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Abstract. We study the limiting behavior of viscous incompressible
flows when the fluid domain is allowed to expand as the viscosity van-
ishes. We describe precise conditions under which the limiting flow
satisfies the full space Euler equations. The argument is based on trun-
cation and on energy estimates, following the structure of the proof of
Kato’s criterion for the vanishing viscosity limit. This work comple-
ments previous work by the authors, see [5, 8].

Résumé. Nous étudions le comportement à la limite des écoulements
incompressibles visqueux en admettant que l’évanouissement de la vis-
cosité est accompagné d’une expansion du domaine fluide. Nous décrivons
des conditions précises sous lesquelles l’écoulement limite satisfait les
équations d’Euler spatiales complètes. L’argument est fondé sur la tron-
cature et sur des estimations d’énergie, suivant une stratégie pareille à
la preuve du critère de Kato pour la limite de viscosité tendant à zéro.
Ce résultat complémente les travaux précédents des auteurs [5,6].
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1. Introduction

In [5], the second and third authors, in collaboration with Dragoş Iftimie,
showed that, if an obstacle is scaled by a factor ǫ, then in the limit as
viscosity vanishes the solutions to the Navier-Stokes equations external to
the obstacle converge strongly in L∞([0, T ];L2) to a solution to the Euler
equations in the whole space, as long as ǫ < aν for a specific constant a.
They also give the rate of convergence in terms of ν and ǫ.

In [8], the first author considered the complementary problem of large
domain asymptotics, studying convergence to full plane flow of solutions of
Euler or Navier-Stokes in a large domain. The present article is a natural
continuation of both [5] and [8].

For a domain with boundary, it a classical open problem whether solutions
of the Navier-Stokes equations converge to solutions of the Euler equations
when viscosity vanishes. In [5] the authors are considering two limits si-
multaneously: the vanishing viscosity limit and the limit as the obstacle
shrinks to a point, solving the external problem for the Navier-Stokes equa-
tions. This means studying the way in which a small boundary obstructs
the vanishing viscosity convergence. Here, we consider what happens as a
bounded domain expands by a factor R to fill the whole space, giving the
convergence rate in the vanishing viscosity limit for the internal problem in
terms of ν and R. In the same spirit as [5], the present work regards the
effect of distant boundaries in the vanishing viscosity limit.

More precisely, let Ω be a simply connected bounded domain in R
d, d = 2

or 3, with C2-boundary Γ and let ΩR = RΩ and ΓR = RΓ = ∂ΩR, where
we assume that the origin lies inside Ω.

A classical solution (u, p) to the Euler equations without forcing in all of
R

d satisfies

(E)







∂tu+ u · ∇u+ ∇p = 0 in (0, T ) × R
d,

div u = 0 in [0, T ] × R
d,

u = u0 on {0} × R
d,

where div u0 = 0. A classical solution (uν,R, pν,R) to the Navier-Stokes
equations without forcing on ΩR satisfies

(NS)















∂tu
ν,R + uν,R · ∇uν,R + ∇pν,R = ν∆uν,R in (0, T ) × ΩR,

div uν,R = 0 in [0, T ] × ΩR,
uν,R = 0 on [0, T ] × ΓR,

uν,R = uν,R
0 on {0} × ΩR,

where uν,R
0 = 0 on ΓR.

We will work, however, with weak solutions to the Navier-Stokes equations
(to avoid having to deal with the dependence of the solutions’ existence times
on the viscosity).
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We consider the classical functions spaces,

V (ΩR) =
{

u ∈ H1(ΩR) : div u = 0 in ΩR and u = 0 on ΓR

}

,

H(ΩR) =
{

u ∈ L2(ΩR) : div u = 0 in ΩR and u · n = 0 on ΓR

}

,

where n is the outward directed unit normal vector field to ΓR.
The spaces V (Rd) and H(Rd) are analogously defined.
We define the space

VC(Rd) =
{

u ∈ V (Rd) : supp(curlu) is compact
}

.

We will use the notation ω(u) ≡ curlu for the vorticity associated to a given
velocity u.

In dimension two the condition u ∈ VC(R2) requires that the total mass
of the vorticity be zero, see Section 3.1.3 of [13] for a discussion. Hence,
if we want to allow vorticities with distinguished sign we must allow for
infinite energy. To this end we recall the affine spaces Em, introduced by
J.-Y. Chemin in [1], following a construction by R. DiPerna and A. Majda,
see [2]. We say that u ∈ Em if u = v + σ for some v ∈ H(R2) and for
some stationary solution σ of the Euler equations whose vorticity is smooth,
compactly supported and has integral m. More precisely, for σ given by

σ = σ(x) =
x⊥

|x|2

∫ |x|

0
sϕ(s) ds, (1.1)

for some ϕ ∈ C∞
c (R+) and 2π

∫

ϕ(s)s ds = m. Given the arbitrariness
in the choice of ϕ we will assume, without loss of generality, that ϕ is of
distinguished sign. Above we used the notation x⊥ = (−x2, x1) if x =
(x1, x2). Notice that ω(σ)(x) = ϕ(|x|).

The classical well-posedness results for weak solutions to (E) for u0 in
subspaces of E0 = H(R2) remain true when E0 is replaced by Em; see,
for instance, Theorem 5.1.1 p. 85 of [1] (Yudovich’s theorem). In particu-

lar, fixing a value of T > 0, if u0 is in Em ∩ Ḣ1(R2) with compactly sup-
ported initial vorticity then the solution u to (E) will lie in C([0, T ];Em) ∩

L∞([0, T ]; Ḣ1(R2)).
Throughout this paper we will assume that the initial velocity u0 for

solutions to (E) lies in Cs(Rd) for s > 1 so that a unique solution u to the
Euler equations (E) with initial velocity u0 exists in the space Cs([0, T ] ×
R

d) for all T < T ∗; see, for instance, Theorem 4.2.1 p. 77 of [1] (or see
Theorem 7.1, below). The time T ∗ can be assumed to be arbitrary in two
dimensions, where we also assume that u0 lies in Em (see Theorem 4.2.4 p.
82 of [1]), but only finite time existence is known in three dimensions. We
assume that the initial vorticity is compactly supported with its support
contained in a ball of radius R0 and define

R(T ) = inf
r≥0

{r : suppω(u) ⊆ [0, T ] ×Br(0)} .
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That R(T ) is finite follows in two dimensions from the transport of vorticity
by the flow associated to u, u being bounded uniformly over finite time. But
R(T ) is also finite in three dimension, as we show in Theorem 7.1.

Definition 1.1 (Classes of initial velocities). Let s > 1. We treat the
following three classes of initial velocities:

I. u0 is in Cs(R2) ∩ VC(R2),

II. u0 is in Cs(R2)∩Em∩ Ḣ1(R2), the support of ω(u0) is compact, and
Ω1 is a disk,

III. u0 is in Cs(R3) ∩ VC(R3).

We assume that the initial velocity uν,R
0 is in H(ΩR). For such initial

velocities it is a classical result of Leray that there exists a weak solution
uν,R to the Navier-Stokes equations (NS); in two dimensions this solution is
unique, a result due to Ladyzhenskaya. In three dimensions, global-in-time
existence is known, but not uniqueness, so we arbitrarily choose one such
solution for each value of ν.

Our main result is the following:

Theorem 1.2. Let u0 be in one of the three classes of initial velocities in

Definition 1.1 and set F (ν,R) ≡ ‖uν,R
0 − u0‖L2(ΩR). For all T < T ∗ there

exists a constant C = C(s, T,Ω, u0) > 0 such that

(1) if s > 1,

‖uν,R − u‖L∞([0,T ];L2(ΩR)) ≤
(

C(ν1/2 +R−α) + F (ν,R)
)

eCT ;

(2) if s ≥ 2,

‖uν,R − u‖L∞([0,T ];L2(ΩR)) ≤
(

C(ν +R−α) + F (ν,R)
)

eCT ,

for all sufficiently large R.
The exponent α is defined for each of the three cases as follows:

I. α = 1,
II. α = 1/3,

III. α = 1/2.

Of particular interest is when we define uν,R
0 , independently of ν, to be

that unique divergence-free vector field tangent to the boundary of ΩR whose
vorticity on ΩR is the same as that of u0. In Section 10 such a vector field

is denoted uν,R
0 = WRu0. We will see in Corollary 10.2 that,

‖uν,R
0 − u0‖L2(ΩR) = F (ν,R) ≡ F (R) ≤ CR−α (1.2)

for all R ≥ 2R0, with α defined as in Theorem 1.2. In this case, the term
F (R) in the bounds in Theorem 1.2 is dominated by the other term and so,
in effect, it disappears.

It follows immediately from Theorem 1.2 that, as long as R = R(ν) → ∞
as ν → 0 and F (ν,R) → 0 as R→ ∞, ‖uν,R(ν) − u‖L∞([0,T ];L2(ΩR(ν)))

→ 0 as

ν → 0.
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It was shown in [8] for Case I that if uR is the solution to the Euler
equations on ΩR with initial velocity TRu0 then ‖uR−u‖L∞([0,T ];L2(ΩR(ν))) →

0 as R → ∞. Here, TR is a truncation operator, which will be defined
precisely in Section 3, see (3.2). This result is extended in [9] to cover Case
II and to use the projector PV (ΩR)—restriction to ΩR followed by projection
into V (ΩR)—in place of TR. This gives the following corollary:

Corollary 1.3. Let T < T ∗ and set uν,R
0 = PV (ΩR)u0. Then, for u0 as in

Cases I or II,

‖uν,R(ν) − uR(ν)‖L∞([0,T ];L2(ΩR(ν))) → 0 as ν → 0

as long as R = R(ν) → ∞ as ν → 0.

The energy argument in our proof of Theorem 1.2 follows fairly closely
the argument in [5], which itself is closely connected to Kato’s argument in
[7]. We can describe in a unified way the approach of all three papers—[7],
[5], and this one—as follows. Let uNS be the solution to (NS) in a domain
Ω and let uE be the solution to (E) either in the whole space or, as in [7], in
Ω itself. In [7], Ω is a fixed bounded domain; in [5], Ω is an external domain
which is scaled to a point by a parameter ǫ; for us, Ω is a bounded domain
which is scaled by a parameter R to fill the whole space.

Define a correction velocity uC to uE such that uC = uE on ∂Ω and is
equal to zero outside a boundary layer Γδ of width δ. In [7], δ = Cν; in
[5], δ = ǫ; in this paper, δ = CRα. Let uA = uE − uC be an “approximate
solution” to (E), and observe that uA = 0 on ∂Ω.

The goal is to bound the norm of uNS −uE = uNS −uA−uC in the space
X = L∞([0, T ];L2(Ω)). To do so, one first shows that ‖uC‖X → 0 as δ → 0
or ∞ as the case may be. Then one boundsW = uNS−uA inX by making an
energy argument, the nature of the argument differing in each case. Because
uA = 0 on ∂Ω, no troublesome boundary terms appear, though certain other
terms appear because uA is only an approximate solution to (E).

Kato’s energy argument in [7] is designed to estimate all of the uncon-
trollable terms by the quantity

ν

∫ T

0

∥

∥∇uNS
∥

∥

2

L2(ΓCν )
, (1.3)

which, by the most basic energy argument for solutions to (NS), is bounded
uniformly for all T and must vanish if the vanishing viscosity limit is to hold.
Kato’s innovation is to show that the vanishing of this term is sufficient for
the vanishing viscosity limit to hold.

The results achieved in the three papers differ most fundamentally be-
cause for Kato ∇uC scales like 1/ν, which is detrimental (but unavoidable),
introducing terms into the energy argument that cannot quite be controlled.
For us, ∇uC scales like R−α which allows us to control all of these terms.
In [5], ∇uC scales like 1/ǫ, but the domain shrinks in area like ǫ2, which
largely counteracts the detrimental effects of ∇uC .
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The research presented here is part of a series of papers aimed at studying
asymptotic behavior of incompressible flows under singular domain pertur-
bations. The first result in this line of research concerned ideal 2D flow in
the exterior of a small obstacle, see [3], followed by a study of viscous 2D
flow in the same limit, see [4]. Beyond these, this research has included ideal
2D flows in bounded domains with multiple holes one of which vanishes, see
[12], ideal or viscous 2D flow in a large domain, see [8], 3D viscous flow in
the exterior of a small obstacle, [6] and, most recently, 2D flow exterior to a
smooth obstacle approaching a segment of a curve, see [10] for the ideal flow
case and [11] for the viscous case. The classical open problem of vanishing
viscosity in the presence of boundaries motivated the coupling of singularly
perturbed domain problems with vanishing viscosity, specifically when the
boundary disappears as viscosity vanishes. The first result in this direction
was obtained in [5] for the small obstacle limit and the current work can be
regarded as a natural continuation of [8] in the same spirit.

This paper is organized as follows: Section 2 contains certain notation
we use and conventions we follow. In Section 3 we describe an approximate
solution uR to the Euler equations on ΩR which we use in Section 4 to
prove Theorem 1.2. The proof of Theorem 1.2 relies, however, on a long
series of estimates involving uR, which require us to understand how to
take a divergence-free vector field defined in the whole plane or space and
“truncate” it in such a way that it is unchanged in the central part of the
domain ΩR, vanishes on the boundary of ΩR, and yet differs in the pertinent
norms on ΩR as little as possible from the original vector field. We describe
the two dimensional version of such a truncation operator in Section 5 and
use it in Section 6 to define and obtain the necessary estimates on uR.

The definition and analysis of the truncation operator in three dimensions
is markedly different from that in two dimensions. In Section 7 we derive
uniform-in-time bounds on the decay of the velocity and its gradient for a
solution to (E). We then define the truncation operator in three dimensions
in Section 8 and obtain the estimates on uR in three dimensions in Section 9.
In Section 10 we prove (1.2). In Section 11 we make some comments and
state a couple of open problems.

2. Preliminaries

The symbol C stands for a positive constant that can hold different values
on either side of an inequality, though always has the same value on each
side of an equality.

For a scalar function f in two dimensions we write ∇⊥f := (−∂2f, ∂1f).
In two dimensions we define the vorticity of a vector field u to be the scalar
curl, ω = ω(u) := ∂1u

2 − ∂2u
1 ≡ ∇⊥ · u. In three dimensions, we define the

vorticity to be ω = ω(u) := curlu; that is, ω is the three-vector,

ω = (∂2u
3 − ∂3u

2, ∂3u
1 − ∂1u

3, ∂1u
2 − ∂2u

1).
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It is sometimes convenient in three dimensions to view the vorticity as
the anti-symmetric 3× 3 matrix A = A(u) whose entry in the i-th row, k-th
column is ωi

k = ωi
k(u) := (∂ku

i − ∂iu
k)/2. Thus,

A =
1

2





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



 .

Observe that the Lp-norms of A and ω are equivalent, differing only by a
multiplicative constant.

Given a divergence-free C1 vector field u on R
2 let ω = ω(u) be its vor-

ticity, which we assume to have compact support. We define the associated
two-dimensional stream function ψ as

ψ = ψ(x) =
1

2π

∫

R2

log |x− y|ω(y) dy, (2.1)

so that ∆ψ = ω and u = ∇⊥ψ.
Given a divergence-free C1 vector field u on R

3 with compactly supported
vorticity ω = ω(u) we define the associated three-dimensional (vector-valued)
stream function Ψ as

Ψ = Ψ(x) =
1

4π

∫

R3

1

|x− y|
ω(y) dy. (2.2)

Hence, −∆Ψ = ω and u = curlΨ, the latter statement following since
div Ψ = 0, which in turn can be seen from the equation ∆ div Ψ = 0, div Ψ →
0 at ∞.

We note in passing that an alternative to this vector-valued stream func-
tion is to define the matrix-valued stream function

ψik :=
1

2π

∫

R3

1

|x− y|
ωi

k(y) dy,

which has the property that ui =
∑

k ∂kψik. The advantage of defining the
stream function in this way is that it can be generalized to higher dimensions.

3. Approximate solution to the Euler equations

Define a cutoff function ϕR in two dimensions as follows. Fix θ in [0, 1].
(We will ultimately choose a value of θ that optimizes the convergence rate
in Theorem 1.2.) Let δ1 = 1/2κ, where κ is the maximum curvature of
Γ = ∂Ω. Let ΣR be a tubular neighborhood of ΓR in ΩR of uniform width
δ1R

θ for all R in [1,∞). (Decrease the value of δ1 if necessary to insure that
the origin is not contained in ΣR.) Put coordinates (s, r) on ΣR, where s is
arc length along Γ, which locates a point on Γ, and r is the distance along
the inward normal at that point.

Let g in C∞([0, δ1]) taking values in [0, 1] be defined so that g(0) = g′(0) =

0 and g = 1 on
[δ1

2
, δ1

]

. Then define ϕR in C∞(ΩR) by ϕR(s, r) = g(R−θr)
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for points (s, r) in ΣR, and ϕR = 1 on ΩR \ ΣR. Observe that
∥

∥∇ϕR
∥

∥

L∞(ΩR)
≤ CR−θ,

∥

∥∇∇ϕR
∥

∥

L∞(ΩR)
≤ CR−2θ, (3.1)

and similarly for higher derivatives of ϕR, where C is independent of R in
[1,∞), and ϕR = 0 and ∇ϕR = 0 on Γ.

We define ϕR in three dimensions more simply. Let

Σ = {x ∈ Ω : dist(x,Γ) < 1/2κ} ,

where κ is the maximum of all sectional curvatures over all points of Γ. Let
ϕ in C∞(Ω) taking values in [0, 1] be defined so that ϕ = 1 on Ω \ Σ and
ϕ = 0, ∇ϕ = 0 on Γ, and let ϕR(·) = ϕ(·/R) and ΣR = RΣ. Then (3.1)
holds with θ = 1.

Let ψ be the two-dimensional stream function associated to the full-plane
Euler velocity u, as in (2.1). We define the vector field uR on ΩR by

uR = TRu := ∇⊥(ϕRψ). (3.2)

Notice that this defines an operator TR whose properties we will explore
later.

If Ψ is the three-dimensional stream function associated to the full-space
Euler velocity u, as in (2.2), then we define the approximation uR on ΩR by

uR = TRu := ∇× (ϕRΨ). (3.3)

The operator TR in both cases has the property that uR = TRu lies not
just in H(ΩR) but in V (ΩR), and so vanishes on the boundary. It also
satisfies (E) in ΩR \ΣR. In this sense, it is an approximate solution to (E).

Clearly, uR satisfies the identity

∂tu
R = −ϕRu · ∇u− ϕR∇p+ ∂tψ∇

⊥ϕR (3.4)

in two dimensions and

∂tu
R = −ϕRu · ∇u− ϕR∇p+ ∇ϕR × ∂tΨ, (3.5)

in three dimensions.
Next we state a proposition which contains the key estimates on uR that

we will use in Section 4 to prove Theorem 1.2. We prove the two-dimensional
case of this proposition in Section 6 and the three-dimensional case in Sec-
tion 9.

Proposition 3.1. For all T < T ∗, for all sufficiently large R, we have

(1) ‖∇uR‖L∞([0,T ];L2(ΩR)) ≤ C,

(2) ‖uR‖L∞([0,T ]×ΩR) ≤ C,

(3) ‖∇uR‖L∞([0,T ]×ΩR) ≤ C,

(4a) ‖p∇ϕR‖L∞([0,T ];L2(ΩR)) + ‖∂tψ∇ϕ
R‖L∞([0,T ];L2(ΩR))

≤ CR−θ in 2D,
(4b) ‖p∇ϕR‖L∞([0,T ];L2(ΩR)) + ‖∇ϕR × ∂tΨ‖L∞([0,T ];L2(ΩR))

≤ CR−1 in 3D,
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(5) ‖∆uR‖L∞([0,T ];L2(ΩR)) ≤ C when s ≥ 2,

(6) ‖uR − u‖L∞([0,T ];L2(ΩR)) + ‖uR − ϕRu‖L∞([0,T ];L2(ΩR)) ≤ CR−α,

(7) ‖∇(u− uR)‖L∞([0,T ];L2(Ω)) ≤ CR−β.

Above, α and β are given by:

α =

{

1/2 + θ/2 if m = 0,
1/2 − θ/2 if m 6= 0

(3.6)

and

β =

{

1/2 + 3θ/2 if m = 0,
1/2 + θ/2 if m 6= 0,

(3.7)

in two dimensions, while α = 1/2 and β = 3/2 in three dimensions.
For case I of Definition 1.1 the constants above depend only on Ω; for

cases II and III some of the constants also depend on T .

4. Energy argument

Proof of Theorem 1.2. The proof proceeds much as in Section 2 of [5]:
Using our approximate solution uR to (E) we make an energy argument to
bound the difference

W = uν,R − uR

in the L2 norm. Then using inequality (6) of Proposition 3.1 we apply
the triangle inequality to complete the proof. We give the argument in 2
dimensions only; it is valid with minor adaptations in 3 dimensions. The
only delicate point in adapting to 3 dimensions is that we deal with weak
Leray solutions for which we cannot perform energy estimates. However the
energy inequality is equivalent to the necessary estimates; see [5] for a more
detailed discussion of this issue.

Subtracting the identity in (3.4) from (NS) we obtain

∂tW − ν∆W = −uν,R·∇uν,R −∇pν,R + ν∆uR + ϕRu · ∇u

+ ϕR∇p− ∂tψ∇
⊥ϕR.

Multiplying both sides by W and integrating over ΩR gives

1

2

d

dt
‖W‖2

L2 + ν ‖∇W‖2
L2 = I1 + I2 + I3 + I4 + I5,

where when s > 1,

I1 = −ν
∫

ΩR
∇W · ∇uR, I2 = −

∫

ΩR
(uν,R · ∇uν,R) ·W,

I3 =
∫

ΩR
(ϕRu · ∇u) ·W, I4 =

∫

ΩR
ϕR∇p ·W,

I5 = −
∫

ΩR
∂tψ∇

⊥ϕR ·W.
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In I1 we integrated by parts to remove ∆uR, but when s > 2 it is more
advantageous to retain it, using

I1 = ν

∫

ΩR

W · ∆uR.

When s > 1 we apply the Cauchy-Schwarz and Young’s inequalities to
the first form of I1 to get

|I1| ≤
ν

2

(

‖∇W‖2
L2 + ‖∇uR‖2

L2

)

≤
ν

2
‖∇W‖2

L2 + Cν,

and when s > 2 we apply the Cauchy-Schwarz inequality to the second form
of I1 to get

|I1| ≤ Cν‖∆uR‖L2(ΩR) ‖W‖L2(ΩR) ≤ Cν ‖W‖L2(ΩR) .

Summing I2 and I3 and using
∫

ΩR

(uν,R · ∇W ) ·W = 0

we have

|I2 + I3|

=

∣

∣

∣

∣

∫

ΩR

(uR · ∇(u− uR)) ·W − (W · ∇uR) ·W + [(ϕRu− uR) · ∇u] ·W

∣

∣

∣

∣

≤ ‖uR‖L∞

∥

∥∇(u− uR)
∥

∥

L2 ‖W‖L2 + ‖∇uR‖L∞ ‖W‖2
L2

+ ‖ϕRu− uR‖L2‖∇u‖L∞ ‖W‖L2

≤ CR−β ‖W‖L2 + C ‖W‖2
L2 + CR−α ‖W‖L2

≤ C(R−α + ‖W‖L2) ‖W‖L2 ,

where we used inequalities (6) and (7) from Proposition 3.1 and also that
α ≤ β.

Summing I4 and I5 and integrating the first term by parts gives,

|I4 + I5| =

∣

∣

∣

∣

∫

ΩR

p∇ϕR ·W + ∂tψ∇
⊥ϕR ·W

∣

∣

∣

∣

≤
(

‖p∇ϕR‖L2 + ‖∂tψ∇
⊥ϕR‖L2

)

‖W‖L2 ≤ CR−θ ‖W‖L2

≤ CR−2θ + C ‖W‖2
L2 .

When s > 1, we conclude that

1

2

d

dt
‖W‖2

L2 + ν ‖∇W‖2
L2

≤
ν

2
‖∇W‖2

L2 + Cν + CR−α ‖W‖L2 + CR−2θ + C ‖W‖2
L2

≤
ν

2
‖∇W‖2

L2 + Cν + C(R−2α +R−2θ) + C ‖W‖2
L2 .



VANISHING VISCOSITY FOR AN EXPANDING DOMAIN 11

Integrating in time gives

‖W (t)‖2
L2 + ν

∫ t

0
‖∇W‖2

L2

≤ ‖W (0)‖2
L2 + CTν + CT (R−2α +R−2θ) + C

∫ t

0
‖W‖2

L2 .

It follows from Gronwall’s lemma that

‖W‖L∞([0,T ];L2(ΩR)) ≤
(

F (R)2 + C(ν +R−2α +R−2θ)
)1/2

eCT

≤
(

F (R) + C(ν1/2 +R−α +R−θ)
)

eCT .

Then from the triangle inequality and inequality (6) of Proposition 3.1,

‖uν,R − u‖L∞([0,T ];L2(ΩR))

≤ ‖uR − u‖L∞([0,T ];L2(ΩR)) + ‖W‖L∞([0,T ];L2(ΩR))

≤ CR−α +
(

F (R) + C(ν1/2 +R−α +R−θ)
)

eCT

≤
(

F (R) + C(ν1/2 +R−α +R−θ)
)

eCT .

When s > 2, we have instead that

‖W‖L2
d

dt
‖W‖L2 =

1

2

d

dt
‖W‖2

L2 ≤
1

2

d

dt
‖W‖2

L2 + ν ‖∇W‖2
L2

≤ Cν ‖W‖L2 + C(R−α +R−θ) ‖W‖L2 + C ‖W‖2
L2 .

Dividing both sides by ‖W‖L2 (it is easy to see that division by zero will
not invalidate the following inequality after integrating in time) gives

d

dt
‖W‖L2 ≤ Cν + CR−α + CR−θ + C ‖W‖L2 .

Integrating in time and applying Gronwall’s lemma, we have

‖W‖L2 ≤
(

F (R) +C(ν + CR−α +R−θ)
)

eCT .

The bound on ‖uν,R − u‖L∞([0,T ];L2(ΩR)) follows from the triangle inequality
as for s > 1.

The value of α in the statement of Theorem 1.2 is chosen so that α = α(θ)
gives the optimal rate of convergence in each case; this corresponds to θ = 1
for Case I; θ = 1/3 for Case II so that θ = α; and θ = 1 was fixed for Case
III. �

5. Truncation operator in 2D

Let u be in Em ∩ C1 for some m in R with vorticity ω(u) having compact
support in a ball of radius R0. Let ψ be the stream function, as defined by
the expression in (2.1).

Let ϕR and ΣR be defined as in Section 3 and recall the definition of uR

and TR given in (3.2), uR = TRu = ∇⊥(ϕRψ). To explore the properties of
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TR we must first establish some bounds on the L2 norms of u, ∇u, and ψ in
ΣR. To this end we write

u = v + σ,

where v is in VC(R2) and σ is a stationary solution with radially symmetric,
smooth, compactly supported vorticity of integral m; we assume that ω(σ)
is of distinguished sign. We can assume, without loss of generality, that
the support of ω(σ) is also contained in the ball of radius R0, from which
it follows that the support of ω(v) is contained in this same ball. Now,
v and σ are also C1 divergence-free vector fields and hence we can define
their associated stream functions ψv and ψσ using the expression in (2.1).
But then v = ∇⊥ψv and σ = ∇⊥ψσ. It follows in particular that v can
be written in terms of ω(v) through the Biot-Savart law v = K ∗ ω(v), an
integral operator with kernel

K = K(z) =
1

2π

z⊥

|z|2
. (5.1)

From this explicit expression and using the fact that the integral of ω(v)
vanishes, together with the easily obtained estimate

‖ω(v)‖L1(R2) ≤ 2‖ω(u)‖L1(R2),

it follows that there exists C = C(R0) > 0 such that

|v(x)| ≤ CC0/ |x|
2 , |∇v(x)| ≤ CC0/ |x|

3 (5.2)

for all |x| ≥ 2R0, with C0 = 2‖ω(u)‖L1(R2). Similarly, it follows from the
explicit expression for ψv, (2.1), that

|ψv(x)| ≤ CC0/ |x| for all |x| ≥ 2R0. (5.3)

Put coordinates on ΣR as in the definition of ϕR in Section 3. Letting a
be the length of Γ1 it follows that the length of ΓR is aR. Then

‖ψv‖
2
L2(ΣR) =

∫ aR

0

∫ δ1Rθ

0
|J(s, r)| |ψv(s, r)|

2 dr ds,

where J is the Jacobian of the transformation from rectangular coordinates
to (s, r)-coordinates. Because of the way we constructed ΣR and because
θ ≤ 1, |J | ≤ C and ΣR lies outside a ball of radius C(Ω)R. Thus by (5.3),
|ψv(s, r)| ≤ CC0/R in the integral above as long as C(Ω)R ≥ 2R0; that is,
as long as

R ≥ µ(Ω)R0, (5.4)

where µ(Ω) = 2/C(Ω) depends only on the geometry of Ω. Then

‖ψv‖L2(ΣR) ≤
(

CC2
0R

−2aRδ1R
θ
)1/2

≤ CC0R
θ/2−1/2.

Since each of ∇⊥ and ∇ introduces an extra factor of 1/ |x|, it follows that

‖v‖L2(ΣR) ≤ CC0R
θ/2−3/2, ‖∇v‖L2(ΣR) ≤ CC0R

θ/2−5/2.
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As previously pointed out, see (1.1), σ is given by

σ(x1, x2) =

(

−
x2

|x|2

∫ |x|

0
rω(σ)(r) dr,

x1

|x|2

∫ |x|

0
rω(σ)(r) dr

)

so that |σ(x)| = |m| (2π)−1/ |x| for |x| ≥ R0. Thus, σ decays like ψv so we
can see that

‖σ‖L2(ΣR) ≤ C |m|Rθ/2−1/2, ‖∇σ‖L2(ΣR) ≤ C |m|Rθ/2−3/2.

The expression for ψσ can be calculated directly using (2.1) together with
the radial symmetry of ω(σ). Of course, we can add an arbitrary constant to
ψσ and still satisfy the equations σ = ∇⊥ψσ and ∆ψσ = ω(σ). For |x| ≥ R0

we obtain:
ψσ(x) =

m

2π
log |x| + C.

Since when m 6= 0 we assume that Ω is a disk centered at the origin,
we can choose the constant CR so that ψσ = 0 on ΓR. The value of ∂tψ
is unaffected by the choice of CR, however, and ∂tψ in inequality (4a) of
Proposition 3.1 is the only direct use of ψ that we make, so the choice of
CR, though it depends on R, will not affect any of our estimates.

Applying Poincare’s inequality (or integrating ψσ directly) gives

‖ψσ‖L2(ΣR) ≤ CRθ‖σ‖L2(ΣR) ≤ C |m|R3θ/2−1/2.

The factor of Rθ here comes from the thickness of ΣR.
Adding the corresponding bounds for u = v + σ and ψ = ψv + ψσ,

‖ψ‖L2(ΣR) ≤ CC0R
θ/2−1/2 + C |m|R3θ/2−1/2, (5.5)

and for the velocity

‖u‖L2(ΣR) ≤ CC0R
θ/2−3/2 + C |m|Rθ/2−1/2 (5.6)

and

‖∇u‖L2(ΣR) ≤ CC0R
θ/2−5/2 + C |m|Rθ/2−3/2. (5.7)

These inequalities each hold as long as (5.4) holds.

Let X be the subspace of all vector fields in Em ∩ Ḣ1(R
2) whose vorticity

has compact support. We can now describe the relevant properties of the
two dimensional truncation operator, adapting Lemma 4.2 of [8].

Proposition 5.1. Let Ω be a disk centered at the origin and let the trun-
cation operator TR be defined as in (3.2). Then TR : X → V (ΩR) with the
property that for all u in X

‖u− TRu‖L2(ΩR) ≤ C‖ω(u)‖L1(R2)R
−α (5.8)

and

‖∇(u− TRu)‖L2(ΩR) ≤ C‖ω(u)‖L1(R2)R
−β (5.9)
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for all R satisfying (5.4), where C = C(Ω), α is defined in (3.6), and β is
defined in (3.7). Also,

‖∇TRu‖L2(ΩR) ≤ C‖ω(u)‖L2(R2), (5.10)

where C = C(R0).

Proof. Using the inequalities in (3.1), (5.5), (5.6), and (5.7), we have,

‖u− TRu‖L2(ΩR) = ‖∇⊥ψ − ϕR∇⊥ψ − ψ∇⊥ϕR‖L2(ΩR)

≤ ‖(1 − ϕR)∇⊥ψ‖L2(ΩR) + ‖ψ∇⊥ϕR‖L2(ΩR)

≤ ‖u‖L2(ΣR) + ‖∇ϕR‖L∞(ΣR)‖ψ‖L2(ΣR)

≤ CC0R
θ/2−3/2 + C |m|Rθ/2−1/2 + CR−θC0R

θ/2−1/2

+ CR−θ |m|R3θ/2−1/2

≤ CC0R
θ/2−3/2 + C |m|Rθ/2−1/2 + CC0R

−θ/2−1/2

+ C |m|Rθ/2−1/2

≤ CC0R
−θ/2−1/2 +C |m|Rθ/2−1/2.

In the final inequality we needed to only include the two terms that dominate
(depending on whetherm = 0) for all θ in [0, 1]. Clearly, |m| ≤ ‖ω(u)‖L1(R2),
so this gives (5.8).

Similarly,

‖∇u−∇TRu‖L2(ΩR) = ‖∇u−∇∇⊥(ϕRψ)‖L2(ΩR)

= ‖∇u−∇(ϕR∇⊥ψ) −∇(ψ∇⊥ϕR)‖L2(ΩR)

= ‖∇u− ϕR∇∇⊥ψ −∇ϕR ⊗∇⊥ψ −∇ψ ⊗∇⊥ϕR − ψ∇∇⊥ϕR‖L2(ΩR)

= ‖(1 − ϕR)∇u−∇ϕR ⊗∇⊥ψ −∇ψ ⊗∇⊥ϕR − ψ∇∇⊥ϕR‖L2(ΩR)

≤ ‖∇u‖L2(ΣR) + 2
∥

∥∇ϕR
∥

∥

L∞(ΣR)
‖u‖L2(ΣR) + ‖∇∇ϕR‖L∞(ΣR) ‖ψ‖L2(ΣR)

≤ CC0R
θ/2−5/2 + C |m|Rθ/2−3/2 + CR−θ

(

C0R
θ/2−3/2 + |m|Rθ/2−1/2

)

+ CR−2θ
(

C0R
θ/2−1/2 + |m|R3θ/2−1/2

)

= CC0R
θ/2−5/2 + C |m|Rθ/2−3/2 + CC0R

−θ/2−3/2 + C |m|R−θ/2−1/2

+ CC0R
−3θ/2−1/2 + C |m|R−θ/2−1/2

≤ CC0R
−3θ/2−1/2 + C |m|R−θ/2−1/2.

Since, as we noted, |m| ≤ ‖ω(u)‖L1(R2), the estimate above gives (5.9).
The bound on ‖∇TRu‖L2(ΩR) is obtained in the same way except that
‖∇u‖L2(ΣR) is replaced by ‖∇u‖L2(ΩR\ΣR) ≤ ‖∇u‖L2(R2) = ‖ω(u)‖L2(R2).
But ‖ω‖L1(R2) ≤ C‖ω‖L2(R2) because the support of ω is contained in BR0 ,
giving (5.10). �
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Remark 5.2. Had we not added the restriction that Ω is a disk, then since
ψσ is defined only up to an additive constant, we could choose this constant
so that

∫

ΣR
ψσ = 0. By normalizing ψσ this way, though, the factor of Rθ

in Poincare’s inequality becomes the diameter CR of ΩR and we have

‖ψσ‖L2(ΣR) ≤ CR‖σ‖L2(ΣR) ≤ CmRθ/2+1/2.

This gives

‖ψ‖L2(ΣR) ≤ CC0R
θ/2−1/2 + CmRθ/2+1/2 (5.11)

and we would have had the following bound in the proof of Proposition 5.1:

‖u− TRu‖L2(ΩR)

≤ CC0R
θ/2−3/2 + CmRθ/2−1/2 + CC0R

−θ/2−1/2 + CmR−θ/2+1/2

≤ CC0R
θ/2−1/2 + CmR−θ/2+1/2.

No value of θ in [0, 1] will allow this to vanish as R→ ∞ when m 6= 0.

6. Estimates in 2D

Proof of Proposition 3.1 in 2D. Define uR, ϕR, and ΣR as in Section 3.
Then

uR = ∇⊥(ϕRψ) = ϕRu+ ψ∇⊥ϕR, (6.1)

where ψ = ψv + ψσ as in Section 5.
The L1 and L2 norms (indeed, all Lp norms) of the vorticity for solutions

to (E) are conserved over time, while the bounds on the L2 (for m = 0)
and L∞ norms of the velocity are bounded over any finite time interval
(the former is conserved, and a bound on the latter is uniform). Thus,
the estimates in Proposition 5.1 when applied to our solution u to (E) are
uniform in time. Hence, in the estimates that follow we will generally not
explicitly refer to the bounds in time.

Inequality 1: follows directly from Proposition 5.1.

Inequality 2: We have

‖uR‖L∞(ΩR) ≤ ‖ϕRu‖L∞(ΩR) + ‖ψ∇⊥ϕR‖L∞(ΩR)

≤ ‖u‖L∞(R2) + CR−θ‖ψ‖L∞(ΣR).

From (5.3), ‖ψv‖L∞(ΣR) ≤ CC0/R and applying Poincare’s inequality in the

L∞ norm,

‖ψσ‖L∞(ΣR) ≤ CRθ ‖σ‖L∞(ΣR) ≤ C |m|RθR−1 ≤ CC0R
θ−1.

We conclude that inequality (2) holds for sufficiently large R.
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Inequality 3: We have,

‖∇uR‖L∞ ≤ ‖∇u‖L∞(ΩR) + 2
∥

∥∇ϕR
∥

∥

L∞(ΣR)
‖u‖L∞(ΣR)

+ ‖∇∇⊥ϕR‖L∞(ΣR) ‖ψ‖L∞(ΣR)

≤ C + CR−θ + CR−2θC0R
θ−1.

We conclude that inequality (3) holds for sufficiently large R.

Inequality 4a: We begin with the observation that

∆ψt = −ω(div(u⊗ u)) (6.2)

and
− ∆p = div div(u⊗ u). (6.3)

Now, u is bounded, uniformly over a finite time interval, in L4(R2). To see
this write u = v + σ; clearly σ ∈ L4(R2) and v ∈ L∞ ∩ L2(R2). It follows
that the right-hand side of both (6.2) and (6.3) are second derivatives of an
L2 vector field. We can express ψt and p as linear combinations of Riesz
transforms of terms which are uniformly bounded in L2(R2) and hence, by
the Calderon-Zygmund inequality, it follows that ψt and p are both bounded,
uniformly over a finite time interval, in L2(R2). Thus,

‖p∇ϕR‖L2(ΩR) + ‖∂tψ∇ϕ
R‖L2(ΩR)

≤ ‖p‖L2(ΣR)‖∇ϕ
R‖L∞(ΣR) + ‖∂tψ‖L2(ΣR)‖∇ϕ

R‖L∞(ΣR)

≤ CR−θ + CR−θ = CR−θ.

Inequality 5: For f a scalar and v a vector field we have that

∆(fv) = ∆fv + 2∇f · (∇v)T + f∆v,

so

∆uR = ∆(ϕRu) + ∆(ψ∇⊥ϕR)

= ∆ϕRu+ 2∇ϕR · (∇u)T + ϕR∆u+ ∆ψ∇⊥ϕR

+ 2∇ψ · (∇∇⊥ϕR)T + ψ∆∇⊥ϕR.

Then because ∆ψ = ω and u = ∇⊥ψ,
∥

∥∆uR
∥

∥

L2(ΩR)
≤ CR−2θ ‖u‖L2(ΣR) + CR−θ ‖∇u‖L2(ΣR)

+ C ‖∆u‖L2(ΩR) + CR−θ ‖ω‖L2(ΣR)

+ CR−2θ ‖u‖L2(ΣR) +CR−3θ ‖ψ‖L2(ΣR)

≤ C ‖∆u‖L2(R2) + C,

for sufficiently large R by the bounds in (5.5), (5.6), and (5.7).
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Inequality 6: We have, ‖uR − u‖L2(ΩR) ≤ CC0R
−α by (5.8) and

‖uR − ϕRu‖L2(ΩR) ≤ ‖uR − u‖L2(ΩR) + ‖(1 − ϕR)u‖L2(ΩR)

≤ ‖uR − u‖L2(ΩR) + ‖u‖L2(ΣR)

≤ CC0R
−α + CC0R

θ/2−3/2 + C |m|Rθ/2−1/2

≤ CC0R
−α

where we used (5.6) and (5.8).

Inequality 7: the two-dimensional case follows directly from Proposition 5.1.
�

7. Decay of velocity in 3D

The basic existence result for a solution to (E) is given in Theorem 7.1.

Theorem 7.1. Assume that u0 is in Cs(R3)∩VC(R3) for s > 1. Then there
exists T ∗ in (0,∞] such that for all T in (0, T ∗) the solution u to (E) in the
whole space lies in L∞([0, T ];Cs(R3)) with ∇p in L∞([0, T ];La(R3)) for all
a in (1,∞]. Also, the vorticity ω = ω(u) lies in L∞([0, T ];La(R3)) for all a
in [1,∞] with a bound on its norm that is independent of a. Furthermore,
ω remains compactly supported for all time, with the support contained in
a ball of radius R(T ) ≤ R0 + ‖u‖L∞([0,T ]×R3) T for all t in [0, T ], where the

support of ω0 is contained in BR0(0).

Proof. The initial vorticity ω = ω(u0) is compactly supported and continu-
ous by assumption so ∇v0 is in La(R3) for all a in [1,∞]. Thus by Theorem
4.2.3 p. 79 of [1], there exists T ∗ in (0,∞] such that for all T in (0, T ∗) the
solution u to (E) lies in L∞([0, T ];Cs(R3)) with ∇p in L∞([0, T ];La(R3))
for all a in (1,∞).

Taking the vorticity of (E) gives

Dω

Dt
= ∂tω + u · ∇ω = ω · ∇u,

where Dω/Dt is the rate of change of the vorticity along the flow lines.
Assume that the support of ω0 is contained in a ball BR(0) of radius R(0).
Then until some flow line starting from within BR(0) reaches a point outside
of BR(0) there can be no change in vorticity at that point. This gives the
compact support of the vorticity for all time along with the bound on its
support. �

Remark 7.2. Theorem 7.1 is stated for three dimensions but holds in two
dimensions as well, with T ∗ = ∞, with minor adaptations to allow for
u0 ∈ Cs(R2) ∩ Em, m 6= 0.

Corollary 7.3. Let u be a solution to (E) as in Theorem 7.1. Then u is in
L∞([0, T ];Lp(R3)) for all p in (3/2,∞] and ∇u is in L∞([0, T ];Lp(R3)) for
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all p in (1,∞]. Also,

|u(x)| ≤ C/ |x|2 , |∇u(x)| ≤ C/ |x|3

for all t in [0, T ] and |x| ≥ 2R(T ), and

‖u(t)‖L2(ΣR) ≤ CR−1/2, ‖∇u(t)‖L2(ΣR) ≤ CR−3/2,

for all t in [0, T ] and all R sufficiently large that ΣR is contained in BC
2R(T ).

Proof. Let Ψ be the associated stream function in three dimensions and
recall the expression for Ψ given in (2.2). In particular, u = curlΨ and
−∆Ψ = ω, where ω = ω(u) is the associated vorticity. This gives rise to
the three-dimensional Biot-Savart law, allowing us to write the velocity in
terms of vorticity as:

u = u(x) =
−1

4π

∫

x− y

|x− y|3
× ω(y) dy. (7.1)

The decay of u and ∇u then follow from the compact support of ω and the
Biot-Savart law. Because u and ∇u are in L∞([0, T ]×R

3), the membership
of u and ∇u in the stated spaces and the decay of their L2 norms then follow
from their decay at infinity. �

8. Truncation operator in 3D

Let ϕR and ΣR be as in Section 3 and recall the definition of the truncation
operator in three dimensions: if u in H1(R3) then TRu is given by (3.3); that
is, TRu = ∇× (ϕRΨ). Set E = E(x) = (4π|x|)−1, the fundamental solution
of −∆ in R

3.

Lemma 8.1. If f in L2(R3) ∩ L∞(R3) is compactly supported in the ball
BL of radius L centered at the origin then for all R ≥ R∗,

‖E ∗ f‖L2(ΣR) ≤ CL3/2 ‖f‖L2(R3)R
1/2,

‖∂kE ∗ f‖L2(ΣR) ≤ CL3/2 ‖f‖L2(R3)R
−1/2,

‖E ∗ f‖L∞(ΣR) ≤ CL3/2 ‖f‖L2(R3)R
−1,

‖∂kE ∗ f‖L∞(ΣR) ≤ CL3/2 ‖f‖L2(R3)R
−2,

where C is an absolute constant and R∗ depends only upon Ω1 and L.

Proof. On BC
2L the compact support of f gives |E ∗ f | ≤ C ‖f‖L1(R3) / |x| ≤

CL3/2 ‖f‖L2(R3) / |x|. Therefore, as long as R is large enough so that ΣR is

wholly contained in BC
2L,

‖E ∗ f‖L2(BR) ≤ CL3/2 ‖f‖L2(R3)R
1/2,

and similarly for the L∞ norm and for the inequalities for ∂kE ∗ f . �
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Proposition 8.2. Let u be a solution to (E) as in Theorem 7.1. Then there
exists R∗ > 0 such that for all R ≥ R∗ and all t in [0, T ], TRu is in V (ΩR),
and

‖u− TRu‖L2(ΩR) ≤ C1R
−1/2, (8.1)

‖∇(u− TRu)‖L2(ΩR) ≤ C2R
−3/2. (8.2)

The constants C1 and C2 depend on u and T , and R∗ depends on R(T ) and
Ω1.

Proof. On ΓR, TRu vanishes identically, while clearly div TRu = 0 on ΩR.
Now, TRu = ϕRu+ ∇ϕR × Ψ, so

‖u− TRu‖L2(ΩR)

≤ ‖u‖L2(ΣR) + C
∥

∥∇ϕR
∥

∥

L∞(ΣR)
‖Ψ‖L2(ΣR)

≤ ‖u‖L2(ΣR) + CR−1
∑

i,k

‖E ∗ ω(u)‖L2(ΣR) ≤ CR−1/2.

We used Corollary 7.3 and Lemma 8.1 in the final inequality.
Also,

∂kTRu = ϕR∂ku+ ∇∂kϕR × Ψ + (∂kϕR)u+ ∇ϕR × ∂kΨ. (8.3)

Hence,

‖∇TRu−∇u‖L2(ΩR)

≤ ‖∇u‖L2(ΣR) +
∥

∥∇∇ϕR
∥

∥

L∞(ΣR)
‖Ψ‖L2(ΣR)

+
∥

∥∇ϕR
∥

∥

L∞(ΣR)
‖u‖L2(ΣR)

+
∥

∥∇ϕR
∥

∥

L∞(ΣR)

∑

k

‖∂kE ∗ ω(u)‖L2(ΣR)

≤ ‖∇u‖L2(ΣR) + CR−2 ‖Ψ‖L2(ΣR)

+ CR−1‖u‖L2(ΣR) + CR−1
∑

k

‖∂kE ∗ ω(u)‖L2(ΣR)

≤ CR−3/2,

where we used Corollary 7.3 and Lemma 8.1 in the final inequality. Thus,
TRu ∈ V (ΩR), as desired. �

9. Estimates in 3D

Proof of Proposition 3.1 in 3D. Define ϕR and ΣR as in Section 3. Then

uR = TRu = ϕRu+ ∇ϕR × Ψ. (9.1)

Inequality 1: follows from (8.2).
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Inequality 2: From (9.1),

‖uR‖L∞(ΩR) ≤ ‖ϕRu‖L∞(ΩR) + ‖∇ϕR‖L∞(ΩR)‖Ψ‖L∞(ΣR)

≤ ‖u‖L∞(R2) + CR−1‖E ∗ ω‖L∞(ΣR),

which, using Lemma 8.1, is enough to establish inequality (2).

Inequality 3: Recall the expression for ∇uR in (8.3). Then, using Lemma 8.1,
we have

‖∇uR‖L∞ ≤ ‖∇u‖L∞(ΩR) + ‖∇∇ϕR‖L∞(ΣR) ‖Ψ‖L∞(ΣR)

+
∥

∥∇ϕR
∥

∥

L∞(ΣR)
‖u‖L∞(ΣR)

+ ‖∇ϕR‖L∞(ΣR)

∑

k

‖∂kE ∗ ω‖L∞(ΣR)

≤ C + CR−3 + CR−1 + CR−3 ≤ C.

Inequality 4b: The proof of this inequality is similar to that of inequality
4a. We begin by observing that Ψt satisfies an equation analogous to (6.2),
namely

∆Ψt = curl div u⊗ u.

Now, u ∈ L2(R3) ∩ L∞(R3), uniformly in time up to T ∗. Therefore, us-
ing again the Calderon-Zygmund inequality, it follows that Ψt ∈ L2(R3),
uniformly in time up to T ∗. The estimate for the pressure p in three dimen-
sions is exactly the same as for two dimensions, using (6.3). Thus, using the
scaling of ϕR, we get

‖p∇ϕR‖L2(ΩR) + ‖∇ϕR · ∂tψ‖L2(ΩR)

≤ ‖p‖L2(ΣR)‖∇ϕ
R‖L∞(ΣR) + ‖∂tψ‖L2(ΣR)‖∇ϕ

R‖L∞(ΣR)

≤ CR−1 + CR−1 = CR−1.

Inequality 5: We must compute ∆uR; for the sake of simplicity we keep
track mostly of the order of derivatives. We have then that

∆uR = (∆ϕR)u+ 2∇ϕR ·Du+ ϕR∆u+ ∇ϕR × ω

+ 2D2ϕR ·DΨ + ∇∆ϕR × Ψ.

Using Corollary 7.3 and Lemma 8.1, we find
∥

∥∆uR
∥

∥

L2(ΩR)
≤ CR−2 ‖u‖L2(ΣR) +CR−1 ‖∇u‖L2(ΣR)

+ C ‖∆u‖L2(ΩR) + CR−1 ‖ω‖L2(ΣR)

+ CR−2 ‖DΨ‖L2(ΣR) + CR−3 ‖Ψ‖L2(ΣR)

≤ C + CR−5/2 ≤ C.
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Inequality 6: We have, ‖uR − u‖L2(ΩR) ≤ CR−1/2 by (8.1) and

‖uR − ϕRu‖L2(ΩR) ≤ ‖uR − u‖L2(ΩR) + ‖(1 − ϕR)u‖L2(ΩR)

≤ ‖uR − u‖L2(ΩR) + ‖u‖L2(ΣR) ≤ CR−1/2,

where we used Corollary 7.3.

Inequality 7: the three-dimensional case follows directly from Proposi-
tion 8.2. �

10. Truncation of the initial velocity

The following observations hold in any dimension.
Define WR : V (Rd) → H(ΩR) as follows: for any u in V (Rd) let WRu be

that unique vector in H(ΩR) having the same vorticity as u (Ω is simply
connected so the vector is unique), see the paragraph following the statement
of Theorem 1.2. Let PH(ΩR) : V (R2) → H(ΩR) be the projection operator
into H(ΩR).

Lemma 10.1. The operators WR and PH(ΩR) are the same.

Proof. Let u be in V (Rd). Then by the Leray-Helmholtz decomposition
there exists v in H(ΩR) ∩H1(ΩR) and p in H2(ΩR) such that u = v + ∇p
on ΩR, with ∆p = 0 and with v and ∇p unique. Then v is orthogonal to
∇p in L2(ΩR) (that is, in the H(ΩR)-norm) so v = PH(ΩR)u. But the curl
of a gradient is zero, so ω(v) = ω(u) which shows that v = Wru as well. �

Corollary 10.2 follows immediately from Lemma 10.1, given the well-
known properties of the projection operator.

Corollary 10.2. WR has the same convergence properties in the L2(ΩR)-
norm of the velocity as does TR. In particular, we obtain (1.2).

Remark 10.3. The operator WR is a more natural “truncation” operator
than TR since it involves literally truncating the vorticity. It is perfectly
adequate for truncating the initial velocity for the Navier-Stokes equations,
but because we do not know how to control the remainder following trunca-
tion in the H1-norm, we cannot use it to construct the approximate solution
uR to the Euler equations.

11. Comments and conclusions

As a first comment, we note that the estimates in Sections 7 and 8 for
three dimensions are considerably simplified by the assumption that the
initial vorticity is compactly supported, whereas for two dimensions this
assumption is merely a minor convenience that allows us in Theorem 1.2
to give an explicit rate of convergence in R. If one drops the assumption
of compact support, it does not seem possible to obtain a uniform-in-time
bound on the decay of the gradient of the velocity. One can obtain a bound
on the decay of vorticity, however, if one assumes that the L2 norm of the
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initial vorticity on a ball of radius R decays for large R at least as fast as
CR−1/2. One then modifies the energy argument in Section 4, integrating
by parts differently to use the decay of the vorticity in place of the decay of
the velocity. The value of α in Theorem 1.2, however, must be strictly less
than 1/2.

The case of initial vorticity with nonzero integral in two dimensions corre-
sponds to the situation where the limiting full plane flow has infinite energy.
Since our argument is based on energy estimates, it is natural that this situ-
ation would be complicated. In this situation we have only studied the case
of the expanding disk, but, as explained in Section 5, this is not a matter
of convenience. Our argument makes essential use of the fact that we are
working in a disk. However, the restriction to the expanding disk is by no
means natural, and removing this assumption becomes an interesting open
problem.

Finally, we note that our result was proved for smooth flows but that, in
two dimensions, it would be very reasonable to consider initial vorticities in
Lp, p > 2, compactly supported, given that, in our proof, the high regularity
was needed in estimates near the boundary, where vorticity acts as far field.
If p > 2 then the support of vorticity can be controlled since the Euler
velocity is a priori bounded.
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