)H(τ,γ) +G−(t,x),

G−(t,x) :=

∫ t

0
∇η(s, t; η(t, s;x))g(s, η(t, s;x)) ds,

G+(t,x) :=

∫ t

τ(t,x)
∇η(s, t; η(t, s;x))g(s, η(t, s;x)) ds.

(7.6)

Then ω defined by ω|U± = ω± is called a Lagrangian solution to (2.1).
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In (7.6), we left the value of ω along S unspecified. Under the assumptions of Theorem 2.2,
ω± can be extended along S so that ω lies in CN,α(Q), and the bounds on U± combine to
give estimates on ω in CN,α(Q).

8. The nonlinear term on the boundary

Proposition 8.2 gives coordinate-free expressions for (u ·∇u) ·n on Γ. The proof of Propo-
sition 8.2 is most readily obtained using the boundary coordinates introduced in Appendix B,
so we defer it to that appendix.

Definition 8.1. For any tangent vector field v on Γ, define v⊥ to be v rotated 90 degrees
counterclockwise around the normal vector when viewed from outside Ω (so v⊥ = n× v).

We write the gradient and divergence on the boundary as ∇Γ and divΓ, as in Appendix B.

Proposition 8.2. Assume that Γ is C2. Let u be a divergence-free differentiable vector field,
let un = u · n, and, as in (1.1), let uτ = u− unn. Let κ1, κ2 be the principal curvatures on
Γ. On [0, T ]× Γ, we have

(u · ∇u) · n = −un divΓ u
τ + uτ · ∇Γu

n − (κ1 + κ2)(u
n)2 − uτ · Auτ . (8.1)

Here, A is the shape operator on the boundary: for any tangential vector field, Av is the
directional derivative of n in the direction of v, which is also a tangential vector field.

The nonlinear term on the boundary is key to recovering the pressure, as we will see in
the next section. It was for these purposes that we used N [u] given in (3.6) to define the
approximate pressure in (3.5). Using that un = Un, substituting the expression in (8.1) for
(u · ∇u) · n, and using (B.1), we see that on Γ+,

N [u] = −Un divΓU
τ + uτ · ∇ΓU

n − (κ1 + κ2)(U
n)2 − uτ · Auτ , (8.2)

so N [u] has no derivatives on uτ . Nonetheless, integrating (3.6)2 by parts along each bound-
ary component using Lemma B.1, we see that∫

Γ
N [u] =

∫
Γ
(u · ∇u) · n, (8.3)

which will allow us to use N [u] in place of (u · ∇u) · n in the Neumann boundary condition
on the pressure in Section 9.

9. Pressure Estimates

We can determine the pressure from the velocity by taking the divergence of (1.5)1 and using
that divu = 0, which yields{

∆p = −∇u · (∇u)T in Ω,

∇p · n = ∂tu · n− (u · ∇u) · n on Γ.
(9.1)

On Γ0, as we can see from (8.1), ∇p ·n = −uτ ·Auτ (= −κ|u|2 in 2D). Hence, when Γ = Γ0,
standard Schauder estimates imply that ∇p and u have the same spatial regularity. This is
the impermeable boundary case. But for inflow, outflow boundary conditions, the expression
for ∇p · n contains spatial derivatives of u, as we can see from (8.1), and elliptic theory
gives only a pressure gradient having one fewer spatial derivative than the velocity. (Because
u · n = Un on all of Γ, the time derivative in (9.1)2 does not impact the regularity of p.)

We see, then, that impermeable boundary conditions are very special, and with inflow,
outflow we should not expect to obtain a gradient pressure field with the same regularity as
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that of u. This is not in itself a problem, for as we can see from (3.7), we only need the
pressure gradient to have the same regularity as the vorticity to generate vorticity on the
boundary. We will need higher regularity, however, to obtain a fixed point for the operator
A : Xα′,α → Xα′,α .

We circumvent this difficulty using the simple but clever technique in [2]: we replace the
boundary condition in (9.1)2 using N [u] of (3.6), solving instead, (3.5) for the pressure q. We
see from (8.3) that the required compatibility condition coming from

∫
Γ∇q · n =

∫
Ω∆q =∫

Ω div(−∂tu−u·∇u) remains satisfied when using −∂tU
n−N [u] in place of −∂tu

n−(u·∇u)·n
on Γ.

Lemma 9.1. Suppose that Ω′ is a compact subset of Ω ∪ Γ+, Ω
′ ̸= ∅. For any n ⩾ 0,

∥f∥Wn+2,r(Ω′) ⩽ C
[
∥∆f∥Wn,r(Ω) + ∥∇f · n∥

Wn+1− 1
r ,r(Γ+)

+ ∥f∥Lr(Ω)

]
(9.2)

for f ∈ Wn,r(Ω), where r ∈ (1,∞).

Proof. These bounds for n = 0 are stated near the bottom of page 174 of [2], but let us say
a few words about them. First, they are derived from combining an interior estimate away
from all boundaries with an estimate that includes only Γ+. Second, [2] treats the N = 0
case, and we use (15.1.5) of [1] for the N ⩾ 1 case. □

We start in Propositions 9.2 and 9.3 by controlling only the spatial derivatives of q.

Proposition 9.2. Let r ∈ [2,∞), t1, t2 ∈ [0, T ], and q solve (3.5) for some u ∈ Xα′,α with q
normalized so that ∫

Ω
q|q|r−2 = 0. (9.3)

Then

∥q(t)∥Lr(Ω) ⩽ C1,

∥q(t1)− q(t2)∥Lr(Ω) ⩽ C2∥u∥Xα′,α |t1 − t2|α
′
,

(9.4)

where

C1 := C
[
∥U∥2Xα′,α

+ ∥u∥2L∞(Q)

]
, C2 := C

[
∥U∥L∞(Q) + ∥u∥L∞(Q)

]
,

the constant C depending only upon Ω and r.

Proof. We adapt the argument on pages 175-176 of [2]. For now we suppress the time variable.
Let β be the unique mean-zero solution to{

∆β = q|q|r−2 in Ω,

∇β · n = 0 on Γ,

where the normalization of q in (9.3) gives solvability. Letting r′ = r/(r − 1), which we note
is Hölder conjugate to r, Lemma 9.1 gives

∥β∥W 2,r′ (Ω) ⩽ C∥|q|r−1∥Lr′ (Ω) = C∥q∥r−1
Lr(Ω).

Then,

∥q∥rLr(Ω) = (∆β, q) = −(∇β,∇q) +

∫
Γ
(∇β · n)q = (∆q, β)−

∫
Γ
(∇q · n)β.
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Now,

(∆q, β) = −(div(u · ∇u), β) = (u · ∇u,∇β)−
∫
Γ
((u · ∇u) · n)β.

But,

(u·∇u,∇β) =

∫
Ω
ui∂iu

j∂jβ =

∫
Ω
ui∂i(u

j∂jβ)−
∫
Ω
uiuj∂i∂jβ

=

∫
Ω
u · ∇(u · ∇β)− (u⊗ u,∇∇β) = −

∫
Γ
Un(u · ∇β)− (u⊗ u,∇∇β)

and, using (3.6)

−
∫
Γ
((u · ∇u) · n)β =

∫
Γ
(∂tU

n +∇p · n)β +

∫
Γ+

divΓ(U
n(uτ −Uτ ))

=

∫
Γ
(∂tU

n +∇p · n)β,

the integral over Γ+ vanishing by Lemma B.1. Hence,

∥q∥rLr(Ω) = −(u⊗ u,∇∇β) +

∫
Γ
(∂tU

nβ − Un(u · ∇β)) . (9.5)

We thus have the bound,

∥q∥rLr(Ω) ⩽ ∥u∥L∞∥u∥Lr∥β∥W 2,r′ + ∥∂tUn∥Lr(Γ)∥β∥Lr′ (Γ) −
∫
Γ
Un(u · ∇β).

But,

−
∫
Γ
Un(u · ∇β) ⩽ ∥U∥Lr′ ([0,T ]×Γ)∥u∥L∞(Q)∥∇β∥Lr(Γ)

⩽ C∥U∥L∞(Q)∥u∥L∞(Q)∥∇β∥W 1,r(Ω) ⩽ C∥U∥L∞(Q)∥u∥L∞(Q)∥β∥W 2,r(Ω).

(9.6)

We see, then, that

∥q∥rLr(Ω) ⩽ C1∥β∥W 2,r′ ⩽ C1∥q∥r−1
Lr(Ω),

from which (9.4)1 follows.
To obtain (9.4)2 we argue the same way, bounding now q := q(t1) − q(t2) and using

∂tU
n(t1) − N [u(t1)] − (∂tU

n(t2) − N [u(t2)]) in place of ∂tU
n − N [u] evaluated at a single

time. And now β solves {
∆β = q|q|r−2 in Ω,

∇β · n = 0 on Γ.

In place of (9.5), we find

∥q∥rLr(Ω) = −(u(t1)⊗ u(t1)− u(t2)⊗ u(t2),∇∇β)−
∫
Γ
Un((u(t1)− u(t2)) · ∇β), (9.7)

where we note that the boundary integral involving ∂tU
nβ appearing in (9.5) cancels.

For the first term on the right-hand side of (9.7), we use that

∥u(t1)⊗ u(t1)− u(t2)⊗ u(t2)∥Lr(Ω) ⩽ [∥u(t1)∥L∞ + ∥u(t2)∥L∞ ] ∥u(t1)− u(t2)∥Lr′ (Ω).
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But, applying Lemma A.8 with N = 0,

∥u(t1)− u(t2)∥Lr(Ω) ⩽ C∥u(t1)− u(t2)∥L∞(Ω) ⩽ C∥u∥Cα(Q)|t1 − t2|α
′

⩽ C∥u∥Xα′,α |t1 − t2|α
′
,

(9.8)

so

−(u(t1)⊗ u(t1)− u(t2)⊗ u(t2),∇∇β) ⩽ C∥u∥L∞(Q)∥u∥Xα′,α |t1 − t2|α
′∥β∥W 2,r(Ω).

For the boundary integral in (9.7), we obtain as in (9.6),

−
∫
Γ
Un((u(t1)− u(t2)) · ∇β) ⩽ C∥U∥L∞(Q)∥u(t1)− u(t2)∥L∞(Q)∥β∥W 2,r(Ω).

Combining these bounds, we see that

∥q∥Lr(Ω) ⩽ C
[
∥u∥L∞(Q) + ∥U∥L∞(Q)

]
∥u∥Xα′,α |t1 − t2|α

′
,

which is (9.4)2. □

Proposition 9.3. Assume that the data has regularity N and let Ω′ be as in Lemma 9.1. Let
u ∈ XN

α′,α ∩ DomN (A) and let q solving (3.5) be normalized as in (9.3) with r = 3/(1 − α).
Then

∥q(t1)− q(t2)∥WN+2,r(Ω′) ⩽ cX |t1 − t2|α,
∥∇q(t1)−∇q(t2)∥CN,α(Ω′) ⩽ cX |t1 − t2|α

(9.9)

for all t1, t2 ∈ [0, T ].

Proof. We first prove (9.9)1. Defining q := q(t1)− q(t2) and applying Lemma 9.1, we have

∥q∥WN+2,r(Ω′) ⩽ C
[
∥∆q∥WN,r(Ω) + ∥∇q · n∥

WN+1− 1
r ,r(Γ+)

+ ∥q∥Lr(Ω)

]
.

Now,

∆q = ∇u(t2) · (∇u(t2))
T −∇u(t1) · (∇u(t1))

T

= ∇(u(t2)− u(t1)) · (∇u(t2))
T +∇u(t1) · (∇(u(t2)− u(t1)))

T .

Thus, for N = 0,

∥∆q∥Lr(Ω) ⩽ C∥∇(u(t1)− u(t2))∥Lr(Ω)

[
∥∇u(t1)∥L∞(Ω) + ∥∇u(t2)∥L∞(Ω)

]
.

For N ⩾ 1, since Nr > 3N ⩾ 3, WN,r is an algebra, so

∥∆q∥WN,r(Ω) ⩽ C∥∇(u(t1)− u(t2))∥WN,r(Ω)

[
∥∇u(t1)∥WN,r(Ω) + ∥∇u(t2)∥WN,r(Ω)

]
.

In either case, we have

∥∆q∥WN,r(Ω) ⩽ C∥∇u∥L∞(0,T ;WN,r(Ω))∥∇(u(t1)− u(t2))∥WN,r(Ω).

But, setting ω = curlu,

u(t1)− u(t2) = KUn [ω(t1)]−KUn [ω(t2)] = K[ω(t1)− ω(t2)] +w, (9.10)

where

w = V(t1)− V(t2) + uc(t1)− uc(t2).

Hence, applying Lemma 6.5,

∥∇u(t1)−∇u(t2)∥WN,r(Ω) ⩽ C∥ω(t1)− ω(t2)∥WN,r(Ω) + C∥w∥WN,r(Ω). (9.11)
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Applying Lemma A.8,

∥ω(t1)− ω(t2)∥WN,r(Ω) ⩽ ∥ω(t1)− ω(t2)∥CN (Ω) ⩽ ∥ω∥CN,α(Q)|t1 − t2|α.

Using Lemma A.8 again,

∥w∥WN,r(Ω) ⩽ C∥w∥CN (Ω) ⩽ ∥w∥CN,α(Q)|t1 − t2|α

⩽ ∥V∥CN,α(Q)|t1 − t2|α + ∥u∥L∞(0,T ;H)|t1 − t2|α ⩽ cX |t1 − t2|α,

where we also used Lemma 6.1. Hence,

∥∇u(t1)−∇u(t2)∥WN,r(Ω) ⩽ cX |t1 − t2|α. (9.12)

On Γ+,

∇q · n = ∂tU
n(t1)− ∂tU

n(t2) +N [u(t2)]−N [u(t1)],

and we can see from the expression for N [u] in (8.2)—the key point being that on Γ+, N [u]
has no derivatives on uτ—that applying Lemma A.8 again,

∥∇q · n∥
WN+1− 1

r ,r(Γ+)

⩽ C∥∇q · n∥CN+1(Γ+) ⩽
[
∥U∥2CN+2,α(Q) + ∥u∥CN+1,α(Q)∥U∥CN+1,α(Q)

]
|t1 − t2|α

⩽ cX |t1 − t2|α,

where in the last inequality we used a bound like that in (9.12).
Along with Proposition 9.2, these bounds give (9.9)1.
Since we set r = 3/(1− α), Sobolev embedding gives W 1,r(Ω′) ⊆ Cα(Ω′). Applying (9.9)1

gives (9.9)2. □

Remark 9.4. It is only in the bound on ∥∇q ·n∥
WN+1− 1

r ,r(Γ+)
in the proof of Proposition 9.3

that we use the higher regularity of U over that of u.

To account for time derivatives ∂k
t q, k ⩽ N + 1, we note that (3.5) becomes{

∆∂k
t q = −∂k

t (∇u · (∇u)T ) in Ω,

∇∂k
t q · n = −∂k+1

t Un − ∂k
t N [u] on Γ,

and the same analysis in Propositions 9.2 and 9.3 applies to ∂k
t q. Then, from the key bound

in (9.9), letting Q′ = [0, T ]× Ω′, we have

∥q(t1)− q(t2)∥CN+1,α(Q′)) ⩽ cX |t1 − t2|α. (9.13)

Moreover, applying the interpolation inequality in Lemma A.4 and Proposition 9.2, we have,

∥q(t2)− q(t1)∥CN+1([0,T ]×Γ+) ⩽ C∥q(t1)− q(t2)∥aCN+1,α(Q′)∥q(t2)− q(t1)∥1−a
L2(Ω′)

⩽ C [cX |t1 − t2|α]a
[
cXM |t1 − t2|α

′
]1−a

⩽ cX |t2 − t1|α
′′
,

(9.14)

where α < α′′ := αa+ α′(1− a) < α′ (using the value of a for N + 1 in Lemma A.4). In the
second inequality, we applied Proposition 9.2 and (9.13).

Then from (9.13) and (9.14) and using that ∥∇Γq(t1) − ∇Γq(t2)∥Cα(Γ+)) ⩽ ∥∇q(t1) −
∇q(t2)∥Cα(Γ+)), we can apply Lemma A.7 with

F1(t) = cXtα, F2(t) = cXtα
′′
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to obtain

∥∇Γq(t)∥CN,α([0,T ]×Γ+) ⩽ ∥∇q(0)∥ĊN,α(Γ+) + cXTα′′
+ cXTα + cXTα′′−α

⩽ c0 + cXT a.
(9.15)

We used here that ∇q(0) depends only upon the initial data along with Remark 5.2.

Part III: Estimates on the Operator A

Organization of Part III. In Section 10 we give the proof of Proposition 4.5 by first
obtaining sufficient estimates on the operator A using (primarily) the pressure estimates
from Section 9 along with the estimates on the flow map from Section 7. In Section 11, we
use these estimates on A and the invariant set of Proposition 4.5 to prove Proposition 4.6.
In Section 12, we give the proof of Proposition 4.7. In the final section of Part III, we prove
Theorem 1.4.

10. An invariant set

We now make a series of estimates leading in Proposition 4.5 to the existence of an invariant
set in XN

α′,α for the operator A.

Proposition 10.1. Assume that for N ⩾ 0 the data has regularity N , condN holds, and that
u ∈ XN

α′,α ∩DomN (A). Then

∥H∥L∞([0,T ]×Γ+) ⩽ ∥ω0∥L∞(Γ+) +MTα ⩽ c0 +MTα,

∥H∥CN,α([0,T ]×Γ+) ⩽ c0 + cXT a,

where a = min{α, α′′ − α} > 0 (α′′ is as in (9.14)).

Proof. By cond0, H(0) = ω0 on Γ+. Then, letting ω = curlu, we have,

∥H∥L∞([0,T ]×Γ+) ⩽ ∥H((t,x)−H(0,x)∥L∞([0,T ]×Γ+) + ∥H(0,x)∥L∞(Γ+)

⩽ sup
[0,T ]×Γ+

|H(t,x)−H(0,x)|+ ∥ω0∥L∞(Γ+)

⩽ ∥H∥Ċα
t ([0,T ]×Γ+)T

α + ∥ω0∥L∞(Γ+) ⩽ ∥ω∥Ċα
t (Q)T

α + ∥ω0∥L∞(Γ+).

From (3.7), we can write,

Hτ = δ1 + δ2 −∇Γq, Hn = curlΓU
τ ,

where

δ1 :=
1

Un

[
−∂tU

τ −∇Γ

(
1

2
|U|2

)
+ f

]⊥
, δ2 :=

1

Un
curlΓU

τuτ .

Since U ∈ CN+2,α
σ (Q), we see that ∥δ1∥ĊN,α([0,T ]×Γ+) ⩽ c0 and, applying Corollary A.9,

∥δ2∥ĊN,α([0,T ]×Γ+) ⩽ C∥uτ0 ∥ĊN,α(Γ+) + C∥uτ (t)− uτ0 ∥ĊN,α([0,T ]×Γ+)T
α

⩽ c0 + C∥u∥CN,α(Q)T
α ⩽ c0 + C∥u∥XN

α′,α
Tα ⩽ c0 + cXTα.

With (9.15), then, we see that

∥H∥ĊN,α([0,T ]×Γ+) ⩽ c0 + cXT a. □
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Proposition 10.2. Assume that the data has regularity N ⩾ 0 and that u ∈ XN
α′,α ∩

DomN (A). With Λ as in (4.3),

∥Λu∥L∞(Q) ⩽ [∥ω0∥L∞(Ω) +MTα]eMT ⩽ [c0 +MTα]eMT ,

∥Λu∥CN,α(Q) ⩽ (1 + c0)Fc(M,T ) + cXT a,

for some a > 0, where Fc is continuous and increasing in its arguments with Fc(M, 0) = c0.

Proof. First assume no forcing. Let ω0 = ω(0) and recall the definition of γ0 in (7.5). From
(7.6), we can write, ω := Λu = ω± on U±, where

ω−(t,x) = ∇η(0, t;γ0)ω0(γ0) on U−,

ω+(t,x) = ∇η(τ(t,x), t;γ(t,x))H(τ(t,x),γ(t,x)) on U+.
(10.1)

It follows, using Lemma 7.2 and Proposition 10.1, that

∥ω−(t,x)∥L∞(U−) ⩽ ∥∇η∥L∞(Q)∥ω0∥L∞(Ω) ⩽ ∥ω0∥L∞(Ω)e
MT ,

∥ω+(t,x)∥L∞(U+) ⩽ ∥∇η∥L∞(Q)∥H∥L∞([0,T ]×Γ+) ⩽ [∥ω0∥L∞(Γ+) +MTα]eMT ,

which yields our bound on ∥Λu∥L∞(Q).
Let us now first treat the case N = 0, to get a better understanding of the estimates

involved. Using Lemma 7.2 along with Lemmas A.1 and A.2, we see that

∥ω−∥Cα(U−) ⩽ ∥∇η(0, t;γ0)∥Cα(U−)∥ω0(γ0)∥Cα(U−)

⩽ ∥∇η(0, t; ·)∥Cα(Q)[∥∇γ0∥αL∞(U−)]
2∥ω0∥Cα(Ω)

⩽ ∥ω0∥Cα(Ω)[1 +Me(1+2α)MTT 1−α]e2MT .

Similarly,

∥ω+(t,x)∥Cα(U+) ⩽ ∥∇η(τ(t,x), t;γ(t,x))∥Cα(U+)∥H(τ(t,x),γ(t,x))∥Cα(U+).

Using Lemmas 7.2 and A.2,

∥∇η(τ(t,x), t;γ(t,x))∥Cα(U+) ⩽ ∥∇η(t1, t2;x)∥Cα([0,T ]2×Ω)[1 + ∥Dµ∥L∞(Q)]
α

⩽ [eMT + e(1+2α)MTMT 1−a][1 + ∥Dµ∥L∞(Q)]
α

and, using Lemma 7.2 and Proposition 10.1,

∥H(τ(t,x),γ(t,x))∥Cα(U+) ⩽ ∥H∥Cα([0,T ]×Γ+)[1 + ∥Dµ∥L∞(Q)]
α

⩽ [1 + ∥Dµ∥L∞(U+)]
2α[c0 + cXT a].

Again using Lemma 7.2, we see that

∥ω+(t,x)∥Cα(U+) ⩽ [eMT + e(1+2α)MTMT 1−α][c0 + cXT a][1 + ∥Dµ∥L∞(Q)]
2α.

From (6.2) and our bound above on ∥ω∥L∞(Q), we have, for some b < 1,

∥u∥L∞(Q) ⩽ c0 + [c0 +MTα]eMT + CMT b,

so (7.2) gives

1 + ∥Dµ∥L∞(Q) ⩽ c0[1 + ∥u∥2L∞(Q)]e
MT ⩽ c0[[c0 +MTα]2e2MT ]eMT + CM2T 2b.

Hence,

∥ω+(t,x)∥Cα(U+)

⩽ c0[e
MT + e(1+2α)MTMT 1−α][c0 + cXT a][[c0 +MTα]4e4αMT +M4T 4b].
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But we know from Theorem 2.2 that ω ∈ Cα(Q), because we assumed cond0: hence, taking
the maximum of the bounds for ω± on U± leads to an estimate of the form,

∥Λu∥Cα(Q) ⩽ (1 + c0)Fc(M,T ) + cXT a′ ,

where a′ > 0, and where Fc(M, 0) = c0. Including forcing only adds a cXT term to the
bound, as we can see from (7.6), so an estimate of the same form holds with forcing.

Now consider N ⩾ 1. The expressions for ω± in (10.1) each consist of two factors. We
first apply Leibniz’s product rule to these expressions then apply the chain rule to each term.
For ω+, if β is a time-space multi-index with |β| = N , then Dβω+ consists of a finite sum of
terms of the form,

Dβ1∇η(τ(t,x), t;γ(t,x))Dβ2H(τ(t,x),γ(t,x))
n∏

ℓ=1

Dβℓ
3µ(t,x) on U+,

where β1 + β2 = β and
∑n

ℓ=1|βℓ
3| = |β|. The factors can be controlled by Proposition 10.1,

Lemma 7.2, and (6.2). Following the similar process for Dβω− leads to an estimate for
∥Λu∥CN,α(Q) of the same form as for ∥Λu∥Cα(Q). □

Having established our many estimates, we can now give the proof of Proposition 4.5.

Proof of Proposition 4.5. For u ∈ K, Proposition 10.2 gives

∥Λu∥CN,α(Q) ⩽ (1 + c0)Fc(M,T ) + cXT a.

Recalling, from the comment following Definition 5.1, that c0 may increase with T , let c0(0) >
0 be its value for T = 0. Start by choosing any

M > M0 := max{(3(1 + c0(0)))
1
a , 3∥PHcu0∥CN+1,α

σ (Ω)
, 1}, (10.2)

which gives (1 + c0(0))Fc(M, 0) < M/3. Next, by continuity there exists T > 0 such that

(1 + c0)Fc(M,T ) ⩽
M

3
.

We can choose T > 0 small enough that

cXT a ⩽
M

3
.

It follows that

∥curlAu∥CN,α(Q) ⩽
2M

3
.

Then, because M > 3∥PHcu0∥CN+1,α
σ (Ω)

, we see from (2.7) that ∥Au∥Xα′,α ⩽ M , after

again decreasing T if necessary. □

11. Continuity of the operator A

To prove Proposition 4.6, we first make some definitions and establish a few lemmas.
Throughout this section, we let M , T , and K be given as in Proposition 4.5. We assume

that u1,u2 are two vector fields in K and, for j = 1, 2, we let ωj = curluj , with ηj , τj , γj ,

U j
±, and Sj defined for the velocity field uj . We let V± = U1

± ∩ U2
±, W = Q \ (V+ ∪ V−).

By virtue of Lemma 7.2, we have, for j = 1, 2,

∥ηj(0, ·; ·)∥CN+1,α(Q ⩽ C(T,M). (11.1)
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We generally to not state the the dependence of constants on T and M , which are fixed
and hence have no impact on the proof of Proposition 4.6. We do state such dependence
explicitly, however, when it makes the nature of the bound being derived clearer. We define
µj : U+ → [0, T ]× Γ+ by µj(t,x) = (τj(t,x),γj(t,x)). We let

w := u1 − u2, µ := µ1 − µ2.

We fix β ∈ (0, α] arbitrarily and let

θβ := ∥w∥Xβ,β
= ∥w∥Cβ(Q) + ∥curlw∥Cβ(Q). (11.2)

Lemma 11.1. We have,

∥µ∥L∞(V+) ⩽ C(T,M)Tθβ.

Proof. We know from Lemma 3.5 of [9] that µj is transported by the flow map for uj ; that
is,

∂tµ1 + u1 · ∇µ1 = 0,

∂tµ2 + u2 · ∇µ2 = 0.

Hence,

∂tµ+ u1 · ∇µ = −w · ∇µ2,

or,

d

dt
µ(t, η1(0, t;x)) = −(w · ∇µ2)(t, η1(0, t;x)).

Integrating in time, using that µ(t, η1(0, t;x))|t=0 = 0, and employing Lemma 7.2 gives

µ(t, η1(0, t;x)) = −
∫ t

0
g(w · ∇µ2)(s, η1(0, s;x)) ⩽ ∥w∥L∞(Q)∥∇µ2∥L∞(Q)

⩽ C(T,M)θβ. □

Lemma 11.2. We have

∥η1 − η2∥L∞([0,T ]2×Ω) ⩽ C(T,M)Tθβ,

∥∇η1 −∇η2∥L∞([0,T ]2×Ω) ⩽ C(T,M)T [θβ + θαβ ].

Proof. We have,

η1(t1, t2;x)− η2(t1, t2;x) =

∫ t2

t1

[u1(s, η1(t1, s;x))− u2(s, η2(t1, s;x))] ds.

Fixing t1, using (11.1), Lemma A.2, Lemma A.3, and applying Minkowski’s integral inequality
gives

|η1(t1, t;x)− η2(t1, t;x)|

⩽
∫ t

t1

∥u1(s, η2(t1, s;x))− u2(s, η2(t1, s;x))∥L∞ ds

+

∫ t

t1

∥u1(s, η1(t1, s;x))− u1(s, η2(t1, s;x))∥L∞ ds

⩽
∫ t

t1

∥u1(s)− u2(s)∥L∞ ds+

∫ t

t1

∥u1(s)∥Ċ1∥η1(t1, s;x)− η2(t1, s;x)∥L∞ ds
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⩽ Tθβ + C(T,M)

∫ t

t1

∥η1(t1, s;x)− η2(t1, s;x)∥L∞ ds.

Taking the supremum over x and applying Grönwall’s Lemma gives

∥η1(t1, t;x)− η2(t1, t;x)∥C([0,T ];L∞(Ω)) ⩽ TeC(M,T )T θβ.

Since this holds uniformly for all t1, t ∈ [0, T ], we obtain the first bound.
Similarly, starting from

∇η1(t1, t;x)−∇η2(t1, t;x) =

∫ t

t1

[∇x(u1(s, η1(t1, s;x)))−∇x(u2(s, η2(t1, s;x)))] ds

=

∫ t

t1

[∇u1(s, η1(t1, s;x))∇η1(t1, s;x)−∇u2(s, η2(t1, s;x))∇η2(t1, s;x)]L∞ ds,

we find

|∇η1(t1, t;x)−∇η2(t1, t;x)|

⩽
∫ t

t1

∥∇u1(s, η1(t1, s;x))∇η1(t1, s;x)−∇u1(s, η2(t1, s;x))∇η1(t1, s;x)∥L∞ ds

+

∫ t

t1

∥(∇u1(s, η2(t1, s;x))−∇u2(s, η2(t1, s;x)))∇η2(t1, s;x)∥L∞ ds

+

∫ t

t1

∥∇u1(s, η2(t1, s;x))(∇η1(t1, s;x)−∇η2(t1, s;x))∥L∞ ds

⩽
∫ t

t1

∥u1(s)∥Ċα∥η1(t1, s;x)− η2(t1, s;x)∥αL∞∥∇η1(x)∥L∞ ds

+

∫ t

t1

∥∇u1(s)−∇u2(s)∥L∞∥∇η2(s)∥L∞ ds

+

∫ t

t1

∥u1(s)∥Ċ1∥∇η1(t1, s;x)−∇η2(t1, s;x)∥L∞ ds

⩽ C(T,M)[Te(C(T,M)T θβ]
αT + C(M,T )Tθβ

+ C(M,T )

∫ t

t1

∥∇η1(t1, s;x)−∇η2(t1, s;x)∥L∞ ds.

In the last inequality, we used Lemma 6.5 to conclude that ∥∇u1(s) − ∇u2(s)∥L∞(Ω) ⩽
∥∇w(s)∥C1,β(Ω) ⩽ C∥curlw(s)∥Cβ(Ω) +C∥w(s)∥H ⩽ Cθβ. Taking the supremum over x and
applying Grönwall’s Lemma as before gives the second bound. □

Lemma 11.3. Letting |W | be the Lebesgue measure of W := Q \ (V+ ∪ V−), we have

|W | ⩽ C(T,M)T 2θβ.

Proof. The set W (t) := {x ∈ Ω: (t,x) ∈ W} consists of all points lying between S1(t) and
S2(t). Any x1 ∈ S1(t) is of the form x1 = η1(0, t;y) for some y ∈ Γ+, and by Lemma 11.2,
the point x2 = η2(0, t;y) is within a distance δ = C(T,M)Tθβ of x1. That is, any point in
S1(t) is within a distance δ of S2(t) and the relation is symmetric. So

W (t) ⊆ Wδ(t) := {x ∈ Ω: dist(x, S1(t)) ⩽ δ}.

As we observed in Section 7, S1(t) is at least C1,α regular as a surface in Ω, and so has
finite Hausdorff measure; hence, we can see that |Wδ(t)| ⩽ Cδ. Moreover, this constant can
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depend upon T and M , but is bounded over [0, T ], for as also observed in Section 7, S1 is at
least C1,α regular as a hypersurface in Q. Thus, |W | ⩽ T |Wδ(t)| ⩽ C(T,M)T 2θβ. □

Proof of Proposition 4.6. Let u1,u2 ∈ K. We will obtain a bound in the following three
steps:

(A) Bound the difference in vorticities, Λu1 − Λu2, assuming zero forcing.
(B) Account for forcing in the bound on Λu1 − Λu2.
(C ) Account for the harmonic component of u1 and u2 to bound Au1 −Au2.

(A) Vorticity: Let f ∈ CN,α(Q). By Lemma A.5,

∥f∥CN,β(Q) ⩽ ∥f∥L∞(Q) + F (∥f∥CN,α(Q))∥f∥1−a
L2(Q)

, (11.3)

where F (x) = xa1 +xaN +xa
′
, an is given in Lemma A.4, and a′ is given in Lemma A.5. The

exponent a depends upon whether ∥f∥L2(Q) is greater or less than 1. Applying (11.3) with
f := Λu1 − Λu2, we see that

∥Λu1 − Λu2∥CN,β(Q) ⩽ ∥Λu1 − Λu2∥L∞(Q) + C(M)∥Λu1 − Λu2∥1−a
L2(Q)

, (11.4)

since F (∥Λu1 −Λu2∥CN,α(Q)) ⩽ Ma1 +MaN +Ma′ ⩽ C(M). We conclude that to prove the

continuity of Λ in the CN,β(Q) norm it suffices to obtain a bound on Λu1 − Λu2 in L∞(Q).
Letting (t,x) ∈ Q, we must estimate |Λu1(t,x)−Λu2(t,x)|. This involves three cases: (1)

(t,x) ∈ V−, (2) (t,x) ∈ V+, (3) (t,x) ∈ W , which we consider separately. We argue first
without forcing.

(1) Define, for (t,x) ∈ V−, j = 1, 2,

γj
0 = γj

0(t,x) := ηj(t, 0;x). (11.5)

From (7.6), we can write,

Λu1(t,x)− Λu2(t,x) = ∇η1(0, t;γ
1
0)ω0(γ

1
0)−∇η2(0, t;γ

2
0)ω0(γ

2
0) = I1 + I2,

where

I1 := ω0(γ
1
0) · (∇η1(0, t;γ

1
0)−∇η2(0, t;γ

2
0)),

I2 := (ω0(γ
1
0)− ω0(γ

2
0)) · ∇η2(0, t;γ

2
0).

We also make the decomposition, I1 = ω0(γ
1
0) · (I11 + I21 ), where

I11 := ∇η1(0, t;γ
1
0)−∇η1(0, t;γ

2
0),

I21 := ∇η1(0, t;γ
2
0)−∇η2(0, t;γ

2
0).

Then,

∥I1∥L∞(V−) ⩽ ∥ω0∥L∞(Ω)

(
∥I11∥L∞(V−) + ∥I21∥L∞(V−)

)
,

with

∥I11∥L∞(V−) ⩽ ∥∇η1(0, t;x)∥Ċα
x (Ω)∥η1(t, 0; ·)− η2(t, 0; ·)∥αL∞(Ω)

⩽ C(T,M)T [Tθβ]
α ⩽ C(T,M)T 1+αθαβ ,

∥I21∥L∞(V−) ⩽ ∥∇η1(0, t; ·)−∇η2(0, t; ·)∥L∞(Ω) ⩽ C(T,M)T [θβ + θαβ ],

where we applied Lemma 11.2. Similarly, applying Lemmas 11.2 and A.3,

∥I2∥L∞(V−) ⩽ ∥ω0∥Ċα(Ω)∥η1(t, 0; ·)− η2(t, 0; ·)∥αL∞(V−)∥∇η2(0, t, ·)∥L∞(V−)

⩽ C(T,M)M [C(T,M)Tθβ]
α.
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Dropping the dependence upon M or the initial data, which play no role here, we conclude

∥Λu1(t,x)− Λu2(t,x)∥L∞(V−) ⩽ C(T )[θβ + θαβ ].

(2) For (t,x) ∈ V+, we have

Λu1(t,x)− Λu2(t,x) = H1(µ1(t,x)) · ∇η1(τ1(t,x), t;γ1(t,x))

−H2(µ2(t,x)) · ∇η2(τ2(t,x), t;γ2(t,x))

= J1 + J2 + J3,

where Hj(t,x) is defined in (3.7) for uj , and

J1 := H1(µ1(t,x)) · (∇η1(τ1(t,x), t;γ1(t,x))−∇η2(τ1(t,x), t;γ1(t,x))),

J2 := H1(µ1(t,x)) · (∇η2(τ1(t,x), t;γ1(t,x))−∇η2(τ2(t,x), t;γ2(t,x))),

J3 := (H1(µ1(t,x))−H2(µ2(t,x)) · ∇η2(τ2(t,x), t;γ2(t,x)).

Now, since Hj(s,y) = ωj(s,y) for (s,y) ∈ [0, T ]× Γ+, we have, using Lemma 11.2,

∥J1∥L∞(V+) ⩽ ∥ω1∥L∞(Q)∥∇η1(·, t; ·)−∇η2(·, t; ·))∥L∞(Q) ⩽ C(T,M)[θβ + θαβ ],

where we also used cond0. For J2, we have, using Lemmas 11.1 and A.3,

∥J2∥L∞(V+) ⩽ ∥ω1∥L∞(Q)∥∇η2∥Ċα(Q)∥(τ1(t,x),γ1(t,x))− (τ2(t,x),γ2(t,x))∥αL∞(Q)

⩽ C(T,M)∥µ∥αL∞(U+) ⩽ C(T,M)θαβ .

For J3, we have

J3 ⩽ ∥H1(µ1(t,x))−H2(µ2(t,x)∥L∞(U+)∥∇η2∥L∞(Q).

But, ∥∇η2∥L∞(Q) ⩽ C(T,M) by Lemma 7.2, and, using Lemma A.3,

∥H1(µ1(t,x))−H2(µ2(t,x)∥L∞(U+)

⩽ ∥H1(µ1(t,x))−H2(µ1(t,x)∥L∞(U+) + ∥H2(µ1(t,x))−H2(µ2(t,x)∥L∞(U+)

⩽ ∥H1 −H2∥L∞([0,T ]×Γ+) + ∥H1 −H2∥Ċα([0,T ]×Γ+)∥µ∥
α
L∞

⩽ ∥ω1 − ω2∥L∞([0,T ]×Γ+) + C(T,M)θαβ ⩽ C(T,M)[θβ + θαβ ],

where in the second-to-last inequality we used the bounds onH1 andH2 from Proposition 10.1
and appealed to cond0.

Combined, we see that

∥Λu1(t,x)− Λu2(t,x)∥L∞(V+) ⩽ C(T,M)[θβ + θαβ ].

(3) Now assume (t,x) ∈ W . Applying Lemma A.10 with Lipschitz modulus of continuity,
r 7→ ∥Λu1 − Λu2∥Ċαr ⩽ Mr,

∥Λu1 − Λu2∥L∞(W ) ⩽ FM

(
∥Λu1 − Λu2∥L2(W )

)
for a continuous function FM with FM (0) = 0. From Lemma 11.3,

∥Λu1 − Λu2∥L2(W ) ⩽ ∥Λu1 − Λu2∥L∞(W )|W |
1
2 ⩽ CM |W |

1
2 ⩽ C(T,M)θβ,

which then gives a bound on ∥Λu1 − Λu2∥L∞(W ).

(B) Accounting for forcing: To treat forcing, let Gj
± be given by (7.6) for ηj . Then

∥G1
± −G2

±∥L∞(V±)

⩽
∫ T

0
∥∇η1(s, t; η1(t, s;x))g(s, η1(t, s;x))−∇η2(s, t; η2(t, s;x))g(s, η2(t, s;x))∥L∞(Ω) ds.
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But,

∥∇η1(s, t; η1(t, s;x))g(s, η1(t, s;x))−∇η2(s, t; η2(t, s;x))g(s, η2(t, s;x))∥L∞(Ω)

⩽ ∥∇η1(s, t; η1(t, s;x))g(s, η1(t, s;x))−∇η2(s, t; η1(t, s;x))g(s, η1(t, s;x))∥L∞(Ω)

+ ∥∇η2(s, t; η1(t, s;x))g(s, η1(t, s;x))−∇η2(s, t; η2(t, s;x))g(s, η1(t, s;x))∥L∞(Ω)

+ ∥∇η2(s, t; η2(t, s;x))g(s, η1(t, s;x))−∇η2(s, t; η2(t, s;x))g(s, η2(t, s;x))∥L∞(Ω)

⩽ ∥∇η1 −∇η2∥L∞([0,T ]2×Ω)∥g∥L∞(Q) + ∥∇η2∥Ċα([0,T ]2×Ω)∥∇η1 −∇η2∥αL∞([0,T ]2×Ω)∥g∥L∞(Q)

+ ∥∇η2∥L∞([0,T ]2×Ω))∥g∥Ċα∥η1 − η2∥αL∞(Q),

where we used Lemmas A.2 and A.3.
Since g ∈ L∞(Q), while ∇η1 and ∇η2 are bounded in Ċα([0, T ]2 ×Ω), by Lemma 11.2 we

see that

∥G1
± −G2

±∥L∞(V±) ⩽ CT [θβ + θαβ ].

Hence, the inclusion of forcing does not change our bounds on ∥Λu1(t,x)−Λu2(t,x)∥L∞(V±)

in (1), (2). And G1
±, G

2
± are bounded on Q, so the estimate on ∥Λu1 − Λu2∥L2(W ) in (3)

is also unchanged.

(C) Velocity: It remains to deal with the harmonic component of v1 − v2. Let Ωj =
∇K[Λuj ]− (∇K[Λuj ])

T , as in (2.7). We have that

PHcvj(t) := PHcuj(0) +

∫ t

0
PHcf(s) ds−

∫ t

0
PHcPH (Ωj(s)uj(s)) ds.

By Lemma 6.1, ∥PHcu∥L∞(Q) ⩽ C∥u∥H for any u ∈ H, so, noting that v1(t)− v2(t) ∈ H,

∥PHc(v1 − v2)∥L∞(Q) ⩽ ∥u1(0)− u2(0)∥H +

∫ t

0
∥PH (Ω1u1 −Ω2u2) (s)∥H ds

⩽ Cθβ +

∫ t

0
∥(Ω1u1 −Ω2u2) (s)∥L2(Ω) ds.

But,∫ t

0
∥(Ω1u1 −Ω2u2) (s)∥L2(Ω) ds

⩽
∫ t

0
∥Ω1(s)(u1 − u2)(s)∥L2(Ω) ds+

∫ t

0
∥(Ω1 −Ω2)(s)u2(s)∥L2(Ω) ds

⩽
∫ t

0
∥Ω1(s)∥L∞(Ω)∥(u1 − u2)(s)∥L2(Ω) ds+

∫ t

0
∥(Ω1 −Ω2)(s)∥L∞(Ω)∥u2(s)∥L∞(Ω) ds

⩽ MTθβ,

where we used that the nonzero components of Ωj come from Λuj .
Applying (11.4), we conclude that

∥Au1 −Au2∥L∞(Q) ⩽ C(M,T )[∥u1 − u2∥Cβ(Q) + ∥u1 − u2∥αCβ(Q)],

which shows that A : K → K is continuous in the Xβ,β norm. □
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12. Full inflow boundary condition satisfied

We are ready to prove Proposition 4.7, which shows that a solution satisfying (1.5)1-4 also
satisfies (1.5)5. This can be done by defining H by (3.7) and recovering the pressure using
N [u] of (3.6), as already observed in [2].

Proof of Proposition 4.7. Our proof is inspired by the proof of Lemma 4.2.1 pages 156-
159 of [2]. Let

w = uτ −Uτ , P := p− q.

By Proposition 3.1, ω = W[u, p] on [0, T ] × Γ+, where we recall that W[u, p] is defined in
(3.4). From (9.1), (3.5), and (3.6), we see that on Γ+, ∇P · n = divΓ(U

nw). Hence, P
satisfies 

∆P = 0 in Ω,

∇P · n = 0 on Γ− ∪ Γ0,

∇P · n = divΓ(U
nw) on Γ+.

Multiplying by P and integrating over Ω gives

∥∇P∥2L2(Ω) = −(∆P, P ) +

∫
Γ+

(∇P · n)P =

∫
Γ+

divΓ(U
nw)P = −

∫
Γ+

Unw · ∇ΓP. (12.1)

By (3.3) and the assumption thatH = ω on Γ+, we know that Un[Hτ ]⊥ = Un[Wτ [u, p]]⊥.
Using also that (v⊥)⊥ = −v, we have, from (3.4) and (3.7), that on Γ+,

∂tU
τ +∇Γ

(
q +

1

2
|U|2

)
− fτ + curlΓU

τ [uτ ]⊥ = H

= ω = ∂tu
τ +∇Γ

(
p+

1

2
|u|2

)
− fτ + curlΓ u

τ [uτ ]⊥.

Subtracting the left hand side from the right hand side, we have

0 = ∇ΓP +
1

2
∇Γ(|u|2 − |U|2) + ∂tw + curlΓw[uτ ]⊥.

But, ωn = Hn on Γ+, which gives curlΓU
τ = curlΓ u

τ . Hence, curlΓw = 0, so

∇ΓP = −∂tw − 1

2
∇Γ(|u|2 − |U|2).

Returning to (12.1), we thus have

∥∇P∥2L2(Ω) =

∫
Γ+

Unw · ∂tw +
1

2

∫
Γ+

Unw · ∇Γ(|u|2 − |U|2).

Now, ∫
Γ+

Unw · ∂tw =
1

2

∫
Γ+

Un∂t|w|2 = 1

2

∫
Γ+

∂t[U
n|w|2]− 1

2

∫
Γ+

∂tU
n |w|2

=
1

2

d

dt

∫
Γ+

Un|w|2 − 1

2

∫
Γ+

∂tU
n |w|2,

so

d

dt

∫
Γ+

Un|w|2 =
∫
Γ+

∂tU
n|w|2 −

∫
Γ+

Unw · ∇Γ(|u|2 − |U|2) + 2∥∇P∥2L2(Ω). (12.2)
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Writing |U|2 − |u|2 = |uτ |2 − |Uτ |2 = w · v on Γ+, since Un = un, where v := Uτ +uτ ,
we have ∫

Γ+

Unw · ∇Γ(|u|2 − |U|2) =
∫
Γ+

Unw · ∇Γ(w · v)

=

∫
Γ+

Un(w · ∇Γv) ·w +

∫
Γ+

Un(w · ∇Γw) · v

=

∫
Γ+

Un(w · ∇Γv) ·w − 1

2

∫
Γ+

|w|2 divΓ(Unv).

For the last term above, we used that Un(w · ∇Γw) · v = (1/2)Unv · ∇Γ|w|2 and integrated
by parts via Lemma B.1. Then because v and Un are sufficiently regular, we have∣∣∣∣∫

Γ+

Unw · ∇Γ(|u|2 − |U|2)
∣∣∣∣ ⩽ C

∫
Γ+

|w|2.

Changing sign in (12.2) and integrating in time, we see that∫
Γ+

|Un(t)||w(t)|2 = −
∫
Γ+

Un(t)|w(t)|2

⩽ −
∫ t

0

∫
Γ+

∂tU
n|w|2 +

∫ t

0

∫
Γ+

Unw · ∇Γ(|u|2 − |U|2)− 2

∫ t

0
∥∇P∥2L2(Ω)

⩽ C

∫ t

0

∫
Γ+

|w(s)|2 ds− 2

∫ t

0
∥∇P∥2L2(Ω) ⩽ C

∫ t

0

∫
Γ+

|w(s)|2 ds.

In the first equality we used that Un < 0 on Γ+, in the second equality we used thatw(0) = 0,
and in the third equality we used that ∂tU

n is bounded.
Now since |Un| is bounded away from zero, we have∫

Γ+

|w(t)|2 ⩽ C

∫ t

0

∫
Γ+

|w(s)|2 ds,

and we conclude from Grönwall’s Lemma that w ≡ 0. This means that uτ = Uτ , so (1.5)5
holds. □

Remark 12.1. If Γ0 = Γ, the classical setting of impermeable boundary conditions on the
whole boundary, our proof of existence and uniqueness still applies, though a number of things
trivialize. First, no vorticity is transported off of the boundary, so there is no need for the
pressure estimates in Section 9, and U− is all of Q, so many of the flow map constructs,
such as S, τ , and γ are unnecessary. And, of course, none of the estimates involving U+ are
needed. The bound on the time of existence is still finite, however.

13. Vorticity boundary conditions

Proof of Theorem 1.4. The proof of existence is the same as that for Theorem 1.2, though
with substantial simplifications. Because H is given with sufficient regularity, it satisfies

∥H∥L∞([0,T ]×Γ+) ⩽ c0, ∥H∥CN,α([0,T ]×Γ+) ⩽ c0.

Hence, there are no pressure estimates involved, so the condition in (1.11) immediately gives
(2.2), and there is no need to appeal to Proposition 3.8. Since we only require u ·n = Un on
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Γ+, we simplify the definition of DomN (A) in (4.1) to

DomN (A) := {u ∈ CN+1,α
σ (Q) : u(0) = u0},

and there is no need to invoke Proposition 4.7 or Lemma 6.4. Otherwise, the remainder of
the proof of existence proceeds unchanged.

For uniqueness when N ⩾ 1, let ωj = curluj , j = 1, 2, and let w = u1−u2. Then w ∈ H0,
since u1, u2 have the same prescribed harmonic component, uc. Let

µ := curlw = ω1 − ω2.

Since N ⩾ 1, we have enough regularity to write ∂tωj + uj · ∇ωj = ωj · ∇uj + curl f , and
subtracting this relation for j = 2 from that for j = 1 gives

∂tµ+ u1 · ∇µ+w · ∇ω2 = ω1 · ∇w + µ · ∇u2. (13.1)

Multiplying by µ, integrating over Ω, and using that (u1 · ∇µ,µ) = (1/2)(u1,∇|µ|2), gives
1

2

d

dt
∥µ∥2 + 1

2

∫
Ω
u1 · ∇|µ|2 = −(w · ∇ω2,µ) + (ω1 · ∇w,µ) + (µ · ∇u2,µ)

⩽
1

2
∥∇ω2∥L∞∥w∥2 + 1

2
∥µ∥2 + 1

2
∥ω1∥L∞∥∇w∥2 + 1

2
∥µ∥2 + ∥∇u2∥L∞∥µ∥2,

(13.2)

where ∥·∥ := ∥·∥L2(Ω) here. As in the proof of Lemma 6.5, elements of H have mean zero, so
by Poincaré’s inequality, ∥w∥ ⩽ C∥∇w∥. Moreover, since w ∈ H0, we have ∥∇w∥ ⩽ C∥µ∥
and so obtain

d

dt
∥µ∥2 ⩽ −

∫
Ω
u1 · ∇|µ|2 + C∥µ∥2.

We note that ∇ω2 ∈ L∞([0, T ]× Ω) by the N = 1 existence result. But,

−
∫
Ω
u1 · ∇|µ|2 =

∫
Ω
divu1 |µ|2 −

∫
Γ
Un|µ|2 = −

∫
Γ−

Un|µ|2 ⩽ 0,

so we conclude from Gronwall’s lemma, since µ(0) = 0, that µ ≡ 0. That is, u1 = u2.
Finally, from (1.10)1, we have

∂tu
τ + (u · ∇u)τ = (f −∇p)τ + zτ .

From cond0, then, we see that zτ (0) = 0. Since also zn(0) = 0, we know that z(0) = 0. □
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Appendix A. Hölder space lemmas

We collect here a number of estimates in Hölder spaces, which we use throughout much of
this paper. We include proofs only of the less standard ones.

Lemma A.1. Let f, g ∈ Cα(U). Then

∥fg∥Cα ⩽ ∥f∥Cα∥g∥Cα ,

∥fg∥Ċα ⩽ ∥f∥L∞∥g∥Ċα + ∥g∥L∞∥f∥Ċα ,

∥fg∥Cα ⩽ ∥f∥L∞∥g∥L∞ + ∥f∥L∞∥g∥Ċα + ∥g∥L∞∥f∥Ċα ,

⩽ ∥f∥L∞∥g∥Cα + ∥g∥L∞∥f∥Cα ,

∥fg∥Cα ⩽ ∥f∥L∞∥g∥Ċα + ∥g∥L∞∥f∥Cα .

Also, for any β ∈ (0, α), allowing α = 1, we have the interpolation inequality,

∥f∥Ċβ ⩽ 2∥f∥
β
α

Ċα
∥f∥1−

β
α

L∞ .

Lemma A.2. Let U, V be open subsets of Euclidean spaces, α ∈ (0, 1], and k ⩾ 1 an integer.
If f ∈ Ck,α(U) and g ∈ Ck+1,α(V ) with g(V ) ⊆ U then

∥f ◦ g∥Ċα(V ) ⩽ ∥f∥Ċα(U)∥g∥
α
Lip(V ),

∥f ◦ g∥Cα(V ) ⩽ ∥f∥L∞(U) + ∥f∥Ċα(U)∥g∥
α
Lip(V ) ⩽ ∥f∥Cα(U)

[
1 + ∥g∥αLip(V )

]
,

∥f ◦ g∥Ck,α(V ) ⩽ C(k)∥f∥Ck,α(U)

[
1 + ∥g∥Ck+1(V )

]k+1
,

(A.1)

where Lip is the homogeneous Lipschitz semi-norm and Ċα is the homogeneous Hölder norm.

Lemma A.3. Let U, V be open subsets of Rd, d ⩾ 1, and let α ∈ (0, 1]. Assume that the
domain of f is U and the domains of g and h are V , with g(V ), h(V ) ⊆ U . Then

∥f ◦ g − f ◦ h∥L∞(V ) ⩽ ∥f∥Ċα(U)∥g − h∥αL∞(V ).

We also have the following interpolation-like inequality:

Lemma A.4. Let U be a bounded open subset of Rd, d ⩾ 1, let n ⩾ 1, and ∇nf ∈ Cα(U).
Then

∥∇nf∥L∞(U) ⩽ C∥f∥aCn,α(U)∥f∥
1−a
L2(U)

,

where

a = an =
2n+ d

2n+ d+ 2α
< 1.

Proof. First extend f continuously to all of Rd in all Sobolov and Hölder spaces, as can
be done using the extension operator in Theorem 5′, chapter VI of [25]. Applying a cutoff
function, we can insure that the extension, which we continue to call f , has support with a
diameter no more than twice diam(U).

Then

∥∇nf∥L∞(U) = sup
x∈supp f

|∇nf(x)| = sup
x∈supp f

|∇nf(x)−∇nf(x0)| ⩽ R,

where x0 is a fixed point in (supp f)C and

R = sup
x∈supp f

|x− x0|α sup
x∈supp f

|∇nf(x)−∇nf(x0)|
|x− x0|α

= sup
x∈supp f

|x− x0|α∥∇n(f(s·))∥Ċα(Rd).
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In particular,

∥∇nf∥L∞(Rd) ⩽ R+ ∥f∥L2(Rd) (A.2)

for all f ∈ C∞
0 (Rd).

Following the scaling argument in the proof of Proposition 13.3.4 of [27], we write (A.2)
schematically in the form Q ⩽ R + P . Replacing f(·) with f(s·), we have ∇n(f(sx)) =

sn∇f(sx). This gives ∥∇n(f(s·))∥L∞(Rd) = sn∥∇f∥L∞(Rd) and ∥f(s·)∥L2(Rd) = s−
d
2 ∥f∥L2(Rd).

Also, R becomes

sup
x∈supp f

|sx− sx0|α sup
x∈supp f

sn
|∇nf(sx)−∇nf(sx0)|

|sx− sx0|α
= sn+αR.

Thus, Q ⩽ R+ P becomes

snQ ⩽ sn+αR+ s−
d
2P =⇒ Q ⩽ sαR+ s−(n+ d

2
)P.

As in [27], we conclude that

∥∇nf∥L∞(Rd) ⩽ ∥∇nf∥a
Ċα(Rd)

∥f∥1−a
L2(Rd)

⩽ C∥∇nf∥a
Ċα(U)

∥f∥1−a
L2(U)

as long as αa = (n + d
2)(1 − a), which gives the stated value of a and the stated estimate,

using the continuity of the extension operator. □

The inequality in Lemma A.4 is similar to that in the lemma on page 126 of [22], used by
the authors of [2] (for N = 0).

Lemma A.5. Let U be a bounded open subset of Rd, d ⩾ 1, let n ⩾ 1, and suppose that
f ∈ Cn,α(U). Let an be as in Lemma A.4. For any β ∈ (0, α),

∥f∥Cn,β(U) ⩽ ∥f∥L∞(U) + C
[
∥f∥a1Cn,α(U) + ∥f∥anCn,α(U)

] [
∥f∥1−a1

L2(U)
+ ∥f∥1−an

L2(U)

]
+ C∥f∥a′Cn,α(U)∥f∥

1−a′

L2(U)
,

where

a′ = (β/α) + an(1− β/α) < 1.

On [0, T ] × Γ+, by the regularity of Γ+, we have the following equivalent formulations of
Hölder norms (a simulation formulation holds for any time-space domain, such as Q and U±):

∥f∥Ċα
t ([0,T ]×Γ+) := sup

(t1,x) ̸=(t2,x)
in [0,T ]×Γ+

|f(t1,x)− f(t2,x)|
|t1 − t2|α

= sup
x∈Γ+

∥f(·,x)∥Ċα([0,T ]),

∥f∥Ċα
x ([0,T ]×Γ+) := sup

(t,x1) ̸=(t,x2)
in [0,T ]×Γ+

|f(t,x1)− f(t,x2)|
|x1 − x2|α

= sup
t∈[0,T ]

∥f(t)∥Ċα(Γ+),

∥f∥Ċ([0,T ]×Γ+) := ∥f∥Ċα
t ([0,T ]×Γ+) + ∥f∥Ċα

x ([0,T ]×Γ+).

(A.3)

Lemma A.6. Let α ∈ (0, 1] and assume that f : [0, T ] × Γ+ → R is a continuous function
with the properties that for all t1, t2 ∈ [0, T ]

• ∥f(t1)− f(t2)∥Ċα(Γ+) ⩽ F1(|t1 − t2|);
• ∥f(t1)− f(t2)∥L∞(Γ+) ⩽ F2(|t1 − t2|),
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where F1, F2 are increasing continuous functions with F2(t) = O(tα). Then

∥f∥Ċα([0,T ]×Γ+) ⩽ ∥f(0)∥Ċα(Γ+) + F1(T ) + sup
t∈[0,T ]

F2(t)

tα
.

Lemma A.7. Assume that f ∈ CN,α([0, T ] × Γ+) for some N ⩾ 0, with the properties that
for all t1, t2 ∈ [0, T ],

• ∥DNf(t1)−DNf(t2)∥Ċα(Γ+) ⩽ F1(|t1 − t2|);
• ∥DNf(t1)−DNf(t2)∥L∞(Γ+) ⩽ F2(|t1 − t2|),

where F1, F2 are increasing continuous functions with F2(t) = O(tα). Then

∥f∥CN,α([0,T ]×Γ+) ⩽ ∥f(0)∥CN,α(Γ+) + ∥f(t)− f(0)∥CN ([0,T ]×Γ+) + CF1(T ) + C sup
t∈[0,T ]

F2(t)

tα
.

Lemma A.8. If f ∈ CN,α(Q) for some N ⩾ 0 and α ∈ (0, 1] then for any t1, t2 ∈ [0, T ],

∥f(t1)− f(t2)∥CN (Ω) ⩽ C∥f∥CN,α(Q)|t1 − t2|α.

Corollary A.9. If f ∈ CN,α(Q) for some N ⩾ 0 and α ∈ (0, 1] then

∥f(t)− f(0)∥CN (Q) ⩽ C∥f∥CN,α(Q)T
α.

Lemma A.10 is adapted from Lemma 8.3 of [13].

Lemma A.10. Suppose that fj : Rd → R, j = 1, 2, each have the modulus of continuity µ,
with µ : [0,∞) → [0,∞) continuous and increasing with µ(0) = 0. There exists a continuous
increasing function F : [0,∞) → ∞, depending on µ, with F (0) = 0 for which

∥f1 − f2∥L∞(Rd) ⩽ F (∥f1 − f2∥L2(Rd)).

Proof. Fix x ∈ Rd arbitrarily and suppose that δ = |f1(x)− f2(x)| > 0. Let y be in the ball
B of radius a = µ−1(δ/4) about x, so that |f1(x)− f1(y)|, |f2(x)− f2(y)| ⩽ δ/4. Then

|f1(y)− f2(y)| ⩾ δ − |f1(x)− f1(y)| − |f2(x)− f2(y)| =
δ

2
.

Hence,

∥f1 − f2∥L2(Rd) ⩾ ∥f1 − f2∥L2(B) ⩾

(∫
B

(
δ

2

)2
) 1

2

=
δ

2

√
πa,

or,

h(δ) :=

√
π

2
δµ−1 (δ/4) ⩽ ∥f1 − f2∥L2(Rd).

Since µ−1 must be increasing, so must h, so setting F = h−1 (noting that F (0) = 0) we have

|f1(x)− f2(x)| = δ ⩽ F (∥f1 − f2∥L2(Rd)).

This inequality applies for all x even when δ = |f1(x)− f2(x)| = 0, giving the result. □
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Appendix B. Boundary differential operators

We can define differential operators up to order two on ∂Ω by treating it as a manifold having
at least C2 regularity. In this appendix, we describe the properties that we need of the first-
order differential operators, ∇Γ, divΓ, and curlΓ. We refer the reader to standard references
for such operators (for instance, Section 2.2 of [26]).

We will also have the need to calculate ∇, div, and curl in 3-space, but restricted to the
boundary. This can be done by introducing a convenient coordinate system in a tubular
neighborhood of the boundary in such a way that on the boundary itself, the coordinates
reduce to a convenient coordinate system on the boundary. This is as done, for instance,
in [8], drawing upon [14], and we refer the reader to those references for details.

We can define ∇Γ—and then from it, divΓ and curlΓ—in a coordinate-free manner by
requiring that for any f ∈ C∞(Γ) and any smooth curve x(s) on Γ parameterized by arc
length,

∇Γf · x′(0) = lim
s→0

f(x(s))− f(x(0))

s
.

We then define divΓ as the adjoint of ∇Γ, in the sense of Lemma B.1:

Lemma B.1. Let f ∈ C1(Γ), v ∈ (C1(Γ))d. Then∫
Γ
v · ∇Γf = −

∫
Γ
divΓ v f.

Moreover,

divΓ(fv) = f divΓ v + v · ∇Γf. (B.1)

Proof. This is classical for smooth functions (see, for instance, Proposition 2.2.2 of [26]), and
follows in the same way for C1 functions, integrating by parts on the boundary in charts. □

Finally, we define (with the ⊥ operator as in Definition 8.1)

curlΓ v := −divΓ v
⊥.

We collect now a few useful facts.
For u, v tangent vectors,

(u · ∇Γv) · v =
1

aj
uj∂jv

i vi =
1

2aj
ui∂j |v|2 =

1

2
u · ∇|v|2,

so for any component Γn of the boundary,∫
Γn

(u · ∇Γv) · v =
1

2

∫
Γn

u · ∇Γ|v|2.

For a vector field v on Ω,

curlΓ v
τ = (curlv) · n (B.2)

and

divv = divΓ v
τ + ∂nv

n + (κ1 + κ2)v
n on Γ. (B.3)

Lemma B.2. Let u,v be vector fields on Ω. Then

[u× v]τ = un[vτ ]⊥ − vn[uτ ]⊥, unvτ − vnuτ = [(v × u)τ ]⊥.
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Proof. We have,

u× v = (un + uτ )× (vn + vτ ) = un × vτ − vn × uτ + uτ × vτ ,

since un × vn = 0. Now, uτ × vτ is parallel to n, so we see that

[u× v]τ = un × vτ − vn × uτ .

But, un is perpendicular to vτ , so we see that un×vτ = un[vτ ]⊥, and similarly, vn×uτ =
vn[uτ ]⊥. Hence, [u×v]τ = un[vτ ]⊥−vn[uτ ]⊥, giving also unvτ −vnuτ = [(v×u)τ ]⊥. □

Proof of Proposition 8.2. All the following calculations are on Γ. We start with a short
calculation in rectangular coordinates, using that divu = ∂iu

i = 0:

(u · ∇u) · n = ui∂iu
jnj = ∂i(u

iujnj)− ujui∂in
j = div(unu)− u · (u · ∇n)

= div(unu)− uτ · Auτ .

In the last equality, we used that because n does not change in the direction of n,

u · ∇n = (un · ∇)n+ uτ · ∇n = Auτ ,

which is a tangent vector.
From (B.3) followed by (B.1), then,

div(unu) = divΓ(u
nuτ ) + ∂n(u

n)2 + (κ1 + κ2)(u
n)2

= un divΓ u
τ + uτ · ∇Γu

n + ∂n(u
n)2 + (κ1 + κ2)(u

n)2.

Using (B.3) again,

0 = (divu)un = (divΓ u
τ + ∂nu

n + (κ1 + κ2)u
n)un,

so

∂n(u
n)2 = 2un∂nu

n = −2un divΓ u
τ − 2(κ1 + κ2)(u

n)2.

Hence,

(u · ∇u) · n = −un divΓ u
τ + uτ · ∇Γu

n − (κ1 + κ2)(u
n)2 − uτ · Auτ . □

Appendix C. Compatibility conditions: special case

In [28], Temam and Wang consider a periodic domain with U = (0, 0,−1), so Uτ = 0 for all
time. More generally, the authors of [6] consider U = −U In, where U I > 0 is constant, so
Uτ = 0 on Γ+ for all time. The compatibility conditions simplify in these settings.

Proposition C.1. Assume that Uτ ≡ 0 and Un is spatially constant along Γ+ (Un need
not be constant in time). Then the compatibility condition condN for N ⩾ 0 is

∂j
t f
τ |t=0 = ∂j

t∇Γp|t=0 − Un
0 (∂

j
tω

τ )⊥|t=0 for all 0 ⩽ j ⩽ N, (C.1)

where ∂j
t∇Γp|t=0 and ∂j

tω|t=0 must be treated as explained following (1.9).

Proof. Since uτ = Uτ = 0, (B.2) gives that on Γ+,

ωn = ω · n = curlΓ u
τ = 0.

In particular, this holds at time zero. Both ∂tU
τ = 0 and curlΓU

τ = 0, while |U|2 =
(Un)2 is constant on Γ+, so also ∇Γ|U|2 = 0. We see, then, that Hτ simplifies to Hτ =

(Un)−1
[
fτ −∇Γp

]⊥
, so lincond0 (which follows from cond0 by Proposition 3.7) becomes[

fτ −∇Γp
]⊥
t=0

= Un
0 ω

τ
0 ,
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which is (C.1) for N = 0. The inductive extension of this to higher N follows readily, leading
to (C.1) for N ⩾ 0. □

The condition in (C.1) for N = 0 also follows from cond0 with slightly more work, though
the inductive extension to higher N is not so transparent as it is starting from cond′0.

Because div f = 0 with f ·n = 0 on Γ, f plays no role in the calculation of ∇Γp for N = 0.
By writing the condition in (C.1) as we do, we are stressing that, given initial data one can
always choose a forcing at time zero so that cond0 is satisfied.

For all N ⩾ 1, though, forcing enters into the calculation of ∂t∇Γp, when ∂tu0 is replaced
by f − u0 · ∇u0 − ∇p0: even though f · n = 0, the forcing still does not, in general, vanish
from even the N = 1 condition. Because of this fact, the forcing is intimately entwined in
condN for N ⩾ 1, appearing on both sides of the condition, even for the simplest nontrivial
case considered in [28]. These same comments hold in the general setting, but are more
transparent in this simplified setting.
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