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Abstract. We prove existence and uniqueness of a weak solution to the incom-
pressible 2D Euler equations in the exterior of a bounded smooth obstacle when
the initial data is a bounded divergence-free velocity field having bounded scalar
curl. This work completes and extends the ideas outlined by P. Serfati for the same
problem in the whole-plane case. With non-decaying vorticity, the Biot-Savart in-
tegral does not converge, and thus velocity cannot be reconstructed from vorticity
in a straightforward way. The key to circumventing this difficulty is the use of the
Serfati identity, which is based on the Biot-Savart integral, but holds in more general
settings.
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1. Introduction

The incompressible Euler equations describe the velocity field, u, and pressure, p,
of a constant-density, inviscid fluid. The equations (without forcing) can be written,

∂tu+ u · ∇u+∇p = 0 in Ω,
div u = 0 in Ω,
u · n = 0 on ∂Ω,
u(0) = u0 in Ω.

(1.1)

Here, Ω is a domain with boundary (empty, if Ω = R2) and n is the outward unit
normal to the boundary. The initial velocity, u0, and the solution, (u, p), are assumed
to lie in appropriate function spaces. If Ω is unbounded, some condition at infinity
must be imposed.

In two dimensions, the classical well-posedness result for finite-energy weak solutions
with bounded initial vorticity (the scalar curl of the velocity) is that established by
Yudovich in [36] (and extended by him in [37] to allow slightly unbounded vorticities).
Yudovich’s results are for a bounded domain, but his ideas were adapted to the full
plane case, see [24]. Vishik, in [35], working in the full plane, established a slightly
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larger uniqueness class of unbounded vorticities. Each of these full-plane results,
however, requires that the initial vorticity decay at infinity. This assumption is not
natural from the physical point of view, as full plane flow is an approximate model
for flow far from boundaries, where no decay of distant vorticity should be expected.

In 1995, Ph. Serfati stated and outlined proofs of existence and uniqueness of
solutions for the incompressible 2D Euler equations in the full plane with each of the
initial velocity and initial vorticity bounded [29]. We call such velocity fields, Serfati
velocity fields. Once no decay of vorticity is assumed, uniform boundedness of vorticity
no longer implies boundedness of velocity, so it makes sense to add this condition as
an hypothesis.

Our purpose in the present paper is to extend Serfati’s result to exterior domain
flows. We also include a complete proof of Serfati’s original result, following his ideas,
as this is not available in the literature and because it will help to better organize the
presentation of our own result.

Until Serfati’s 1995 paper, all existence results in an unbounded domain, including
the full plane, made key use of the Biot-Savart law to recover the velocity from the
vorticity and, hence, to obtain strong a priori estimates for velocity from estimates
for vorticity. This law can be expressed in the form,

KΩ[ω] :=

∫
Ω

KΩ(·, y)ω(y) dy. (1.2)

Here, KΩ is the Biot-Savart kernel,

KΩ(x, y) = ∇⊥xGΩ(x, y), (1.3)

where GΩ is the Green’s function for the Dirichlet Laplacian on Ω. Above, ∇⊥x =
(−∂x2 , ∂x1). For the full plane, KΩ(x, y) = K(x− y), where

K(x) :=
x⊥

2π |x|2
. (1.4)

When Ω is the domain exterior to a single, connected, bounded, domain then, given
a scalar field, ω, u = KΩ[ω] is the unique divergence-free vector field on Ω, decaying at
infinity, with u ·n = 0 on ∂Ω, whose scalar curl (vorticity) is ω, and whose circulation

about the boundary is −
∫

Ω

ω. (See Section 5.1 for more details.)

Convergence of the Biot-Savart integral requires, however, membership of ω in an
appropriate space; for instance, ω ∈ L1 ∩ L∞ would be sufficient. For ω only in L∞,
the Biot-Savart integral fails to converge. This is the heart of the difficulty in working
with Serfati solutions.

Serfati’s key insight, which we adopt, is to use, in place of the Biot-Savart law, the
identity,

uj(t, x)− (u0)j(x) =

∫
Ω

a(x− y)Kj
Ω(x, y)(ω(t, y)− ω0(y)) dy

−
∫ t

0

∫
Ω

∇y∇⊥y
[
(1− a(x− y))Kj

Ω(x, y)
]
· (u⊗ u)(s, y) dy ds,

(1.5)

j = 1, 2, for all (t, x) in [0, T ] × Ω. Here, a is any radially symmetric, smooth,
compactly supported cutoff function with a = 1 in a neighborhood of the origin.
We call (1.5) the Serfati identity. (Actually, Serfati never derives or even states this
identity, but rather states inequalities that follow from it.) Using the Serfati identity
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it is possible to deduce L∞ estimates for velocity in terms of L∞ bounds for initial
velocity and initial vorticity, see Section 4.2 and Section 5.2.

This paper is organized as follows: We state our results in Section 2. In Section 3 we
state the estimates on the Biot-Savart kernel that we will need in the proofs of existence
and uniqueness, giving their proofs, which are quite lengthy and of a different flavor
from the rest of this paper, in Appendix A. We give the proof of existence separately
for the full plane in Section 4 and for an exterior domain in Section 5. In each of these
sections, we start by deriving the Serfati identity for the given type of domain then
give the existence proofs. We prove uniqueness in Section 6.1, extending the argument
to give a type of continuous dependence on initial data in Section 6.2. Examples of
Serfati velocities are given in Section 7.

In Appendix B, we show how to prepare a sequence of initial velocities that are
smooth with compactly supported vorticity and that converge in an appropriate sense
to a given bounded initial velocity having bounded vorticity. (This approximate se-
quence is employed in Sections 4.2 and 5.2 to obtain existence of solutions.)

2. Statement of results

The purpose of this section is to give precise statements of the main results in this
work: existence, uniqueness, and a mild form of continuous dependence of solutions
on initial data. We will treat two very different fluid domains—the full plane and
domains exterior to a single obstacle. To be more precise, we will denote the fluid
domain by Ω, be it all of R2 or the exterior of a single connected and simply connected
bounded domain with a C∞ boundary. In the latter case let n denote the unit exterior
normal to Ω at the finite boundary Γ. (For notational convenience we set Γ = ∅ when
considering full plane flow.) We let τ denote the unit tangent vector, oriented so that

τ = −n⊥ := −(−n2, n1) = (n2,−n1).

We begin with basic definitions concerning the type of velocity field we are interested
in and the notion of weak solution of the Euler equations we will consider.

If u is a vector field on Ω, we write

ω(u) := curlu = ∂1u
2 − ∂2u

1

for the scalar curl (vorticity) of u. We write ω for ω(u) when u is understood.
Taking the scalar curl of the two dimensional incompressible Euler equations (1.1),

we obtain the vorticity equation, or the vorticity formulation of the Euler equations:
∂tω + u · ∇ω = 0 in Ω,

div u = 0 in Ω,
curlu = 0 in Ω,
u · n = 0 on ∂Ω,

ω(0) = ω0 = curlu0 in Ω.

(2.1)

Definition 2.1. We say that a divergence-free vector field u ∈ L∞(Ω) with u ·n = 0
on Γ and ω(u) ∈ L∞(Ω) is a Serfati velocity. We denote by S = S(Ω) the Banach
space of all Serfati velocity fields with the norm,

‖u‖S = ‖u‖L∞ + ‖ω(u)‖L∞ .
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Remark 2.2. Since u ∈ L2
loc and u is divergence-free, the trace of its normal compo-

nent, u · n, is well-defined and belongs to H−1/2(Γ) (see, for instance, Theorem I.1.2
of [34]).

Definition 2.3. Fix T > 0. Assume that u ∈ L∞(0, T ;S) ∩ C([0, T ] × Ω) and let
ω = ω(u). We say that u is a Serfati solution to the Euler equations without forcing
and with initial velocity u0 = u|t=0 in S if the following conditions hold:

(1) The vorticity equation ∂tω + u · ∇ω = 0 (see (2.1)1) holds in the sense of
distributions.

(2) For any radially symmetric, smooth, compactly supported cutoff function a
with a = 1 in a neighborhood of the origin the Serfati identity in (1.5) holds.

(3) If Ω is the exterior of a single obstacle then the circulation of velocity around
the boundary is conserved in time.

Remark 2.4. Since any Serfati solution u is in L∞(0, T ;S)∩C([0, T ]×Ω), it follows
that u is log-Lipschitz in space, uniformly over (0, T ); see Lemma B.3. Therefore,
there exists a unique, continuous, measure-preserving flow map, X : [0, T ] × Ω → Ω,
for u; that is,

∂tX(t, x) = u(t,X(t, x)), t ∈ (0, T ), x ∈ Ω

X(0, x) = x, x ∈ Ω.

In addition, the vorticity ω = ω(u) is transported by this flow map, meaning that for
all t ∈ [0, T ], x ∈ Ω,

ω(t,X(t, x)) = ω0(x).

Our main results are Theorems 2.5 and 2.8, in which we establish the existence,
uniqueness, and a limited form of continuous dependence on initial data for Serfati
solutions. We begin with the statement of existence and uniqueness.

Theorem 2.5. Let T > 0. Assume that u0 ∈ S. Then there exists a unique, Serfati
solution u to the Euler equations as in Definition 2.3. Moreover, the flow map X(t, ·) ∈
Cβ(t), where β(t) = e−α|t| and α = C ‖u‖L∞(0,T ;S).

Remark 2.6. It is shown in [19] that the solutions constructed in Theorem 2.5 are
also distributional solutions of the velocity formulation of the Euler equations, (1.1).
Moreover, there exists an associated pressure whose asymptotic behavior is O(log |x|)
for large |x| and whose gradient is bounded.

Remark 2.7. The Hölder regularity of the flow map in Theorem 2.5 is optimal, as
shown by an explicit (compactly supported) example in [2].

The following is a statement that Serfati solutions depend continuously, in the L∞-
norm, on the (Serfati) initial data. We will need additional notation to state the
result.

For any p ∈ [1,∞], Lpuloc(Ω) is the uniformly local Lp space; that is, the space of all
measurable functions whose norm,

‖f‖Lpuloc(Ω) := sup
U⊂Ω,|U |≤C0

‖f‖Lp(U) ,
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is finite, where C0 is an arbitrary fixed positive constant and |U | is the Lebesgue
measure of U . For any p ∈ [2,∞], let

Sp =
{
u ∈ (L∞(Ω))2 : div u = 0, ω(u) ∈ Lpuloc(Ω), u · n = 0 on Γ

}
. (2.2)

Then Sp is a Banach space under the norm ‖u‖Sp = ‖u‖L∞+‖ω(u)‖Lpuloc . (We require

p ≥ 2 so that u · n is well-defined, as in Remark 2.2.)

Theorem 2.8. Let u1, u2 be Serfati solutions to the Euler equations for a fixed T > 0
and let p ∈ (2,∞]. Let u0

1, u0
2 be the initial velocities with u0

1 − u0
2 ∈ Sp ∩ S. For all

sufficiently small s0 = ‖u0
1 − u0

2‖Sp there exist C > 0 such that

‖u1(t)− u2(t)‖L∞ ≤ CeCts0 − C(1 + t)eCt(Cs0t)
e−Ct(1+t) log(Cs0t) (2.3)

for all t in [0, T ], where C depends on ‖u0‖S, T , and p.

Remark 2.9. The last term in (2.3) goes to zero as s0 → 0+ since limr→0+ r
α log r = 0

for any α > 0.

Remark 2.10. Stability in Cr for all r < 1 follows by interpolation from Theorem 2.8,
though stability in S does not. In fact, we should not expect continuous dependence
in the L∞ norm of the vorticity, and hence not in S. For instance, a small initial per-
turbation of a vortex patch will displace the contour and result in a large discrepancy
between perturbed and unperturbed solutions, relative to the L∞-norm of vorticity,
for any positive time.

3. Estimates for the Biot-Savart kernel

In Propositions 3.1 through 3.3, we state the estimates on the Biot-Savart kernel and
its derivatives that will be needed in the proof of existence and uniqueness in Sections 4
through 6. We state these estimates in a manner that unifies, to the extent possible,
the two cases of the full plane and an exterior domain. Their proofs, which are quite
lengthy, are deferred to Appendix A.

Let Ω be the domain exterior to a bounded simply connected domain having C∞

boundary. We recall the definitions of KΩ in (1.3) and K in (1.4), and define the
hydrodynamic Biot-Savart kernel,

JΩ(x, y) = KΩ(x, y) +KΩ(x), (3.1)

where KΩ is the unique divergence-free vector field tangential to ∂Ω having circulation
one and decaying at infinity. (An explicit form for KΩ is given in (A.17).) The
hydrodynamic Biot-Savart kernel was first introduced by C. C. Lin in [21], as the
perpendicular gradient of the hydrodynamic Green’s function. For more details on the
hydrodynamic Biot-Savart law, see [22].

In the statement of the propositions that follow, Ω can be either the full plane or
the domain exterior to a bounded simply connected domain having C∞ boundary.

Proposition 3.1. Let a be a cutoff function as in (2) of Definition 2.3, smooth,
radially symmetric, and equal to 1 in a neighborhood of the origin. For λ > 0 set
aλ(·) = a(·/λ).
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There exists C > 0 such that, for all x ∈ Ω and all λ > 0 we have the full-plane
estimates,

‖aλ(x− y)K(x− y)‖L1
y(R2) ≤ Cλ, (3.2)

‖∇y∇y((1− aλ(x− y))K(x− y))‖L1
y(R2) ≤ Cλ−1. (3.3)

Moreover, there exists C0 > 0 such that for all λ > C0

‖aλ(x− y)JΩ(x, y)‖L1
y(Ω) ≤ Cλ, (3.4)

‖aλ(x− y)KΩ(x, y)‖L1
y(Ω) ≤ C(λ+ λ2), (3.5)

and for all λ > C0,

‖∇y∇y((1− aλ(x− y))JΩ(x, y))‖L1
y(Ω) ≤ Cλ−1, (3.6)

‖∇yaλ(x− y)⊗∇yJΩ(x, y)‖L1
y(Ω) ≤ Cλ−1, (3.7)

‖∇y∇y((1− aλ(x− y))KΩ(x, y))‖L1
y(Ω) ≤ C. (3.8)

Proposition 3.2. Let U ⊆ Ω have measure 2πR2 for some R < ∞. Then for any p
in [1, 2),

‖K(x− ·)‖pLp(U) ≤
R2−p

2− p
,

‖KΩ(x, y)‖p
Lpy(U)

≤ C
R2−p

2− p
+ CR2,

‖JΩ(x, y)‖p
Lpy(U)

≤ C
R2−p

2− p
.

(3.9)

Proposition 3.3. Let X1 and X2 be measure-preserving homeomorphisms of Ω. Let
δ = ‖X1 −X2‖L∞ and suppose δ < e−1. Then, for any measurable subset U ⊂ Ω, with
finite measure, there exists C > 0, depending only on Ω and the measure of U , such
that

‖K(x−X1(z))−K(x−X2(z))‖L1
z(U) ≤ −Cδ log δ,

‖KΩ(x,X1(z))−KΩ(x,X2(z))‖L1
z(U) ≤ −Cδ log δ.

(3.10)

4. Existence in the full plane

Existence of weak solutions for the incompressible 2D Euler equations has been es-
tablished under many different kinds of regularity assumptions. The proofs follow a
standard strategy consisting in first generating a sequence of approximations, then
establishing enough a priori estimates to show that the sequence is compact in an ap-
propriate function space and, finally, passing to the limit in the weak form of the Euler
equations. To obtain compactness, a priori estimates are needed for both velocity and
vorticity. Whenever the function space is based on a rearrangement invariant space,
the vorticity estimates are immediate, as future vorticity is simply a rearrangement
of its initial values. One then establishes velocity estimates by integrating vortic-
ity estimates using the Biot-Savart law, which relates vorticity to velocity through a
Biot-Savart kernel (see [23] for details). For an unbounded fluid domain, this kernel
has very mild decay at infinity. Hence, in order to ensure that the Biot-Savart law is
well-defined it is necessary to impose decay of vorticity at infinity. It turns out that
this is the only reason to impose decay of vorticity at infinity.
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In the proof that we give in Section 4.2, we include only those aspects of the existence
argument that are not standard. The approach taken in Section 8.2 of [25], see also
Sections 5.1 and 5.2 of [6], can be used to fill in the rest of the argument. First,
however, we derive the Serfati identity (1.5) in Section 4.1 for the full plane.

4.1. The Serfati identity in the full plane. It will be convenient to introduce the
notation,

v ∗·w = vi ∗ wi if v and w are vector fields,
A ∗·B = Aij ∗Bij if A, B are matrix-valued functions on R2,

where ∗ denotes convolution. We have adopted the convention that repeated indices
are implicitly summed.

Let f be a scalar field and v a vector field. Then, using the notation introduced
above, we have

f ∗ curl v = f ∗ (∂1v
2 − ∂2v

1) = ∂1f ∗ v2 − ∂2f ∗ v1 = ∇⊥f ∗· v (4.1)

and

∇⊥f ∗· div(v ⊗ v) = −∂2f ∗ ∂j(v1vj) + ∂j∂1f ∗ (v2vj)

= −∂j∂2f ∗ (v1vj) + ∂j∂1f ∗ (v2vj)

= ∇∇⊥f ∗·(v ⊗ v).

(4.2)

Proposition 4.1. Let u be a C∞ classical solution to the Euler equations with initial
vorticity, ω0, compactly supported. Then, for any radially symmetric function a ∈
C∞c (R2) such that a = 1 in a neighborhood of the origin, the following identity holds
true:

uj(t)− (u0)j = (aKj) ∗ (ω(t)− ω0)

−
∫ t

0

(
∇∇⊥

[
(1− a)Kj

])
∗·(u⊗ u)(s) ds, j = 1, 2.

(4.3)

Remark 4.2. It is easy to check that (4.3) corresponds exactly to the Serfati identity
(1.5) when Ω = R2. (Recall that K is defined in (1.4).)

Proof. For classical solutions, the vorticity is transported by the flow, so since it is
initially compactly supported it remains so for all time. This fact and the smoothness
of the solution justify the calculations that follow.

For j = 1, 2, we have,

∂tu
j = ∂t(K

j ∗ ω) = ∂t(aK
j ∗ ω) + ∂t((1− a)Kj ∗ ω).

We integrate in time to get

u(t, x) = u0(x) +

∫ t

0

∂s(K
j ∗ ω)(s, x) ds

= u0(x) +

∫ t

0

∂s
[
(aKj) ∗ ω(s, x)

]
ds+

∫ t

0

((1− a)Kj) ∗ ∂sω(s, x) ds

= u0(x) + (aKj) ∗ (ω(t)− ω0)(x) +

∫ t

0

((1− a)Kj) ∗ ∂sω(s, x) ds.

(4.4)
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We now treat the final integrand. We have:

((1− a)Kj) ∗ ∂sω = −((1− a)Kj) ∗ (u · ∇ω) = −((1− a)Kj) ∗ curl(u · ∇u)

= −∇⊥((1− a)Kj) ∗·(u · ∇u) = −∇⊥((1− a)Kj) ∗·(div u⊗ u)

= −∇∇⊥((1− a)Kj) ∗·(u⊗ u),

where we used the vorticity equation ∂sω+u·∇ω = 0, the identity u·∇ω = curl(u·∇u),
and (4.1, 4.2). Substituting this back into (4.4) yields (4.3). �

4.2. Proof of existence in the full plane. As we mentioned earlier, the proof of
existence is mostly standard. We outline the steps, broadly following the approach
used in Section 8.2 of [25], providing details only for the two nonstandard steps in the
proof. The first nonstandard step is the estimation of the L∞ norm of the velocity:
this is where we employ the Serfati identity (as expressed in (4.3)) as described in
Section 1. The second nonstandard step proving that the approximate sequence of
velocities has a convergent subsequence. Whereas, in [25], equicontinuity in time is
obtained, employing potential theory estimates that require the vorticity to decay
at infinity, we instead use the Serfati identity once more to show that sequence of
velocities is Cauchy.

Proof of existence in Theorem 2.5 for the full plane. Let u0 ∈ S and assume
that u0 does not vanish identically; otherwise, there is nothing to prove.

Step 1. Construct approximating sequence. We construct the sequence of ap-
proximations by generating a smooth sequence of vector fields which approximate the
initial data and, afterwards, by exactly solving the Euler equations with the smooth
data.

Let (u0
n)∞n=1 and (ω0

n)∞n=1 be the approximating sequences to the initial velocity, u0,
and initial vorticity, ω0, given by Proposition B.2. By hypothesis, u0 is not identically
zero, which means that u0

n does not vanish identically either. Let un be the classical,
smooth solution to the Euler equations with initial velocity u0

n, and with initial vor-
ticity, ω0

n. The existence and uniqueness of such solutions follows, for instance, from
[26] and references therein. (See also Chapter 4 of [25] or Chapter 4 of [6].) Finally,
let ωn = curlun.

Step 2. Bound velocities in L∞([0, T ]×R2). We begin with the a priori estimate,

‖ωn‖L∞(R×R2) ≤ ‖ω
0
n‖L∞ , (4.5)

on the vorticity, which can be deduced from the fact that the smooth vorticity is
transported by a smooth, divergence-free vector field. We also have, by construction,

‖u0
n‖L∞ ≤ C‖u0‖L∞ , ‖ω0

n‖L∞ ≤ C‖ω0‖L∞ . (4.6)

Next, we will use the Serfati identity (4.3) for R2, with un, ωn in place of u, ω.
Let a be any smooth, compactly supported cutoff function that is equal to 1 in a

neighborhood of 0 (see item (2) of Definition 2.3). Fix λ > 0, to be specified later.
Set

aλ = aλ(x) = a
(x
λ

)
. (4.7)
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From (4.3), for un, ωn, it follows that

|un(t, x)| ≤
∣∣u0
n(x)

∣∣+
∣∣(aλKj) ∗ (ωn(t)− ω0

n)
∣∣

+

∫ t

0

∣∣(∇∇⊥ [(1− aλ)Kj
])
∗·(un ⊗ un)(s)

∣∣ ds.
Applying Young’s convolution inequality, followed by the localized estimates on the

Biot-Savart kernel in R2 contained in Proposition 3.1, we conclude that

‖un(t)‖L∞ ≤ ‖u
0‖L∞ + (‖ωn(t)‖L∞ + ‖ω0‖L∞)‖aλK‖L1

+

∫ t

0

‖∇∇⊥[(1− aλ)K]‖L1 ‖un(s)‖2
L∞ ds

≤ C‖u0‖L∞ + Cλ‖ω0‖L∞ +
C

λ

∫ t

0

‖un(s)‖2
L∞ ds,

(4.8)

where we also used (4.5, 4.6, 3.2, 3.3) in the last inequality.
Observe that we can choose λ > 0 arbitrarily, even allowing it to depend on t, for

each fixed t. Let

λ = λ(t) =

(∫ t

0

‖un(s)‖2
L∞

ds

)1/2

.

We obtain

‖un(t)‖L∞ ≤ C + C

(∫ t

0

‖un(s)‖2
L∞

ds

)1/2

,

so that

‖un(t)‖2
L∞ ≤ C + C

∫ t

0

‖un(s)‖2
L∞

ds.

We conclude from Gronwall’s lemma that

‖un(t)‖L∞ ≤ CeCt. (4.9)

Therefore, un lies in L∞([0, T ] × R2) for any T > 0, with a bound that is uniform in
n. This, together with (4.5, 4.6), yields

‖un(t)‖S ≤ C (4.10)

for some C = C(T, u0) > 0 and for all 0 ≤ t ≤ T .

Step 3. Log-Lipschitz bound on modulus of continuity of (un) uniform in n.
Recall the definition of the space of log-Lipschitz functions LL on a domain U ⊆ R2:

LL(U) =

{
f ∈ L∞(U)

∣∣∣ sup
x 6=y

|f(x)− f(y)|
(1 + log+ |x− y|)|x− y|

<∞
}
, (4.11)

where log+(z) = max{− log z, 0}. This is a Banach space under the norm given by

‖f‖LL := ‖f‖L∞ + sup
x 6=y

|f(x)− f(y)|
(1 + log+ |x− y|)|x− y|

.

We have,
‖un(t)‖LL ≤ C‖u0‖S.
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This follows immediately from Lemma B.3 together with the a priori estimate (4.10)
on ‖un‖S .

Step 4. Convergence of flow maps. Associated to each (smooth) un there is a
unique (smooth) forward flow map, Xn. Much as in Lemma 8.2 of [25] or Chapter 5
of [6], we conclude that

|Xn(t, x1)−Xn(t, x2)| ≤ C |x1 − x2|e
−‖un‖LL|T |

,∣∣X−1
n (t, y1)−X−1

n (t, y2)
∣∣ ≤ C |y1 − y2|e

−‖un‖LL|T |

and that

|Xn(t1, x)−Xn(t2, x)| ≤ ‖un‖L∞([0,T ]×R2) |t1 − t2| ≤ C |t1 − t2| ,∣∣X−1
n (t1, y)−X−1

n (t2, y)
∣∣ ≤ ‖un‖L∞([0,T ]×R2) |t1 − t2|

e−‖un‖LL|T | ≤ C |t1 − t2|e
−‖un‖LL|T |

.

These estimates yield a subsequence that converges uniformly on any compact subset
L of [0, T ] × R2. We relabel this subsequence, (Xn). Clearly, the limit flow map X
also satisfies the Hölder estimates above.

Step 5. Convergence of vorticities: Define, a.e. t ∈ [0, T ], ω(t, x) := ω0(X−1(t, x)).
Then ωn → ω in L∞(0, T ;Lploc(R2)) for all p ∈ [1,∞) follows from a simple adaptation
of the proof for bounded vorticity on page 316 of [25], that ωn(t)→ ω(t) in L1(R2).

Step 6. Velocities are Cauchy in C([0, T ]×L): We have established convergence
of the flow maps (and its inverse maps) to a limiting flow map (and its inverse)
and convergence of the vorticities to a limiting vorticity, which is transported by the
limiting flow map. As shown in Step 3, we also have equicontinuity of (un) in space.
We will now use the Serfati identity once more to show that the sequence, (un), is
Cauchy in C([0, T ]× L), for any compact subset, L, of R2.

Let x belong to L and let Lλ = L + Bcλ(0), where a is supported in Bc(0). From
(4.3), for any fixed λ > 0,

|un(t, x)− um(t, x)| ≤
∣∣u0
n(x)− u0

m(x)
∣∣+ I1 + I2 + I3, (4.12)

where

I1 =
∣∣(aλKj) ∗ (ωn(t)− ωm(t))

∣∣ , I2 =
∣∣(aλKj) ∗ (ω0

n − ω0
m)
∣∣ ,

I3 =

∫ t

0

∣∣(∇∇⊥ [(1− aλ)Kj
])
∗·(un ⊗ un − um ⊗ um)(s)

∣∣ ds.
Fix q in (2,∞) and let p in (1, 2) be the Hölder exponent conjugate to q. Then

from Proposition 3.2 and Young’s convolution inequality,

I1 ≤ C‖aλ(x− ·)K(x− ·)‖Lp(Lλ)‖ωn(t)− ωm(t)‖Lq(Lλ)

≤ Cλ2−p

2− p
‖ωn(t)− ωm(t)‖Lq(Lλ)

and, similarly,

I2 ≤
Cλ2−p

2− p
‖ω0

n − ω0
m‖Lq(Lλ),
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while

I3 ≤
∫ t

0

‖∇∇((1− aλ(x− ·))K(x, ·))‖L1(R2)

‖(um ⊗ um − un ⊗ un)(s, ·)‖L∞(R2) ds

≤ Cλ−1

∫ t

0

‖(um − un)(s, ·)‖L∞(R2) ds ≤ Ctλ−1.

Here, we used (3.3) and the identity, um⊗um−un⊗un = um⊗(um−un)+un⊗(um−un),
with the uniform bound on the sequence, (uk), in L∞([0, T ]× R2).

Thus,

|un(t, x)− um(t, x)| ≤
∣∣u0
n(x)− u0

m(x)
∣∣+ Ctλ−1

+
Cλ2−p

2− p

[
‖ωn(t, ·)− ωm(t, ·)‖Lq(Lλ) +

∥∥ω0
n − ω0

m

∥∥
Lq(Lλ)

]
.

For concreteness, we choose p = 3/2, so that q = 3. Taking the supremum over all
(t, x) in [0, T ]× L gives

‖un − um‖L∞([0,T ]×L) ≤
∥∥u0

n − u0
m

∥∥
L∞(L)

+ Ctλ−1

+ Cλ
1
2

[
‖ωn − ωm‖L∞([0,T ];L3(Lλ)) +

∥∥ω0
n − ω0

m

∥∥
L3(Lλ)

]
.

Now, given any δ > 0, let λ = 1/δ. Then choose N large enough that

‖ωn − ωm‖L∞([0,T ];L3(Lλ)) +
∥∥ω0

n − ω0
m

∥∥
L3(Lλ)

< δ

and ‖u0
n − u0

m‖L∞(L) < δ for all n,m > N . It follows that

‖un − um‖L∞([0,T ]×L) < δ + Cδ + Cδ1/2.

This shows that the sequence, (un), is Cauchy in C([0, T ] × L) (without the need
to take a further subsequence).

Step 7. Convergence to a solution: The convergence of (un) to a solution to
∂tω + u · ∇ω = 0 in D′ is standard. That the Serfati identity (4.3) holds for u
regardless of the choice of the cutoff function, a, follows from these same convergences
and the observation that (un) is bounded in L∞.

Step 8. Modulus of continuity of the velocity: The limit velocity u(t) has a
log-Lipschitz modulus of continuity; this follows either from Lemma B.3 or directly
from the convergence of (un) with a uniform bound on the log-Lipschitz modulus of
continuity on compact subsets. �

5. Existence in an exterior domain

The proof of existence in an exterior domain closely parallels that for the whole plane;
in this section, we report only on the differences between the proofs. The derivation
of the Serfati identity requires the majority of the effort, as it now requires us to treat
boundary integrals. We give its derivation in Section 5.1, turning to the existence
proof in Section 4.2.

Throughout this section Ω denotes the domain exterior to a bounded, C∞, connected
and simply connected obstacle.
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The sequence of approximating solutions in an exterior domain that we employ in
our proof of existence are those constructed by Kikuchi in [20], given in Theorem 5.1.

Theorem 5.1. [Kikuchi, [20]] Fix T > 0. Let u0 ∈ C∞(Ω) with ω(u0) compactly sup-
ported (this is more regularity than Kikuchi requires). There exists a unique classical
solution, (u, p), to the Euler equations without forcing, having u0 as initial velocity,
such that the vorticity is transported by the flow map, the circulation of u(t) about ∂Ω
is conserved over time, and u(t, x) → 0 as |x| → ∞. Moreover, u ∈ C1([0, T ] × Ω))
and ∇p ∈ C([0, T ]× Ω)).

5.1. The Serfati identity in an exterior domain. In this subsection we show
that the alternate Serfati identity in (5.1) holds for any radially symmetric, smooth,
compactly supported cutoff function a, with a = 1 in a neighborhood of the origin.

Recall the hydrodynamic Biot-Savart kernel JΩ as defined in (3.1), and the divergence-
free vector field, tangential to ∂Ω, having circulation one around ∂Ω and decaying at
infinity, KΩ (see (3.1)).

Proposition 5.2. Let u be a C∞ smooth solution to the Euler equations with initial
vorticity ω0, compactly supported, as given by Theorem 5.1. Let the function, a, be as
in (2) of Definition 2.3. Then the Serfati identity, (1.5), holds, and we also have

uj(t, x)

= (u0)j(x) +

∫
Ω

a(x− y)J jΩ(x, y)(ω(t, y)− ω0(y)) dy

−
∫ t

0

∫
Ω

(u(s, y) · ∇y)∇⊥y
[
(1− a(x− y))J jΩ(x, y)

]
· u(s, y) dy ds

− K
j

Ω(x)

2

∫ t

0

∫
Γ

|u(y(σ))|2 ∇a(x− y(σ)) · τ dσ ds,

(5.1)

where y = y(σ) is a parameterization by arc length of ∂Ω.

Proof. Denote the circulation of u about ∂Ω by

Γ(u) =

∫
Γ

u · τ ,

and the mass of the corresponding vorticity ω = ω(u) by

m(ω) =

∫
Ω

ω.

For smooth solutions of the Euler equations in Ω, both of these quantities are
conserved. Because ω0 is compactly supported and ω(u) is transported by the flow
map, ω(u) remains compactly supported for all time. This fact and the smoothness
of the solution justify the calculations that follow.

Set

KΩ[ω] =

∫
Ω

KΩ(x, y)ω(y) dy, JΩ[ω] =

∫
Ω

JΩ(x, y)ω(y) dy,

and note that both integrals converge, since ω is compactly supported.
Observe that

JΩ[ω] = KΩ[ω] +m(ω)KΩ.
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Since u conserves circulation over time, KΩ has unit circulation, and JΩ has zero
circulation we have

u = JΩ[ω] + Γ(u0)KΩ(x)

= KΩ[ω] + [m(ω0) + Γ(u0)]KΩ(x).

Hence,

∂tu
j(x) = ∂t

∫
Ω

J jΩ(x, y)ω(t, y) dy = ∂t

∫
Ω

Kj
Ω(x, y)ω(t, y) dy, (5.2)

where we have used both the conservation of m(ω) and of circulation.
Starting with (5.2) and using the vorticity equation (2.1), we have,

∂tu
j(t, x) = ∂t

∫
Ω

a(x− y)Kj
Ω(x, y)ω(t, y) dy

−
∫

Ω

(1− a(x− y))Kj
Ω(x, y)(u · ∇ω)(t, y) dy,

(5.3)

j = 1, 2. We rewrite the last term as before as

−
∫

Ω

(1− a(x− y))Kj
Ω(x, y)(u · ∇ω)(t, y) dy

= −
∫

Ω

(1− a(x− y))Kj
Ω(x, y) curl(u · ∇u)(t, y) dy

=

∫
Ω

(1− a(x− y))Kj
Ω(x, y) div

[
(u · ∇u)⊥(t, y)

]
dy

= −
∫

Ω

[
(u · ∇u)⊥(t, y)

]
· ∇
[
(1− a(x− y))Kj

Ω(x, y)
]
dy

=

∫
Ω

(u · ∇u)(t, y) · ∇⊥
[
(1− a(x− y))Kj

Ω(x, y)
]
dy.

(5.4)

The boundary integral above vanishes because KΩ(x, ·) = 0 on the boundary.
Let V be a vector field on Ω and recall the following identity:

(u · ∇)(V · u) = [(u · ∇)V ] · u+ [(u · ∇)u] · V.
Integrating on Ω, we obtain∫

Ω

[(u · ∇)u] · V =

∫
Ω

(u · ∇)(V · u)−
∫

Ω

[(u · ∇)V ] · u

= −
∫

Ω

(u · ∇V ) · u,
(5.5)

the first integral vanishing in integrating by parts since div u = 0 and u · n = 0.
Using (5.5) with V = ∇⊥

[
(1− a(x− y))Kj

Ω(x, y)
]
, putting the resulting term back

into (5.3), and integrating in time yields (1.5).
To obtain (5.1), we return to (5.2), writing,

∂tu
j(x) = ∂t

∫
Ω

a(x− y)J jΩ(x, y)ω(y) dy +

∫
Ω

(1− a(x− y))J jΩ(x, y)∂tω(y) dy,
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j = 1, 2. Integrating the last term by parts as we did in (5.4), we now have the
additional boundary integral (using JΩ(x, y) = KΩ(x) when y is on ∂Ω):∫

Ω

(1− a(x− y))J jΩ(x, y)∂tω(y) dy

=

∫
Ω

(u · ∇u)(y) · ∇⊥
[
(1− a(x− y))J jΩ(x, y)

]
dy

+ (K
j

Ω(x)

∫
Γ

[u(y(σ)) · ∇u(y(σ))]⊥ · n (1− a(x− y(σ))) dσ.

(5.6)

The first term on the right-hand side we integrate by parts once more, as we did in
proving (1.5), the vanishing of u · n on the boundary again being used to eliminate
the boundary term. For the second term, which contains the boundary integral, we
use the identity,

[(u · ∇)u] · τ = [(u · n ∂n + u · τ ∂τ )u] · τ

= (u · τ )∂τ (u · τ ) = u∂τ u =
1

2

d

dσ
|u(y(σ)|2 .

To make sense of ∂n, we extended n into a tubular neighborhood of the boundary.
Since u · n = 0, the term containing ∂n then vanished.

Integrating the boundary integral in (5.6) by parts gives∫
Γ

[u(y(σ)) · ∇u(y(σ))]⊥ · n (1− a(x− y(σ))) dσ

=
1

2

∫
Γ

d

dσ
|u(y(σ))|2 (1− a(x− y(σ))) dσ

=
1

2

∫
Γ

|u(y(σ))|2 d

dσ
a(x− y(σ))) dσ

= −1

2

∫
Γ

|u(y(σ))|2 ∇a(x− y(σ)) · dy(σ)

dσ
dσ.

This yields (5.1), since dy(σ)
dσ

= τ . �

To control the boundary term in (5.1), we need control not just on the size of the
integrands, but cancellation due to the velocity field itself. This is easily obtained
from the simple bound in Proposition 5.3.

Proposition 5.3. Let λ > 0 and set aλ as in Proposition 3.1. Let u be a continuous
vector field on Ω which is tangent to the boundary. Then there exists C > 0 such that∣∣∣∣∣K

j

Ω(x)

2

∫
Γ

|u(y(σ))|2 ∇aλ(x− y(σ)) · τ dσ

∣∣∣∣∣ ≤ C

λ
‖u‖2

L∞ .

Proof. This follows from the bound,

|∇aλ(x− y(σ))| =
∣∣λ−1∇a((x− y(σ))λ−1)

∣∣ ≤ Cλ−1,

of Proposition 3.1 and because KΩ ∈ L∞(Ω), as we show in (A.18). �
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5.2. Proof of existence in an exterior domain.

Proof of existence in Theorem 2.5 for an exterior domain. As in our proof
of existence for the full plane in Section 4.2, we approximate the initial data employing
Proposition B.2 and construct smooth solutions to the Euler equations using Theo-
rem 5.1. The key bounds in (4.5), then, continue to hold on Ω:

‖ωn‖L∞(R×Ω) ≤ ‖ω
0
n‖L∞ ≤ C‖ω0‖L∞ , ‖u0

n‖L∞ ≤ C‖u0‖L∞ . (5.7)

The proof proceeds in the identical manner to that of Section 4.2 with the exception
of two steps in the proof, described below. It is important to observe, though, that
the convergences obtained are for compact subsets of Ω and [0, T ]× Ω.

As before, we denote the approximate solutions by un and ωn.

Bound velocities in L∞([0, T ] × Ω): Let a be any cutoff function as in (2) of
Definition 2.3. Let aλ be as in Proposition 3.1.

From (5.1), substituting un and ωn for u and ω, we have

|un(t, x)| ≤
∣∣u0
n(x)

∣∣+

∣∣∣∣∫
Ω

aλ(x− y)JΩ(x, y)(ωn(t, y)− ω0
n(y)) dy

∣∣∣∣
+

∫ t

0

∣∣∣∣∫
Ω

|∇y∇y ((1− aλ(· − y))JΩ(·, y))| |un(s, y)|2 dy
∣∣∣∣ ds

+

∣∣∣∣∣K
j

Ω(x)

2

∫ t

0

∫
Γ

|un(s, y(σ))|2 ∇aλ(x− y(σ)) · τ dσ ds

∣∣∣∣∣ .
Applying Propositions 3.1 and 5.3 to (5.1), and using (5.7), it follows from Hölder’s

inequality that, for some constant C > 0, independent of n,

‖un(t)‖L∞ ≤ C + Cλ+
C

λ

∫ t

0

‖un(s)‖2
L∞

ds (5.8)

for all λ > C0, with C0 as in Proposition 3.1.
Observe that we can choose λ > C0 arbitrarily, even allowing it to depend on time.

Hence, we can let

λ = λ(t) = max

{
C0 + 1,

(∫ t

0

‖un(s)‖2
L∞

ds

)1/2
}
.

The function λ(t) is continuous and non-decreasing, with λ(0) = C0 +1. Suppose that

there exists a finite time, T ∗n , at which

∫ T ∗n

0

‖un(s)‖2
L∞

ds = (C0 + 1)2. Then it follows

directly from (5.8) that un lies in L∞([0, T ∗n ];L∞) with a norm bounded by C(C0 + 1).

After that time, λ(t) =

∫ t

0

‖un(s)‖2
L∞

ds > C0 + 1, and we obtain

‖un(t)‖L∞ ≤ C + C

(∫ t

0

‖un(s)‖2
L∞

ds

)1/2

,

so that

‖un(t)‖2
L∞ ≤ C + C

∫ t

0

‖un(s)‖2
L∞

ds.
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We conclude from Gronwall’s lemma that

‖un(t)‖L∞ ≤ max
{
CeCt, C0

}
= CeCt.

Thus, un lies in L∞([0, T ]× Ω) for any T > 0 with a bound that is uniform in n.

Velocities are Cauchy in C([0, T ]×L): Let L be a compact subset of Ω. The only
change to the proof of this step in Section 4.2 is that JΩ is used in place of K in the
expressions for I1, I2, and I3 in (4.12), which also includes the additional term,

I4 =

∣∣∣∣∣K
j

Ω(x)

2

∫ t

0

∫
Γ

(|un(y(σ))|2 − |um(y(σ))|2)∇aλ(x− y(σ)) · τ dσ ds

∣∣∣∣∣ .
Proposition 5.3 and the uniform bound on the sequence, (uk), in L∞([0, T ]× Ω) give

I4 ≤
Ct

λ
.

The estimates on I1, I2, and I3 are unchanged, though now they only hold for
λ > C0. But this is of no matter, since we take λ to infinity. �

6. Uniqueness and continuous dependence on initial data

Our proof of uniqueness, which assumes that the Serfati identity holds, derives from
that of Serfati in [29] (who also assumes, implicitly, that the Serfati identity holds).
We present the proof in Section 6.1. The continuous dependence on initial data of
Theorem 2.8 is a modification of our uniqueness proof, and is presented in Section 6.2.

In this section, Ω can be either all of R2 or an exterior domain. In the proofs, we
exploit a number of estimates from Section 3. The estimates are stated in terms of
K (see (1.4)) for the full plane and in terms of KΩ (see (1.3)) for an exterior domain.
When Ω = R2, we have KΩ(x, y) = K(x− y).

6.1. Uniqueness. We begin by introducing some notation. Let C > 0 and set
µ : [0,∞)→ [0,∞),

µ(r) = C max
{
−r log r, e−1

}
. (6.1)

Then µ is an Osgood modulus of continuity, by which we mean that∫ 1

0

ds

µ(s)
=∞.

Let u1, u2 be two solutions as in Definition 2.3. Each uj is log-Lipschitz and, hence,
there exists C > 0 for which µ given in (6.1) serves as a common, strictly increasing,
bounded modulus of continuity for both u1 and u2.

Next, we recall Osgood’s lemma, which we state in Lemma 6.1 in the form given in
Lemma 5.2.1 of [5].

Lemma 6.1 (Osgood’s lemma). Let L be a measurable nonnegative function and
γ a nonnegative locally integrable function, each defined on the interval [t0, t1]. Let
µ : [0,∞) → [0,∞) be a continuous nondecreasing function, with µ(0) = 0 (hence,
µ is a modulus of continuity) and µ > 0 on (0,∞). Let a : [0,∞) → [0,∞) be
nondecreasing, and assume that for all t in [t0, t1],

L(t) ≤ a(t) +

∫ t

t0

γ(s)µ(L(s)) ds.
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For all t in [t0, t1], ∫ L(t)

a(t)

ds

µ(s)
≤
∫ t

t0

γ(s) ds.

If a ≡ 0 and µ is an Osgood modulus of continuity then L ≡ 0.

Let X1, X2 be the flow maps corresponding to u1, u2, and define

h(t) = ‖X1(t, ·)−X2(t, ·)‖L∞ . (6.2)

Our proof of uniqueness rests upon Proposition 6.2, which we prove first. Because
we will also use Proposition 6.2 in Section 6.2 to prove continuous dependence on
initial data, we do not assume that u1(0) = u2(0).

Proposition 6.2. Assume that u1, u2 are Serfati solutions to the Euler equations with
vorticities, ω1, ω2 and initial vorticities, ω0

1, ω0
2, lying in Sp for p ∈ (2,∞], where Sp is

defined in (2.2). Let γ be any Lipschitz function on Ω having finite-measure support.
Let h = h(t) be as in (6.2) and consider µ as in (6.1), a common modulus of

continuity for u1 and u2. Then, for all x in Ω, we have∣∣∣∫
Ω

γ(y)Kj
Ω(x, y)(ω1(t, y)− ω2(t, y)) dy

∣∣∣
≤ C‖ω0

1‖L∞µ(h) + Cp
∥∥ω0

1 − ω0
2

∥∥
Lpuloc

.

The constant, C, depends only on the Lipschitz constant and measure of the support
of γ, and Cp depends only on p and the measure of the support of γ.

Proof. Assume first that h < e−1.
Since for Serfati solutions, ωj is transported by the flow, Xj, associated to uj,

j = 1, 2, we have∫
Ω

γ(y)Kj
Ω(x, y)(ω1(t, y)− ω2(t, y)) dy

=

∫
Ω

γ(y)Kj
Ω(x, y)

(
ω0

1(X−1
1 (t, y))− ω0

2(X−1
2 (t, y))

)
dy.

Alternately making the changes of variable y = X1(t, z) and y = X2(t, z), this be-
comes, since X1 and X2 are measure-preserving,∫

Ω

γ(X1(t, z))Kj
Ω(x,X1(t, z))ω0

1(z) dz −
∫

Ω

γ(X2(t, z))Kj
Ω(x,X2(t, z))ω0

2(z) dz.

We can write this as∫
Ω

γ(y)Kj
Ω(x, y)(ω1(t, y)− ω2(t, y)) dy = I1 + I2 + I3,

where

I1 =

∫
Ω

[γ(X1(t, z))− γ(X2(t, z))]Kj
Ω(x,X2(t, z))ω0

1(z) dz,

I2 =

∫
Ω

γ(X1(t, z))
[
Kj

Ω(x,X1(t, z))−Kj
Ω(x,X2(t, z))

]
ω0

1(z) dz,

I3 =

∫
Ω

γ(X2(t, z))KΩ(x,X2(t, z))(ω0
1(z)− ω0

2(z)) dz.
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Letting

U = {z : γ(X1(t, z)) 6= γ(X2(t, z))} ,
we have

|I1| ≤
∥∥ω0

1

∥∥
L∞

sup
z∈Ω
|γ(X1(t, z))− γ(X2(t, z))|

∫
U

∣∣Kj
Ω(x,X2(t, z))

∣∣ dz
≤ C

∥∥ω0
1

∥∥
L∞

h

∫
U

∣∣Kj
Ω(x,X2(t, z))

∣∣ dz,
where C is the Lipschitz constant for γ. But,

U ⊆ X1(t, supp γ) ∪X2(t, supp γ)

has measure bounded in time, since X1 and X2 are measure-preserving, and∫
U

∣∣Kj
Ω(x,X2(t, z))

∣∣ dz =

∫
X2(t,U)

∣∣Kj
Ω(x, y)

∣∣ dy ≤ C

by Proposition 3.2 and using |X2(t, U)| = |U |. Hence,

|I1| ≤ C‖ω0
1‖L∞h.

Applying Proposition 3.3, we can easily bound I2 by

|I2| ≤ ‖γ‖L∞ ‖ω
0
1‖L∞‖K

j
Ω(x,X1(t, z))−Kj

Ω(x,X2(t, z))‖L1(X−1
1 (t,supp γ))

≤ −C‖ω0
1‖L∞h log h,

noting that we used h < e−1.
For I3, we have

|I3| ≤ ‖γ(X2(t, z))KΩ(x,X2(t, z))‖
Lp
′
z

∥∥ω0
1 − ω0

2

∥∥
Lp(supp γ◦X2(t,·))

= ‖γ(w)KΩ(x,w)‖
Lp
′
w

∥∥ω0
1 − ω0

2

∥∥
Lp(supp γ◦X2(t,·))

≤ ‖γ(w)KΩ(x,w)‖
Lp
′
w

∥∥ω0
1 − ω0

2

∥∥
Lpuloc(Ω)

≤ Cp
∥∥ω0

1 − ω0
2

∥∥
Lpuloc(Ω)

,

where 1/p′ + 1/p = 1. In the final inequality, we used Proposition 3.2.
Combining the bounds for I1, I2, and I3 gives∣∣∣∫

Ω

γ(y)Kj
Ω(x, y)(ω1(t, y)− ω2(t, y)) dy

∣∣∣
≤ −C‖ω0

1‖L∞h log h+ Cp
∥∥ω0

1 − ω0
2

∥∥
Lpuloc(Ω)

= C‖ω0
1‖L∞µ(h) + Cp

∥∥ω0
1 − ω0

2

∥∥
Lpuloc(Ω)

.

For h ≥ e−1, we apply, as above, Proposition 3.2 to conclude that∣∣∣∫
Ω

γ(y)Kj
Ω(x, y)(ω1(t, y)− ω2(t, y)) dy

∣∣∣ ≤ C max
{
‖ω0

1‖L∞ , ‖ω0
2‖L∞

}
= Cµ(e−1) max

{
‖ω0

1‖L∞ , ‖ω0
2‖L∞

}
≤ Cµ(h) max

{
‖ω0

1‖L∞ , ‖ω0
2‖L∞

}
,

and the proof is complete. �
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Proof of uniqueness in Theorem 2.5. Assume now that u1(0) = u2(0). We will
assume that the cutoff function, a, of (1.5) is equal to 0 outside of Be−1 . The choice
of e−1 is convenient because of the estimates in Proposition 3.3. We will also assume
that the cutoff function is such that C0 of Proposition 3.1 is less than 1; thus, the
estimates in (3.6) through (3.8) hold for λ = 1.

Let Xj be the flow map for uj, j = 1, 2. Set µ to be as in (6.1), a common modulus
of continuity for u1 and u2.

We will establish uniqueness by showing that X1 = X2. Let t lie in [0, T ]. Our
approach is to bound the quantity,

M(t) =

∫ t

0

P (s) ds, (6.3)

where

P (s) = ‖u2(s,X2(s, ·))− u1(s,X1(s, ·))‖L∞ .
We do this by obtaining, through a long series of estimates, the inequality

M(t) ≤
∫ t

0

ν(M(s)) ds, (6.4)

where

ν(r) = C [(1 + t)µ(r) + r] . (6.5)

The modulus of continuity µ is Osgood and µ(r) >> r near r = 0, so that ν is also
an Osgood modulus of continuity. Hence, applying Lemma 6.1 to (6.4) gives M ≡ 0.
Then letting h(t) be as in (6.2), it follows that

h(t) =

∥∥∥∥∫ t

0

u1(s,X1(s, ·))− u2(s,X2(s, ·)) ds
∥∥∥∥
L∞

≤
∫ t

0

‖u1(s,X1(s, ·))− u2(s,X2(s, ·))‖L∞ ds

= M(t).

(6.6)

Hence, X1 ≡ X2 so that u1 ≡ u2, and uniqueness holds.
(It is easy to see that h(t) and M(t) are continuous and bounded, because of the

boundedness of u1 and u2. Hence the the inequality in (6.4, 6.6) and the inequalities
that follow all contain finite quantities.)

We now proceed to prove (6.4). We start by obtaining a bound on the quantity,
|u1(t,X1(t, x))− u2(t,X2(t, x))|, to obtain a bound on P (t), which we will transform
to the bound on M(t) in (6.4).

By the triangle inequality,

|u1(t,X1(t,x))− u2(t,X2(t, x))|
≤ |u2(t,X1(t, x))− u2(t,X2(t, x))|

+ |u1(t,X1(t, x))− u2(t,X1(t, x))|
=: A1 + A2.

(6.7)

We easily bound A1 by

A1 ≤ µ(|X1(t, x)−X2(t, x)|) ≤ µ(h(t)). (6.8)
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We obtain a bound for A2 by subtracting (1.5) for u2 from (1.5) for u1:

A2 ≤
∣∣∣∣∫

Ω

a(X1(t, x)− y)KΩ(X1(t, x), y)(ω1(t, y)− ω2(t, y)) dy

∣∣∣∣
+

∫ t

0

∫
Ω

|∇y∇y ((1− a(X1(t, x)− y))KΩ(X1(t, x), y))|

|u1 ⊗ u1 − u2 ⊗ u2| (s, y) dy ds

=: B1 +B2.

(6.9)

Because γ(y) := a(X1(t, x)− y) is Lipschitz-continuous and has finite-measure sup-
port with Lipschitz constant and measure independent of t and x, we can apply
Proposition 6.2 to conclude that

B1 ≤ C‖ω0‖L∞µ(h(t)) (6.10)

for some constant C depending only upon the cutoff function a.
For B2, we have simply,

B2 ≤
∫ t

0

‖∇∇((1− a(X1(t, x)− ·))KΩ(X1(t, x), ·))‖L1

‖(u2 ⊗ u2 − u1 ⊗ u1)(s, ·)‖L∞ ds.

(6.11)

The L1-norm in the integrand above is finite and bounded uniformly in x by Propo-
sition 3.1. Using,

u2 ⊗ u2 − u1 ⊗ u1 = u2 ⊗ (u2 − u1) + u1 ⊗ (u2 − u1),

because uj lies in L∞([0, T ]× Ω), we have

B2 ≤ C

∫ t

0

‖u2(s)− u1(s)‖L∞ ds

= C

∫ t

0

‖u2(s,X1(s, ·))− u1(s,X1(s, ·))‖L∞ ds

≤ C

∫ t

0

‖u2(s,X1(s, ·))− u2(s,X2(s, ·))‖L∞ ds

+ C

∫ t

0

‖u2(s,X2(s, ·))− u1(s,X1(s, ·))‖L∞ ds

≤ C

∫ t

0

µ(h(s)) ds+ C

∫ t

0

‖u2(s,X2(s, ·))− u1(s,X1(s, ·))‖L∞ ds.

Here, we used |u2(s,X2(s, ·))− u2(s,X1(s, ·))| ≤ µ(|X2(s, ·)−X1(s, ·)|) ≤ µ(h(s)).
What we have shown is that

|u1(t,X1(t, x))− u2(t,X2(t, x))|

≤ C

∫ t

0

µ(h(s)) ds+ Cµ(h(t)) + C

∫ t

0

P (s) ds.

Taking the supremum over all x in R2 and using (6.3), we conclude that

P (t) ≤ C

∫ t

0

µ(h(s)) ds+ Cµ(h(t)) + CM(t).
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But h(t) ≤ M(t) by (6.6), and µ is nondecreasing so µ(h(t)) ≤ µ(M(t)) and
µ(h(s)) ≤ µ(M(s)). Thus,

M ′(t) = P (t) ≤ C

∫ t

0

µ(M(s)) ds+ Cµ(M(t)) + CM(t).

Since M is increasing, we can write

M ′(t) ≤ C(1 + t)µ(M(t)) + CM(t).

For our purposes, it is easier to weaken this inequality slightly to

M ′(s) ≤ C(1 + t)µ(M(s)) + CM(s) = ν(M(s)) (6.12)

for all s in (0, t), where ν is given in (6.5).
In integral form, using M(0) = 0, (6.12) becomes

M(t) ≤
∫ t

0

ν(M(s)) ds.

That M ≡ 0 follows from Lemma 6.1, and since h(t) ≤ M(t), h ≡ 0 as well, which
proves uniqueness. �

Our proof of uniqueness above differs from Serfati’s proof in [29] in two key respects.
First, we bound, in effect, the quantity h(t) defined in (6.2), whereas Serfati bounds

the quantity
∫ t

0
|h′(s)| ds, which is more difficult to deal with rigorously. Second, we

also bound the terms involving the Biot-Savart law differently, via Proposition 6.2, so
as to obtain a unified argument that applies both to the full plane and to an exterior
domain.

6.2. Continuous dependence on initial data. In this subsection, we modify slightly
the proof of uniqueness in the previous section to obtain the limited continuity on ini-
tial data stated in Theorem 2.8.

Proof of Theorem 2.8. We follow the same steps as in the proof of uniqueness in Sec-
tion 6.1, and use the same definitions made in that proof. Now, however, u1 and u2

are the unique solutions for different initial data. This leads to the bound,

|u1(t,X1(t, x))− u2(t,X2(t, x))|
≤
∣∣u0

1(x)− u0
2(x)

∣∣+ A1 + A2 ≤
∣∣u0

1(x)− u0
2(x)

∣∣+ A1 +B1 +B2,

where A1, A2, B1, and B2 are the same as in Section 6.1.
We bound A1 and B2 exactly as in (6.8, 6.11), for the initial data was not used

in their derivations. As in the proof of uniqueness, we bound the term B1 using
Proposition 6.2, but now an additional term,

Cp‖ω0
1 − ω0

2‖Lpuloc(Ω),

which appears because the initial vorticities differ.
The net effect is that the bound in (6.12) becomes

M ′(s) ≤
∥∥u0

1 − u0
2

∥∥
L∞

+ Cp‖ω0
1 − ω0

2‖Lpuloc(Ω)

+ C(1 + t)µ(M(s)) + CM(s)

≤ Cs0 + C(1 + t)µ(M(s)) + CM(s)

= Cs0 + ν(M(s)),

(6.13)
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where ν is as in (6.5). In integral form, this is

M(t) ≤ Cs0t+

∫ t

0

ν(M(s)) ds,

since still M(0) = 0.
Lemma 6.1 tells us that M(t) ≤ Γ(t), where Γ(t) is defined by∫ Γ(t)

Cs0t

ds

ν(s)
= t.

It follows from (6.13) that

P (t) = M ′(t) ≤ Cs0 + C(1 + t)µ(Γ(t)) + C

∫ t

0

P (s) ds,

so by Gronwall’s lemma we conclude that

P (t) ≤ C [s0 + (1 + t)µ(Γ(t))] eCt.

Since P (t) = ‖∂t(X2 −X1)‖L∞ , we have

|X2 −X1| (t, x) =

∣∣∣∣∫ t

0

∂s(X2 −X1)(s, x)

∣∣∣∣ ≤ ∫ t

0

|∂s(X2 −X1)(s, x)|

≤
∫ t

0

P (s) ds = M(t) ≤ Γ(t).

So, one obtains continuous dependence of the flow maps with respect to initial data.
We can turn this into continuous dependence of velocity, as

‖u1(t)− u2(t)‖L∞ = ‖u1(t,X1(t, ·))− u2(t,X1(t, ·))‖L∞
≤ ‖u1(t,X1(t, ·))− u2(t,X2(t, ·))‖L∞

+ ‖u2(t,X2(t, ·))− u2(t,X1(t, ·))‖L∞
≤ P (t) + ‖µ(|X2(t, ·)−X1(t, ·)|)‖L∞
≤ C [s0 + (1 + t)µ(Γ(t))] eCt + µ(Γ(t)).

(6.14)

To be explicit, for a fixed t and all sufficiently small s0, we will have ν(s) = C[−(1+
t)s log s+ s]. Calculating, we have

t =

∫ Γ(t)

Cs0t

ds

ν(s)
= −C

∫ Γ(t)

Cs0t

ds

s((1 + t) log s− 1)

= −C
∫ log Γ(t)

log(Cs0t)

dr

(1 + t)r − 1

= − C

1 + t
[log((1 + t) log Γ(t)− 1)− log((1 + t) log(Cs0t)− 1)]

=
C

1 + t
log

(1 + t) log(Cs0t)− 1

(1 + t) log Γ(t)− 1
.

Simplifying yields the following equation:

(1 + t) log Γ(t)− 1

(1 + t) log(Cs0t)− 1
= e−Ct(1+t),
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which leads to

log Γ(t) =
1

1 + t
+ e−Ct(1+t)

[
log(Cs0t)−

1

1 + t

]
= Ct + e−Ct(1+t) log(Cs0t),

where

Ct =
1− e−Ct(1+t)

1 + t
,

which we note is greater than 0. Thus,

Γ(t) = eCt(Cs0t)
e−Ct(1+t) .

The following then holds:

µ(Γ(t)) = −CΓ(t) log Γ(t)

= −eCt(Cs0t)
e−Ct(1+t)

[
Ct + e−Ct(1+t) log(Cs0t)

]
.

Hence, from (6.14),

‖u1(t)− u2(t)‖L∞ ≤ CeCts0 + µ(Γ(t))
[
1 + C(1 + t)eCt

]
= CeCts0 − eCt(Cs0t)

e−Ct(1+t)
[
Ct + e−Ct(1+t) log(Cs0t)

] [
1 + C(1 + t)eCt

]
≤ CeCts0 − C(1 + t)eCt(Cs0t)

e−Ct(1+t) log(Cs0t),

which is (2.3). The final inequality was obtained by keeping only the dominant terms.
�

7. Examples of Serfati vorticities

It is natural to ask which bounded vorticities in the plane, or in an exterior domain,
are the curl of some bounded velocity, or, in other words, to characterize vorticities
which give rise to Serfati velocities; we call these Serfati vorticities. This turns out
to be a surprisingly subtle issue, which will be addressed in [4]. We discuss it briefly
here for the sake of completeness. Let us start with some observations.

• Any Yudovich velocity (velocity having bounded and integrable vorticity) is
Serfati in the whole plane or exterior domain.
• Periodic vorticities, with integral zero on the period, are Serfati vorticities.
• Any linear combination of Serfati velocities is Serfati; that is, S is a vector

space. In particular, adding a bounded, compactly supported, function to a
periodic vorticity whose integral vanishes on the period gives rise to a Serfati
vorticity.
• Take

u(x) =
x⊥

|x|
on Ω =

{
x ∈ R2 : |x| > 1

}
.

Then ω(u) = curl(u)(x) = |x|−1, which is bounded but does not decay fast
enough to belong to Lp(Ω) for any p ≤ 2. Hence ω does not decay fast
enough for the Biot-Savart law (in the exterior of the unit disk) to converge.
Nonetheless, u is bounded with bounded vorticity and, hence, Serfati. Treated
as a stationary solution to the Euler equations, the corresponding pressure
satisfies ∇p = r̂/r so that p = log r, in accordance with Remark 2.6. This
example also gives rise, by composition with a conformal map, to an example



24 AMBROSE, KELLIHER, LOPES FILHO, AND NUSSENZVEIG LOPES

in the exterior of a general, smooth, connected domain conformally equivalent
to the disk.
• To any vorticity that is the characteristic function of an infinite strip in R2

there corresponds a Serfati velocity. Note that this vorticity does not decay at
infinity.

For example, suppose the strip is {(x1, x2) : 0 < x2 < 1}. Then the velocity

u can be chosen to vanish on x2 ≥ 1, equal (1− x2)̂i on the strip, and equal î
below the strip. Treated as a stationary solution to the Euler equations, the
gradient of the corresponding pressure is zero, so again p is in accordance with
Remark 2.6.
• If ω is Serfati in R2 and is supported away from ΩC , then ω corresponds to a

Serfati velocity in Ω. To see this, cut off the stream function for ω so that the
resulting velocity field, u, is tangent to ∂Ω; in fact, u vanishes on ∂Ω.
• Consider the strip S = {(x1, x2) ∈ R2 | 2 < x2 < 3} (of course one can consider

an arbitrary strip with arbitrary inclination). Then

u(x) =

 (1, 0) if x2 > 3,
(x2 − 2, 0) if 2 < x2 < 3,

(0, 0) if x2 < 2

is a Serfati velocity in the exterior of the unit disk. Indeed, it is divergence-free,
tangent to the boundary of the disk, and its curl is ω = −χ

S
, hence bounded

and non-decaying at infinity. Similar constructions hold for arbitrary Ω as long
as the strip is placed at a distance away from ΩC . This gives rise to a family of
examples—just vary the size of the strip, the constant flow outside the strip,
and the linear interpolation.

On the other hand, consider the following very simple solution to the Euler equa-
tions:

u(t, x) = (t, 0), p(t, x) = −x1

for all (t, x) in R × R2. (This is a special case of an example in [18].) Then u lies in
C([0, T ];S) for all T > 0 and ∇p = (−1, 0) lies in L∞(R× R2). Nonetheless, u is not
a weak solution as defined in Definition 2.3. To see this, observe first that u0 = 0 and
the vorticity, ω, of u vanishes on R× R2. This leaves only the term,∫ t

0

∫
Ω

((s, 0) · ∇y)∇⊥y
[
(1− a(x− y))Kj

Ω(x, y)
]
· (s, 0) dy ds

=

∫ t

0

(−s2)

∫
Ω

∂y1∂y2
[
(1− a(x− y))Kj

Ω(x, y)
]
dy ds = 0,

on the right-hand side of (1.5). Hence, for j = 1, the right-hand side of (1.5) is zero
while the left-hand side is t, so the Serfati identity is not satisfied. Hence, requiring
that the Serfati identity hold selects certain solutions to the Euler equations whose
velocity lies in the Serfati space.

We observe also that while ∇p is bounded, p is not sublinear. The pressure does not
satisfy property (2.20) of [33] that is imposed to ensure uniqueness of solutions to the
Euler equations for Serfati velocities in the whole plane. (This example is discussed
further in [19], where it is shown that sublinear growth of the pressure is equivalent
to the Serfati identity and that, specifically in the full plane, these two equivalent
conditions reflect the solution being expressed in an inertial reference frame.)
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Finally, it is proved in [4] that vorticities that are identically (nonzero) constants are
not Serfati, since the associated velocities grow linearly at infinity. Any vortex patch
whose support contains disks of arbitrary radius is also not Serfati. The vortex patch
consisting of a semi-infinite strip such as, for example, the characteristic function of
the set {(0,∞)× (0, 1}) ⊂ R2 is not a Serfati vorticity.

8. Non-decaying vorticity: Comparison with other approaches

In this section we discuss other works in the literature concerning bounded vorticity,
bounded velocity solutions to the Euler equations having non-decaying vorticity. More
precisely, we will compare the approach in our work to the approaches in [32, 33, 10].

In [32], Taniuchi establishes existence of solutions for initial velocity in S. Actually,
he does so for slightly more general initial velocity in which the vorticity can be
“slightly unbounded,” a local version, with nondecaying initial data, of Yudovich’s
space defined in [37], but we will discuss his argument, and that of [33], only as it
relates to initial data in S. Taniuchi employs a sequence of smooth solutions with
velocities in S proven to exist in another 1995 paper of Serfati [30]. Key to Taniuchi’s
argument is the identity for these smooth solutions from [30],

∇p =
1

2π
(∇(a log |·|)) ∗ ∂i∂juiuj +

1

2π
(∂i∂j∇(1− a) log |·|) ∗ uiuj, (8.1)

where a lies in C∞c (R2) with a = 1 near the origin.
Taniuchi uses (8.1) to prove that his smooth solutions are mild solutions to the

Euler equations in the sense that

u(t) = u(s)−
∫ t

s

P(u · ∇u)(τ) dτ, (8.2)

where P is the Helmholtz operator on R2, defined in terms of Riesz transforms. Making
a Littlewood-Paley decomposition, Taniuchi uses (8.2) in somewhat the same way
that we, following Serfati, use (1.5) to obtain a uniform bound on the L∞-norm of the
approximating velocities. Taniuchi establishes a uniform-in-viscosity bound using the
vorticity equation for the Navier-Stokes equations, including the case of zero viscosity,
to show that ω(t) remains bounded in L∞. (We use the transport of vorticity by the
flow map for the approximate solutions to show this.) Using these uniform bounds, he
ultimately obtains convergence of a subsequence to a solution of the Euler equations
having sublinear growth of the pressure at infinity. This solution, however, is not
shown to satisfy the Serfati identity, (1.5) (it is shown in [19], however, that it does.)

In [33], the authors establish a type of continuous dependence on initial data (in-
cluding uniqueness as an important special case) for solutions to the Euler equations
lying in S. They start with the solutions to the Euler equations constructed in [32],
first showing that the pressure satisfies

p =
2∑

j,k=1

RjRk(u
juk),

with p lying in BMO, where the Rj are Riesz transforms. (That this might be the
key to uniqueness is suggested by the result of [12, 18] on uniqueness of unbounded
solutions to the Navier-Stokes equations.) This identity, along with the estimates
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established in [32], is sufficient for the authors to apply an adaptation of the funda-
mental uniqueness argument of Vishik in [35] to prove uniqueness (and continuous
dependence on initial data) assuming that pressure grows sublinearly at infinity.

Vishik’s uniqueness argument, like ours or Serfati’s, does not employ an energy
argument. Vishik employs in a critical way the B0

∞,1-norm (and ultimately a borderline
Besov space norm he defines) of the difference, w, between velocities. We, on the other
hand, employ the L∞-norm of the flow map associated with w (and so also w itself).
Since the B0

∞,1-norm of w is defined in terms of the L∞-norms of the Littlewood-Paley
operators applied to w, these are perhaps not so far apart in spirit, though the proofs
are radically different.

Properties of the flow map are used in [33] only for a smoothed version of the velocity
field (suppressing high frequencies using a Littlewood-Paley operator) and no vorticity
is assumed to be transported by the flow. This brings up the question of whether it
is possible to establish the existence of a flow map for the solutions constructed in
[29, 33]. That this is so is proven indirectly in [19], by showing that the solutions
we constructed in Section 4 have sublinear growth of the pressure. Since Taniuchi’s
uniqueness proof only relies upon this fact, Taniuchi’s solutions are the same as our
own, which were constructed so that the vorticity is transported by the flow map.

The recent paper [7] also works in larger spaces than S (spaces much like those
of [32, 33]) and employs paradifferential calculus. Like [32], their existence argument
uses the smooth non-decaying solutions constructed by Serfati in [30], though the
proof differs from that of [32].

There is, in effect, another proof of uniqueness for Serfati initial velocity in [8],
where the short-time vanishing viscosity limit of solutions to the Navier-Stokes equa-
tions to a solution to the Euler equations is proved. (The short-time result in [8] is
improved to arbitrarily large finite time in [9], but with the additional assumption
that the initial velocity is in L2. This last assumption is subsequently dropped in
[10].) The uniqueness of the solutions to the Euler equations then follows since the so-
lutions to the Navier-Stokes equations in this setting were shown to be unique in [13].
Cozzi’s approach departs significantly both from our approach and that of Vishik’s as
employed in [33]. Letting w be the difference between the Navier-Stokes and Euler
solutions, she uses the mild formulation of the solutions to control the low frequencies
of w, the boundedness of vorticity to control the high frequencies, and controls the
middle frequencies by reducing the problem to proving the vanishing viscosity limit in
the homogenous Besov space, Ḃ0

∞,∞ It is easier to obtain the vanishing viscosity limit

in this space because Calderon-Zygmund operators are bounded on Ḃ0
∞,∞ but not on

L∞.
We stress that none of the approaches to existence or uniqueness in [35, 32, 33, 7,

8, 9, 10] is adaptable to an exterior domain because of their use of Littlewood-Paley
theory and paradifferential calculus.

In addition to the works we have discussed we would like to mention other instances
of the use of Serfati’s idea to obtain L∞ estimates; namely, [27, 28, 14, 15, 1].

Finally, we conclude by noting that, in [11], Gallay and Slijepčević study the related
problem of long-time dynamics of viscous flows where no decay of velocity is assumed.
This is an interesting problem also in the inviscid case.
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Appendix A. Estimates for the Biot-Savart kernel

In this section, we derive the estimates on the Biot-Savart kernel and its derivatives
stated in Propositions 3.1 through 3.3. We follow the basic approach of employing a
conformal map developed in [16, 17], but must extend the methods considerably to
deal with higher derivatives. Because of the use of a conformal map this approach is
specific to 2D domains. (The exterior of multiply connected domains could be treated
as in [17], at the expense of considerable extra complexity.)

We give the proofs of Propositions 3.1 through 3.3 first for the full plane in Sec-
tion A.1, then for the exterior of the unit disk in Section A.2, and finally for a domain
exterior to an obstacle—a general smooth, connected and simply connected, bounded
domain with C∞ boundary—in Section A.3.

The estimates in the full plane are the simplest, as the Biot-Savart kernel, which
has an explicit form, has the greatest degree of symmetry. For the exterior of the
unit disk, the Biot-Savart kernel can also be written explicitly, but the presence of the
boundary induces a type of distortion that complicates the estimates considerably. It
is this case that will consume most of our efforts. The exterior of an obstacle can be
treated by employing a conformal map provided by the Riemann mapping theorem.
Because this conformal map is well-behaved we can transfer all of the key estimates
for the exterior of the unit disk to apply to the exterior of the obstacle as well.

A.1. The Biot-Savart kernel in the full plane. In this subsection we obtain the
estimates in Propositions 3.1 through 3.3 that apply specifically to the full plane:
(3.2), (3.3), (3.9)1, and (3.10)1. As we will see in Section A.2, the Biot-Savart kernel,
K, for the full plane appears in the expressions for the Biot-Savart kernel, KΩ, for
the exterior of the unit disk. Not surprisingly, then, the estimates developed in this
subsection are fundamental to the estimates in Section A.2.

Proof of Proposition 3.1 for the full plane. We can easily prove (3.2) by inte-
grating using polar coordinates centered at x:

‖aλ(x− y)K(x− y)‖L1
y(R2) ≤

2π

2π

∫ Cλ

0

r dr

r
= Cλ,

where C is given in terms of the size of the support of a.
For (3.3), we need first to make several estimates. We begin by computing the first

and second-order derivatives of

−K⊥(z) = N(z) ≡ z

2π|z|2
.

We have

∂zpN
j(z) =

δjp
2π|z|2

− zjzp
π|z|4

, (A.1)

and

∂zm∂zpN
j(z) = −zmδjp + zpδjm + zjδmp

π|z|4
+ 4

zjzmzp
π|z|6

. (A.2)

It is clear, then, that there exists C > 0 such that∣∣∂yp [Kj(x− y)]
∣∣ ≤ C |x− y|−2 ,∣∣∂ym∂yp [Kj(x− y)]
∣∣ ≤ C |x− y|−3 .

(A.3)
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We have,

∇y∇y((1− aλ(x− y))Kj(x− y))

= ∇y

[
((1− aλ(x− y)))∇yK

j(x− y)−∇yaλ(x− y)Kj(x− y)
]

= ((1− aλ(x− y)))∇y∇yK
j(x− y)− 2∇yaλ(x− y)⊗∇yK

j(x− y)

−∇y∇yaλ(x− y)Kj(x− y).

Suppose that a is supported on Bc, the ball of radius c > 0 centered at the origin,
with a ≡ 1 on Bc′ , the ball centered at the origin with radius c′ saitisfying 0 < c′ < c,
and let

Aλ(x) = {y ∈ Ω: c′λ < |x− y| < cλ} . (A.4)

Then

|∇yaλ(x− y)| ≤ Cλ−1 and |∇y∇yaλ(x− y)| ≤ Cλ−2, (A.5)

with each function supported on y in Aλ(x).
Continuing to estimate the term |∇y∇y((1− aλ(x− y))Ki(x− y))|, we write∣∣∇y∇y((1− aλ(x− y))Ki(x− y))

∣∣ ≤ (f1 + f2 + f3)(x, y),

where
f1 = f1(x, y) =

∣∣((1− aλ(x− y)))∇y∇yK
j(x− y)

∣∣ ,
f2 = f2(x, y) = 2

∣∣∇yaλ(x− y)⊗∇Kj(x− y)
∣∣ ,

f3 = f3(x, y) =
∣∣∇y∇yaλ(x− y)Kj(x− y)

∣∣ .
Observe that fj ≥ 0, j = 1, 2, 3; f1(x, y) is supported on |x− y| ≥ c′λ; f2(x, y) and
f3(x, y) are supported on y ∈ Aλ(x). Thus, combining the bounds we obtained we
find

f1(x, y) ≤ C

|x− y|3
, f2(x, y) ≤ C

λ |x− y|2
,

f3(x, y) ≤ C

λ2 |x− y|
.

The necessary estimates for f1, f2, f3 can be easily derived:

‖f1(x, y)‖L1
y(Ω) ≤ 2πC

∫ ∞
c′λ

r dr

r3
=
C

λ
,

‖f2(x, y)‖L1
y(Ω) ≤

2πC

λ

∫ cλ

c′λ

r dr

r2
=
C

λ
[log(cλ)− log(c′λ)] =

C

λ
,

‖f3(x, y)‖L1
y(Ω) ≤

2πC

λ2

∫ cλ

c′λ

r dr

r
=
C

λ2
[cλ− c′λ] =

C

λ
.

Together these bounds yield (3.3), establishing the estimates for the full plane. �

Proof of Proposition 3.2 for the full plane. Since |K(x − y)| is a strictly de-
creasing function of the distance from x, it follows that ‖K(x− ·)‖Lp(U) is maximized
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over all subsets U ⊂ R2 with |U | = 2πR2 when U = BR(x), the ball of radius R
centered at x. Thus,

‖K(x− ·)‖pLp(U) ≤ ‖K(x− ·)‖pLp(BR(x)) = 2π

∫ R

0

r dr

(2π)prp

= (2π)1−pR
2−p

2− p
,

giving (3.9)1. �

Lemma A.1 is used in our proof of Proposition 3.3 for the full plane, below.

Lemma A.1. For any p, q ≥ 1 with p−1 + q−1 = 1,

|K(x− y1)−K(x− y2)| ≤ 2
1
p |y1 − y2|

1
q

2πmin(|x− y1| , |x− y2|)2− 1
p

.

Proof. Before we begin, we mention the following identity, which we will use:

2π|K(z1)−K(z2)| = |z1 − z2|
|z1||z2|

,

for any z1 and z2. This identity may be verified by a direct calculation.
Now, let a = |x− y1|, b = |x− y2|, and let θ be the angle between x−y1 and x−y2.

Then

2π |K(x− y1)−K(x− y2)| = |y1 − y2|
|x− y1| |x− y2|

=
|y1 − y2|

1
p |y1 − y2|

1
q

|x− y1| |x− y2|

=
(a2 + b2 − 2ab cos θ)

1
2p

ab
|y1 − y2|

1
q

= (a2−2pb−2p + a−2pb2−2p − 2a1−2pb1−2p cos θ)
1
2p |y1 − y2|

1
q

≤
(
(ab)−2p(a2 + b2 + 2ab)

) 1
2p |y1 − y2|

1
q =

(
(a+ b)2

(ab)2(ab)2p−2

) 1
2p

|y1 − y2|
1
q

=

(
(a−1 + b−1)2

(ab)2p−2

) 1
2p

|y1 − y2|
1
q ≤

(
(2 min(a, b)−1)2

(min(a, b)2)2p−2

) 1
2p

|y1 − y2|
1
q

=

(
4

min(a, b)4p−2

) 1
2p

|y1 − y2|
1
q ,

from which the result follows. �
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Proof of Proposition 3.3 for the full plane. Set A = A(z) = K(x − X1(z)) −
K(x−X2(z)). It follows from Lemma A.1 that, for any p, q > 1, with p−1 + q−1 = 1,

‖A‖L1
z(U) ≤ C

∥∥∥∥∥ |X1(z)−X2(z)|
1
q

min(|x−X1(z)| , |x−X2(z)|)2− 1
p

∥∥∥∥∥
L1
z(U)

≤ Cδ
1
q

2∑
j=1

∥∥∥∥∥ 1

|x−Xj(z)|2−
1
p

∥∥∥∥∥
L1
z(U)

= Cδ
1
q

2∑
j=1

∥∥∥∥∥ 1

|x− y|2−
1
p

∥∥∥∥∥
L1
y(Xj(U))

= Cδ
1
q

2∑
j=1

‖K(x− y)‖
2− 1

p

L
2− 1

p
y (Xj(U))

.

Let R > 0 be such that |U | = 2πR2 and apply (3.9)1 of Proposition 3.2 to obtain

‖A‖L1
z(U) ≤ CpR

1
p δ1− 1

p ≤ Cpmax{1, R}δ1− 1
p .

Whenever δ < e−1, this bound is minimized, relative to p, when p = − log δ, giving

‖A‖L1
z(U) ≤ C max{1, R}(− log δ)δ1+ 1

log δ = C max{1, R}e(− log δ)δ,

which is (3.10)1. �

A.2. The Biot-Savart kernel exterior to the unit disk. In this subsection we
prove the estimates in Propositions 3.1 through 3.3 that apply to an exterior domain
in the special case where Ω is the domain exterior to the (closed) unit disk. These
estimates are those in (3.4) through (3.7), (3.9)2,3, and (3.10).

Let

Ω = B
C ≡ R2 \B1(0).

Let K
B
C = K

B
C (x, y) ≡ ∇⊥xGB

C (x, y), where G
B
C is the Green’s function for this

domain. With K as in (1.4), the Biot-Savart kernel for all of R2, it is classical that

KΩ(x, y) = K
B
C (x, y) = K(x− y)−K(x− y∗), (A.6)

with y∗ = y/|y|2.
Our next lemma gives us some limited control over how much K(x−y∗) differs from

K(x− y).

Lemma A.2. Let x ∈ R2 such that |x| > 1. Then

|x− y|
|x− y∗|

≤ max {2, 2R} ≤ 2(1 +R) (A.7)

for all y in Ω such that |x− y| ≤ R. Also,

1

|x− y∗|
≤ 2 (A.8)

for all y ∈ Ω with |x− y| ≥ 1.

Proof. We assume without loss of generality that x = (a, 0) lies along the positive
x-axis. Let y ∈ Ω ∩ BR(x) with |y| = r and set θ be the angle between y and x.
Assume that x 6= y. Then, fixing a and r, let

k(θ) :=
|x− y|2

|x− y∗|2
=
a2 + r2 − 2ar cos θ

a2 + 1
r2
− 2a

r
cos θ

.
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Direct calculations show that the only solutions to k′(θ) = 0 are θ = 0 and θ = π, and
that k′′(0) > 0 while k′′(π) < 0. Thus, k is maximized when θ = π. (The maximum
may occur for y on ∂B1(0).) We then write

k(π) =
a2 + r2 + 2ar

a2 + r−2 + 2ar−1
=

(
a+ r

a+ r−1

)2

.

If y lies along the negative real axis, then a and r must be less than R, so that
a + r ≤ 2R. Then, since also a + r−1 ≥ 1, we have that k(π) ≤ 4R2. If y lies along
the positive real axis then r < a, so k(π) < (2a/a)2 = 4. This gives (A.7).

Similarly, letting m(θ) = |x− y∗|2 = a2 +r−2−2ar−1 cos θ for fixed a and r, we have
m′(θ) = 2a sin(θ)/r and m′′(θ) = 2a cos(θ)/r. Thus, the minimum of m(θ) occurs at
θ = 0, where m(0) = a2 + r−2 − 2ar−1 = (a − r−1)2. But if |x− y| = M ≥ 1 then
r = a+M , so that

m(0)
1
2 = a− 1

a+M
≥ 1− 1

a+ 1
=

a

a+ 1
.

Thus,

1

|x− y∗|
≤ 1

m(0)
1
2

= 1 +
1

a
≤ 2,

since |a| ≥ 1. This is (A.8). �

Lemma A.3. For all R ≥ 2,

inf {|x| |y| : x, y ∈ Ω, |x− y| = R} = R− 1.

Proof. Begin by observing that, using Lagrange multipliers,

min
{|x−y|2=R2, x,y∈Ω}

{|x|2|y|2}

is attained when either x and y are linearly dependent or when one of x or y is on the
boundary ∂Ω. In the latter case, assuming without loss of generality that |y| = 1, we
have

|x||y| = |x| ≥ |x− y| − |y| = R− 1,

as desired. Otherwise, if x and y are linearly dependent then x = βy, β ∈ R and the
result follows easily from |x− y| = R. �

In the proof of existence we make use of a modified Biot-Savart kernel, the hydrody-
namic Biot-Savart kernel (3.1). In the case of the exterior of the unit disk this kernel
is given by:

JΩ(x, y) = J
B
C (x, y) ≡ K

B
C (x, y) +K(x). (A.9)

Lemma A.4. Let

L(x, y) = K(x− y∗)−K(x). (A.10)

There exists a constant C > 0 such that, for all x, y in B
C

, we have

|JΩ(x, y)| ≤ C

|x− y|
, (A.11)

|L(x, y)| ≤ C

|x− y|
. (A.12)
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Proof. We have,

|L(x, y)| = 1

2π

∣∣∣∣ x⊥|x|2 − x⊥ − (y∗)⊥

|x− y∗|2

∣∣∣∣ =
1

2π

|y∗|
|x| |x− y∗|

=
1

2π

1

|y| |x| |x− y∗|
≤ C(1 + |x− y|)

max {1, |x− y| − 1} |x− y|

=
C(1 + s)

max {1, s− 1} |x− y|
,

where s = |x− y|. In the last inequality, we used Lemmas A.2 and A.3.
Let g(s) = (1 + s)/max {1, s− 1}. When s ≤ 2, g(s) ≤ 1 + s ≤ 3, and when s > 2,

g(s) =
1 + s−1

1− s−1
<

2
1
2

= 4.

Hence, |L(x, y)| ≤ C/ |x− y|. But JΩ(x, y) = K(x − y) + L(x, y) and |K(x− y)| =
C/ |x− y|, so the same inequality applies to J . �

Proof of Proposition 3.1 for B
C

. Due to Lemma A.4, (3.4) follows directly from
(3.2).

To establish (3.6), we need only establish it with L of (A.10) in place of JΩ, for then
we can add that bound to (3.3).

We have,

∂yn∂yj(K
i(x− y∗)) ≡ ∂n∂j(K

i(x− y∗)) = −∂n(∂y∗kK
i(x− y∗)∂jy∗k)

= −∂y∗kK
i(x− y∗)∂n∂jy∗k − ∂n∂y∗kK

i(x− y∗)∂jy∗k
= −∂y∗kK

i(x− y∗)∂n∂jy∗k + ∂y∗m∂y∗kK
i(x− y∗)∂ny∗m∂jy∗k.

But,

∂jy
∗
k = ∂j

yk

|y|2
= −2

yk

|y|3
∂j |y|+

δjk

|y|2
= −2

yjyk

|y|4
+
δjk

|y|2
,

so

∂n∂jy
∗
k = ∂n

(
−2

yjyk

|y|4
+
δjk

|y|2

)
= 8

yjyk

|y|5
∂n |y| − 2

∂nyjyk

|y|4
− 2

yj∂nyk

|y|4
− 2

δjk

|y|3
∂n |y|

= 8
yjykyn

|y|6
− 2

δjnyk

|y|4
− 2

δnkyj

|y|4
− 2

δjkyn

|y|4
.

Thus,

|∂n∂jy∗k| ≤ C |y|−3 , |∂ny∗m∂jy∗k| ≤ C |y|−4 .

Hence, ∣∣∂yn∂yj(Ki(x− y∗))
∣∣ ≤ C

∣∣∂y∗kKi(x− y∗)
∣∣

|y|3
+

∣∣∂y∗m∂y∗kKi(x− y∗)
∣∣

|y|4
.

Clearly, from (A.1, A.2) we obtain that∣∣∂y∗kKi(x− y∗)
∣∣ ≤ C |x− y∗|−2 ,∣∣∂y∗m∂y∗kKi(x− y∗)
∣∣ ≤ C |x− y∗|−3 ,
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so that ∣∣∂yn(Ki(x− y∗))
∣∣ ≤ C

|x− y∗|2 |y|2
,

∣∣∂yn∂yj(Ki(x− y∗))
∣∣ ≤ C

|x− y∗|2 |y|3
+

C

|x− y∗|3 |y|4
.

(A.13)

Then,

∇y∇y((1− aλ(x− y))Li(x, y))

= ∇y

[
((1− aλ(x− y)))∇yL

i(x, y)−∇yaλ(x− y)Li(x, y)
]

= ((1− aλ(x− y)))∇y∇yK
i(x− y∗)− 2∇yaλ(x− y)⊗∇Ki(x− y∗)

−∇y∇yaλ(x− y)Li(x− y∗).
It is only the one, final, term in which L appears in place of K.

Thus, ∣∣∇y∇y((1− aλ(x− y))Li(x, y))
∣∣ ≤ (f1 + f2 + f3)(x, y), (A.14)

where

f1 = f1(x, y) =
∣∣((1− aλ(x− y)))∇y∇yK

i(x− y∗)
∣∣ ,

f2 = f2(x, y) = 2
∣∣∇yaλ(x− y)⊗∇yK

i(x− y∗)
∣∣ ,

f3 = f3(x, y) =
∣∣∇y∇yaλ(x− y)Li(x, y)

∣∣ .
Define Aλ as in (A.4). Observe, then, that f1 is supported on |x− y| ≥ C1λ, while

f2(x, y) and f3(x, y) are supported on y ∈ Aλ(x). Because of (A.13)2, it is natural to
decompose f1 as f1 = f1,1 + f1,2 in such a way that

|f1,1(x, y)| ≤ C

|x− y∗|2 |y|3
, |f1,2(x, y)| ≤ C

|x− y∗|3 |y|4
.

From (A.5), (A.12), and (A.13)1, we obtain

|f2(x, y)| ≤ C

λ |x− y∗|2 |y|2
, |f3(x, y)| ≤ C

λ2 |x− y|
.

Set F1,j = ‖f1,j(x, ·)‖L1 , j = 1, 2 and Fj(x) = ‖fj(x, ·)‖L1 , j = 2, 3.
The bound on F3 is very simple and applies without restriction on λ > 0:

F3(x) ≤ C

λ2

∫ cλ

c′λ

r dr

r
= C

(c− c′)λ
λ2

≤ C

λ
.

To bound F1,1, F1,2, and F2, fix x in Ω and let

Uλ(x) = {y ∈ Ω: |x− y| > λ} .
Without loss of generality assume that c′ = 1 (see (A.4)). With this choice of c′, we
can set C0 = 2 (at the end of the proof we will reduce this to C0 = 1). Our goal now
is to show that (3.6) through (3.8) hold for all λ > C0.

Assume first that λ > C0 |x|.
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For all y in Uλ(x), we have |y| > λ − |x| > (C0 − 1) |x| ≥ C0 − 1 and hence
|x− y∗| > |x| − (C0 − 1)−1 ≥ 1− (C0 − 1)−1 =: α > 0. Thus,

F1,1(x) =

∫
Uλ(x)

f1(x, y) dy ≤
∫
Uλ(x)

C

|x− y∗|2 |y|3
dy ≤ C

α2

∫
Uλ(x)

1

|y|3
dy

≤ C

∫
|y|>λ−|x|

1

|y|3
dy = C

∫ ∞
λ−|x|

r dr

r3
=

C

λ− |x|
.

But, |x| < λ/C0 so λ− |x| > λ(1− C−1
0 ). Hence,

F1,1(x) ≤ 1

1− C−1
0

1

λ
=
C

λ
.

A similar estimate for F1,2 gives F1,2(x) ≤ Cλ−2.
To estimate F2, first observe that for all y in Aλ(x), C1λ < λ−|x| < |y| < cλ+ |x| <

C2λ, where C1 = 1 − C−1
0 and C2 = c + C−1

0 . (The values of C1 and C2 come from
our assumption that λ > C0 |x|.) Then, since f2(x, ·) is supported in Aλ(x) ⊆ Uλ(x),
and |x− y∗| > α for all y in Uλ(x), as we observed above, we have

F2(x) ≤ C

λ

∫
Aλ(x)

dy

|y|2
≤ C

λ

∫ C2λ

C1λ

r dr

r2
= C

log(C2λ)− log(C1λ)

λ
=
C

λ
.

Together, these bounds give (3.6, 3.7) when λ > C0 |x|.
Now assume that |x| > 2 and that λ > 0. Then |x− y∗| ≥ |x| − 1 ≥ 1

2
|x|, so we

can simply estimate,

F1,1(x) ≤ C

|x|2
∫ ∞

1

r dr

r3
=

C

|x|2
≤ C

|x|
,

F1,2(x) ≤ C

|x|3
∫ ∞

1

r dr

r4
=

C

|x|3
≤ C

|x|
.

For F2, since Aλ(x) is contained in the annulus centered at the origin of inner radius
1 and outer radius cλ+ |x|, we have

F2(x) ≤ C

λ |x|2
∫ cλ+|x|

1

r dr

r2
=
C log(cλ+ |x|)

λ |x|2
≤ C log(2 max {cλ, |x|})

λ |x|2

≤ C max

{
log(2cλ)

λ

1

|x|2
,
log(2 |x|)
|x|

1

λ |x|

}
≤ C max

{
1

|x|2
,

1

λ |x|

}
≤ C max

{
1

|x|
,

1

λ

}
.

Now if λ ≤ C0 |x| then |x|−1 ≤ Cλ−1, and these bounds, along with the earlier
bound for λ > C0 |x|, give (3.6, 3.7) for all λ > 0 when |x| > 2.

On the other hand, if 1 < |x| < 2 then the restriction that λ > C0 |x| is satisfied
if λ > 2C0. Relabeling 2C0 to be C0, this gives the stated result for all x in Ω when
λ > C0.

The bounds in (3.5, 3.8) now follow immediately from (3.4, 3.6) and the observations
that

‖aλ(x− y)K(x)‖L1
y(Ω) ≤

1

2π |x|
‖aλ(x− y)‖L1

y(Ω) ≤ Cλ2,
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since |x| ≥ 1, and

‖∇y∇y((1− aλ(x− y))K(x))‖L1
y(Ω)

= ‖∇y∇y((1− aλ(x− y))⊗K(x)‖L1
y(Ω)

≤ C

λ2

(∫
supp aλ

1

)
|K(x)| ≤ C.

�

Proof of Proposition 3.2 for B
C

. From (A.11), |JΩ(x, y))| ≤ C |K(x− y)|. Hence,
the bound on JΩ in (3.9)3 follows from (3.9)1, which we proved in Section A.1. The
bound on KΩ in (3.9)2 follows from the bound on JΩ combined with (3.1) and the
boundedness of KΩ on Ω. �

Proof of Proposition 3.3 for B
C

. We start by using the expression forKΩ in (A.6)
to split the left-hand side of (3.10)2 into two terms using the triangle inequality:

‖KΩ(x,X1(z))−KΩ(x,X2(z))‖L1
z(U)

≤ ‖K(x−X1(z))−K(x−X2(z))‖L1
z(U)

+ ‖K(x− (X1(z))∗)−K(x− (X2(z))∗)‖L1
z(U)

≤ −Cδ log δ + ‖K(x− (X1(z))∗)−K(x− (X2(z))∗)‖L1
z(U).

(A.15)

In the last inequality, we bounded the first of the two L1 norms using (3.10)1.
We now bound the the remaining L1 norm in (A.15).
We first observe that for all x, y ∈ Ω,

|x∗ − y∗| = |x− y|
|x| |y|

≤ |x− y| ,

so

‖(X1)∗ − (X2)∗‖L∞ ≤ ‖X1 −X2‖L∞ = δ.

It also follows from Lemma A.2 that for all x, y ∈ Ω,

1

|x− y∗|
≤ 2

|x− y|
(1 + |x− y|) ≤ 2

|x− y|
+ 2.

With these two observations, we now proceed as in the proof of Proposition 3.3 for
the full plane in Section A.1, setting A = A(z) = K(x− (X1(z))∗)−K(x− (X2(z))∗).
It follows from Lemma A.1 that, for any p, q > 1, with p−1 + q−1 = 1,

‖A‖L1
z(U) ≤

∥∥∥∥∥ |(X1(z))∗ − (X2(z))∗|
1
q

min(|x− (X1(z))∗| , |x− (X2(z))∗|)2− 1
p

∥∥∥∥∥
L1
z(U)

≤ δ
1
q

2∑
j=1

∥∥∥∥∥ 1

|x− (Xj(z))∗|2−
1
p

∥∥∥∥∥
L1
z(U)

= δ1− 1
p

2∑
j=1

∫
U

dz

|x− (Xj(z))∗|2−
1
p

≤ δ1− 1
p

2∑
j=1

∫
U

22− 1
p22− 1

p

(
1

|x−Xj(z)|2−
1
p

+ 1

)
dz
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= 42− 2
p δ1− 1

p

2∑
j=1

(∫
U

dz

|x−Xj(z)|2−
1
p

+ |U |

)
.

Let R > 0 be such that |U | = 2πR2 and apply (3.9)1 of Proposition 3.2 to obtain

‖A‖L1
z(U) ≤ 42− 2

ppR
1
p δ1− 1

p + 42− 2
p2πR2δ1− 1

p

≤ C max
{

1, R2
}
δ1− 1

p (p+ 1)

= Cδ1− 1
p (p+ 1),

where C depends only on the measure of U . For δ < e−1, we set p = − log δ, giving

‖A‖L1
z(U) ≤ Cδ1+ 1

log δ (− log δ + 1)

= Ceδ(− log δ + 1)

≤ −Cδ log δ.

We have now bounded both L1-norms in (A.15) by −Cδ log δ. Combining the two
bounds gives (3.10)2. �

A.3. The Biot-Savart kernel exterior to a single obstacle. In the previous
subsection, we obtained estimates on KΩ and JΩ for the exterior of the unit disk. In
this subsection, we extend these same estimates—those in(3.4) through (3.7), (3.9)2,3,
and (3.10)—to the domain, Ω, exterior to a bounded simply connected domain having
C∞ boundary.

Denote by B the open ball of radius one centered at the origin. We assume without
loss of generality that B ⊆ ΩC (else a translation and dilation would make it so). As
in [17, 16], we have a C∞-diffeomorphism (biholomorphishm when treated as a map
from and to domains in the complex plane or Riemann sphere), T : Ω→ R2 \B, that
extends smoothly to the boundary; see also [3]. By (2.3) of [16], DT and DT−1 are
both bounded above so, as observed in [17], T is bi-Lipschitz.

We then have
KΩ(x, y) = K

B
C (T (x), T (y))DT (x),

JΩ(x, y) = J
B
C (T (x), T (y))DT (x) = KΩ(x, y) +KΩ(x),

(A.16)

where

KΩ(x) = K(T (x))DT (x). (A.17)

Then because T is Lipschitz and K is bounded on Ω,∥∥KΩ

∥∥
L∞
≤ C. (A.18)

We will also need an estimate on D2T .

Lemma A.5. For some constant, C1,∣∣D2T (y)
∣∣ ≤ C1 |y|−3 .

Proof. Viewing z as a complex variable, it is established in (2.1, 2.2) of [16] that T (z) =
βz+h(z) for some nonzero real constant, β, and bounded function, h, holomorphic on
Ω (as a subset of the Riemann sphere) with h′(z) = O(z−2) as |z| → ∞. It follows that
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h is analytic at the point at infinity in the Riemann sphere and that h′′(z) = O(|z|−3).
If h(z) = h(x1, x2) = u(x1, x2) + iv(x1, x2) then

T ′′(z) = h′′(z) =
∂2u

∂x2
1

+ i
∂2v

∂x2
2

=
∂2v

∂x1∂x2

− i ∂2u

∂x1∂x2

.

Therefore, D2T (y) = O(|y|−3) as |y| → ∞. The results follows, then, since T is C∞

up to the boundary. �

In Section A.2, we obtained bounds on JΩ and KΩ for Ω the exterior of a unit disk.
We now show that these bounds continue to hold for an exterior domain.

Proof of Propositions 3.1 through 3.3 for an exterior domain. Both (3.4)
and (3.5) of Proposition 3.1 for an exterior domain follow by making the change
of variables, z = T (y), using the boundedness of DT on Ω, and the fact that the
estimates in Proposition 3.1 for the unit disk are uniform in x. The proofs of Propo-
sitions 3.2 and 3.3 for an exterior domain as well as the bound on the hydrodynamic
Biot-Savart kernel, (A.11) of Lemma A.4, require only the boundedness of DT . Also,
(3.8) follows from (3.6) (which we establish below) using the same argument as used
for the exterior of the unit disk along with the boundedness of DT .

It remains to prove (3.6) and (3.7).
Now,

∇y∇y((1− aλ(x− y))J iΩ(x, y))

= ∇y

[
((1− aλ(x− y)))∇yJ

i
Ω(x, y)−∇yaλ(x− y)J iΩ(x, y)

]
= Λ1 + Λ2 + Λ3,

where

Λ1 = ((1− aλ(x− y)))∇y∇yJ
i
Ω(x, y),

Λ2 = −2∇yaλ(x− y)⊗∇yJ
i
Ω(x, y),

Λ3 = −∇y∇yaλ(x− y)J iΩ(x, y).

By virtue of (A.5) and (A.11) we can bound the L1 norm of Λ3 as we did for the

function, f3, in the proof of Proposition 3.1 for B
C

to conclude that ‖Λ3(x, y)‖L1
y(Ω) ≤

Cλ−1.
To treat Λ1 and Λ2 we first introduce some notation for differentials. Since JΩ is

a function of two variables, we will write D2 to mean the differential with respect to
the second variable. (So far we have been following the convention common in fluid
mechanics of writing ∇ in place of D, even for a 2-tensor.)

For Λ1 and Λ2, we calculate,

∇yJ
i
Ω(x, y) = ∇y(JBC (T (x), T (y))DT (x))

= D2JBC (T (x), T (y))DT (x)DT (y),

∇y∇yJ
i
Ω(x, y) = D2

2JBC (T (x), T (y))DT (x)(DT (y))2

+D2JBC (T (x), T (y))DT (x)D2T (y).

Making the change of variables, z = T (y), the annulus, Aλ, of (A.4) becomes
Bλ := {z ∈ Ω: c′λ < |x− T−1(z)| < cλ} . Because T is bi-Lipschitz, it follows easily
that Bλ is contained in the annulus, A′λ, centered at u of inner radius, c′/ ‖DT‖L∞ ,
and outer radius, c ‖DT−1‖L∞ .
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Thus, the common support of Λ2 and Λ3 is distorted by making the change of
variable, z = T (y), and its center is moved, but the bounds in (A.5) still apply. This
allows us to conclude that Λ2 and the term,

((1− aλ(x− y)))D2
2JBC (T (x), T (y))DT (x)(DT (y))2,

are bounded in the L1 norm by Cλ−1 for all λ > C0.
What remains is to bound the L1 norm of

Λ4 = ((1− aλ(x− y))D2JBC (T (x), T (y))DT (x)D2T (y).

Using (A.3)1, (A.13)1, the bi-Lipschitzness of T , and Lemma A.5,

|Λ4(x, y))| ≤
[

C

|x− y|2
+

C

|T (x)− T (y)∗|2 |y|2

]
1

|y|3
.

Now, on Uλ(x) := BC
c′λ ∩ Ω, the support of (1− aλ(x− ·)), |x− y|−2 < (c′λ)−2, so∫

Uλ(x)

C

|x− y|2 |y|3
dy ≤ C

c′λ2

∫
Ω

dy

|y|3
≤ C

λ2
≤ C

C0λ
=
C

λ

for all λ > C0. The integral above was finite since Ω does not include the origin.
Making the change of variables, z = T (y), we have

C

|T (x)− T (y)∗|2 |y|5
=

C

|T (x)− z∗|2 |T−1(z)|5
≤ C

|T (x)− z∗|2 |z|5
,

since T is bi-Lipschitz. Note that T (x) lies in B
C

, and in calculating the L1-norm, z

is integrated over B
C

, while the change of variables has unit Jacobian determinant.
Hence, we can bound the L1-norm of this term just as we did F1,1 or F1,2 in the proof

of Proposition 3.1 for B
C

. This leads to∫
Uλ(x)

C

|T (x)− T (y)∗|2 |y|5
dy <

C

λ

for all λ > C0, so that also,

‖Λ4(x, y)‖L1
y(Ω) <

C

λ
for all λ > C0.

Combining these bounds, we obtain (3.6, 3.7) for an exterior domain. �

Appendix B. Approximating the initial data

In our proof of existence of weak solutions to the Euler equations in Sections 4 and 5 we
employed a sequence of smooth compactly supported initial velocities that converged
to a given initial velocity in the Serfati space, S, of Definition 2.1. In this appendix,
we detail the construction of that sequence.

In essence, our approach is very simple and entirely standard: apply a cutoff function
to the mollified stream function for the velocity and let the support of the cutoff
function increase to fill all of Ω. For the full plane, this is, in fact, all that is required.

For the exterior of a single obstacle, however, there are two technical hurdles which
require some work to overcome; namely, the low regularity of the space, S, and the
presence of a boundary. In the absence of a boundary, one could simply employ convo-
lution to smooth the stream function. Both these issues are dealt with in Lemma B.1,
where we construct a sequence of smooth stream functions converging to the stream
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function for u. We then cut off this sequence in Proposition B.2 to construct our
approximate sequence of initial velocities.

Lemma B.1. Let u ∈ S. There exist ψ ∈ C1(Ω) and (ψn)∞n=1 ∈ C∞(Ω) such that the
following hold:

(1) u = ∇⊥ψ;
(2)

∥∥∇⊥ψn∥∥S is uniformly bounded with respect to n;
(3) there exists C > 0 such that |ψn(x)| ≤ C|x| for all n ∈ N;
(4) ψn = 0 on ∂Ω;
(5) for any p in [1,∞), ∆ψn → ∆ψ in Lploc(Ω) as n→∞;
(6) ∇ψn → ∇ψ in L∞(Ω).

Proof. It follows from Lemma B.3 that u is uniformly continuous (in fact, log-Lipschitz).
Because of this, the stream function, ψ, for u, which satisfies u = ∇⊥ψ, ω = −∆ψ,
ψ = 0 on Γ, lies in C1(Ω). We can explicitly construct this stream function, as follows.
Let x ∈ Ω. Let T : Ω→ R2 \ B be the conformal map defined in Section A.3. (Here,
B = B1(0) is the unit disk centered at the origin.) Let γx be the curve whose image,
under T , is the ray joining T (x)/|T (x)| and T (x). Then set

ψ = ψ(x) = −
∫
γx

u⊥ ◦ T−1DT−1 · ds. (B.1)

Since div u = 0 it follows that u = ∇⊥ψ. Also, as u is bounded, and we also know
that DT−1 is bounded and T grows at most linearly, we find that ψ(x) grows at most
linearly.

We now begin the construction of the approximate stream functions, ψn. First fix
x̄ ∈ Γ. Let U be a Möbius transformation that takes the unit circle to the real axis,
with the unit disk mapping to the lower half-plane, and with U(x̄) = (0, 0). Let
Φ = U ◦ T . Observe that Φ is a bi-holomorphism of Ω to the upper half-plane that
extends smoothly up to the boundary.

Now let r = rx̄ > 0 be small enough that Φ(Br(x̄) ∩ Γ) is an interval around
(y1, y2) = (0, 0) on the y1-axis and Φ(Br(x̄) ∩ Ω) is an open set contained in y2 > 0.
Let s > 0 be such that Bs(0) ⊂ Φ(Br(x̄)). We introduce φ = φ(y), y ∈ Bs(0), as

φ(y) =

{
ψ(Φ−1(y1, y2)), y2 ≥ 0,
−ψ(Φ−1(y1,−y2)), otherwise.

(B.2)

Let η ∈ C∞c (R2) taking values in [0, 1] have total mass 1 and be supported in the unit
ball. Assume that η(y1,−y2) = η(y1, y2) and set, for each λ > 0, ηλ(y) = λ−2η(λ−1y).
Define φλ = ηλ ∗ φ on Bs/2(0), for λ < s/2; because ηλ is supported on Bλ(0), this
convolution is well-defined. Finally, let

ψx̄λ = ψx̄λ(x) = φλ(Φ(x))

for x ∈ Φ−1(Bs/2(0)).
Because Φ is a bi-holomorhpishm,

∆ψx̄λ = ∆ ((ηλ ∗ φ)(Φ(x))) = |Φ′(x)|2 (∆(ηλ ∗ φ))(Φ(x))

= |Φ′(x)|2 (ηλ ∗∆φ)(Φ(x))

= |Φ′(x)|2 (ηλ ∗ (
∣∣(Φ−1)′

∣∣2 ∆ψ)(Φ(x)).
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Thus,

‖∆ψx̄λ‖L∞ ≤ C ‖∆ψ‖L∞ ≤ C.

This construction defines a smooth approximation of ψ locally, near the boundary.
Moreover, the approximation vanishes on the portion of the boundary where it is
defined, due to the fact that we performed an odd extension followed by even mol-
lification. The next step is to use the compactness of the boundary Γ to introduce
approximations everywhere on the boundary. Denote U x̄ ≡ Φ−1(Bs/2(0)), and recall
that Φ is also x̄-dependent. Since x̄ ∈ U x̄ it follows that

Γ ⊂ ∪x̄∈ΓU
x̄

is a cover of Γ by open sets. By compactness of Γ we can find a finite subcover
U1, U2, . . . , UN , λ0 > 0, and corresponding approximations ψ1

λ, ψ
2
λ, . . . , ψ

N
λ , λ < λ0,

such that each approximation ψiλ vanishes on U i ∩ Γ and is smooth in U i.
It then follows easily that∥∥∇ψiλ∥∥L∞ ≤ C,

∥∥∆ψiλ
∥∥
L∞
≤ C (B.3)

and that

∆ψiλ → ∆ψ in Lp(U i) and ∇ψiλ → ∇ψ in L∞(U i).

Let U0 be such that

Ω ⊂ ∪Ni=0U
i, U0 ∩ Γ = ∅.

Consider a partition of unity ρi, i = 0, 1, . . . , N , so that
N∑
i=0

ρi = 1; 0 ≤ ρi ≤ 1; supp ρi ⊂ U i; ρi ∈ C∞(U i).

We introduce, finally,

ψλ = ψλ(x) ≡
N∑
i=1

ρiψiλ(x) + ρ0(x)(ηλ ∗ ψ)(x),

noting that the last convolution is defined for small λ since ρ0 is supported in U0.
Consider λ = 1/n, n ∈ N. By construction all the desired properties hold for the

corresponding ψn. In particular, we note that

∆ψn =
N∑
i=1

(
∆ρiψin + ρi∆ψin +∇ρi · ∇ψin

)
+ ∆ρ0ηn ∗ ψ + ρ0ηn ∗∆ψ +∇ρ0 · ηn ∗ ∇ψ,

in light of (B.3), shows that ∇⊥ψn is bounded in S, since curl∇⊥ = −∆. �

In Proposition B.2, we cut off the sequence of smooth stream functions constructed
in Lemma B.1 to construct our approximate sequence of initial velocities.

Proposition B.2. Let u lie in S with ω = curlu. There exists a sequence, (un)∞n=1,
of approximations to u with the properties that:

(1) un = KΩ[ωn] and lies in C∞c (Ω), where ωn = curlun lies in C∞c (Ω);
(2) un → u uniformly on any compact subset, L, of Ω;
(3) for any p in [1,∞), ωn → ω in Lp(L) for any compact subset, L, of Ω at a

rate that depends only on p and L;
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(4) un is bounded in S uniformly in n.

Proof. Let ψ and (ψn) be as given by Lemma B.1.

Suppose that ΩC ⊆ Ba(0), a > 0, and let h be a cutoff function equal to 1 on Ba(0)
and equal to zero outside of B2a(0). Define φn : Ω→ [0, 1] for n > 1 by

φn(x) = h(ax/n).

Then, defining Ḃn := Bn(0) ∩ Ω, φn is supported on Ḃ2n and is equal to 1 on Ḃn.
Let

ψn = φnψn, un = ∇⊥ψn, ωn = curlun = ∆ψn

and note that ωn, un ∈ C∞c (Ω) with un = KΩ[ωn], giving (1).
Let L be a compact subset of Ω. Then

‖un − u‖L∞(L) = ‖φn∇⊥ψn + ψn∇⊥φn −∇⊥ψ‖L∞(L).

For all sufficiently large n, φn = 1 on L so

‖un − u‖L∞(L) ≤ ‖∇ψn −∇ψ‖L∞(L) → 0

because of (6) of Lemma B.1. This gives (2).
For (3), we calculate,

‖ωn − ω‖Lp(L) = ‖ψn∆φn + φn∆ψn + 2∇φn · ∇ψn −∆ψ‖Lp(L) .

For all sufficiently large n, φn = 1 on L so

‖ωn − ω‖Lp(L) ≤ ‖ψn‖Lp(L) ‖∆φn‖L∞(L) + 2 ‖∇φn‖L∞(L) ‖un‖Lp(L)

+ ‖∆ψn −∆ψ‖Lp(L)

= ‖∆ψn −∆ψ‖Lp(L) → 0

by (5) of Lemma B.1. This gives (3).
For (4), we have

‖un‖L∞(Ω)

≤ ‖φn∇⊥ψn + ψn∇⊥φn‖L∞(Ω)

≤ ‖φn‖L∞(Ω)‖∇⊥ψn‖L∞(Ω) + ‖ψn‖L∞(Ḃ2n) ‖∇
⊥φn‖L∞(Ω)

≤ C + Cnn−1 = C.

(B.4)

Here, we used ‖∇φn‖L∞(Ω) ≤ Cn−1. Also,

‖ωn‖L∞(Ω) = ‖ψn∆φn + φn∆ψn + 2∇φn · ∇ψn‖L∞(Ω)

≤ ‖ψn‖L∞(Ḃ2n) ‖∆φn‖L∞(Ω) + ‖φn‖L∞(Ω) ‖∆ψn‖L∞(Ω)

+ 2 ‖∇φn‖L∞(Ω) ‖un‖L∞(Ω)

≤ Cnn−2 + C + Cn−1 ≤ C.

Together with (B.4), this yields (4). �

Recall the definition of the log-Lipschitz space LL(Ω) in(4.11).

Lemma B.3. Suppose u ∈ S. Then u ∈ LL with ‖u‖LL ≤ C ‖u‖S.
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Proof. Let E be the extension operator from Ω to R2 defined by Stein in Theorem 5’ p.
181 of [31]. This operator has the property that it continuously extends functions on
all Sobolev spaces on Ω to the corresponding space on R2. Let ψ be a stream function
for u and extend ψ using E to all of R2, also calling the extended stream function ψ.
(If Ω = R2 we need not perform this extension.)

Let φ be a smooth cutoff function supported in B2(0) with φ ≡ 1 on B1(0) and let
φx(·) := φ(· − x). Let u = ∇⊥(φxψ) and let ω = curlu.

Applying Morrey’s inequality gives, for any |y| < 1 and p ≥ p0,

|u(x+ y)− u(y)| = |u(x+ y)− u(y)| ≤ Cp0 ‖∇u‖Lp(R2) |y|
1− 2

p .

Because ω is compactly supported, u = K ∗ ω. Thus, we can apply the Calderon-
Zygmund inequality to obtain

|u(x+ y)− u(y)| ≤ C inf
p≥p0

{
p ‖ω‖Lp(R2) |y|

1− 2
p

}
= C inf

p≥p0

{
p ‖ω‖Lp(B2(x)) |y|

1− 2
p

}
≤ C ‖ω‖L∞(R2) inf

p≥p0

{
p |y|1−

2
p

}
= −C ‖ω‖L∞(R2) |y| log |y|

for all sufficiently small y.
But,

‖ω‖L∞(R2) = ‖φxω −∇⊥φx · u‖L∞(B2(x))

≤ ‖ω‖L∞(B2(x)) + C‖u‖L∞(B2(x)) ≤ C ‖u‖S .
�
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