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Abstract. We establish short-time existence of solutions to the surface quasi-
geostrophic (SQG) equation in the Hölder spaces Cr(R2) for r > 1; to avoid an
integrability assumption (such as membership of the data in an Lq space) we intro-
duce a generalization of the SQG constitutive law. As an application of the Hölder
theory, we use these solutions when forming an approximation sequence in the proof
of existence of solutions of SQG in another class of non-decaying function spaces,
the uniformly local Sobolev spaces Hs

ul(R2) for s ≥ 3. Using methods similar to
those for the surface quasi-geostrophic equation, we also obtain short-time existence
for the three-dimensional Euler equations in uniformly local Sobolev spaces.
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1. Introduction

1.1. Background. We study non-decaying solutions of two fundamental models of
fluid motion, the two-dimensional surface quasi-geostrophic equation (SQG) and the
three-dimensional incompressible Euler equations (E). Classically, these equations
(without forcing) can be written

(SQG)


∂tθ + u · ∇θ = 0 in [0, T ]× R2,

u = ∇⊥(−∆)−
1
2 θ in [0, T ]× R2,

θ|t=0 = θ0 in R2

and, in velocity formulation,

(E)


∂tu+ u · ∇u+∇p = 0 in [0, T ]× R3,

div u = 0 in [0, T ]× R3,

u|t=0 = u0 in R3.

In (SQG), the scalar field θ is transported by the velocity field u, with u recovered

from θ via the constitutive law u = ∇⊥(−∆)−
1
2 θ (making u divergence-free). In (E),

the velocity field u is, in effect, transported by itself under the constraint that it
remain divergence-free, which introduces the pressure gradient.

The parallels between these two equations become clearer when (E) is written in
vorticity form:

(Eω)


∂tω + u · ∇ω = ω · ∇u in [0, T ]× R3,

u = K ∗ ω, in [0, T ]× R3,

ω|t=0 = ω0 in R3.

Here, ω = curlu is the vorticity, K is the Biot-Savart kernel, and u = K ∗ ω is the
constitutive law. Rather than just being transported as θ is in (SQG), the vorticity
field is stretched as it is being transported. Moreover, though both constitutive laws,
(Eω)2, (SQG)2, yield divergence-free vector fields, they differ sharply in that u gains
one more spatial derivative of regularity over that of ω for (Eω), while it has the same
spatial regularity as θ for (SQG).

Each of (SQG) and (E) are well-posed when the data is sufficiently smooth and
sufficiently decaying. Insufficient smoothness motivates various weak formulations of
the equations, a long tradition in PDE. Such weak formulations leave the constitutive
law alone or integrate it into the weak formulation, but generalize or weaken what it
means for the PDE itself to hold (that is, (SQG)1, (E)1, or (Eω)1). Studying PDEs
when the data lacks sufficient decay has a shorter history, but focuses on extending
or weakening the constitutive law. (Of course, both can be done at the same time.)

In this work, we study (SQG) and (E) for non-decaying, but sufficiently smooth
solutions, which requires us to adapt the constitutive law while leaving the PDE
itself unchanged. We will work with (E) primarily in vorticity form, though will also
use the velocity form, which requires us to obtain estimates on the pressure p. The
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constitutive law u = K ∗ ω will enter (in adapted form) in the process of closing our
estimates, as we shall see.

Our methodology for adapting the constitutive law follows that first employed by
Serfati in [25] for the 2D Euler equations. He obtained an identity by applying a cutoff
function to the Biot-Savart kernel K to separate the near-field and far-field effects of
the convolution. The far-field term is then integrated by parts twice—when the PDE
and constitutive law permit this, as they do for (SQG) in 2D as well as (E) in any
dimension—which allows the integrated form of it to be controlled for non-decaying
data. The resulting identity then forms, in effect, a replacement constitutive law.
This can be seen clearly in the form of these identities in Lemmas A.1 and B.1.

Even for decaying data, obtaining the existence of weak solutions to 3D Euler is
beyond current technology, so we work with solutions having sufficient smoothness.
We work, then, in Hölder-Zygmund spaces, which differ from Hölder spaces for integer
indices—see Section 2.2—and in uniformly local Sobolev spaces Hs

ul (see Section 2.3).
We prove existence for both (SQG) and (E) in Hs

ul by applying the existence
theory in Hölder-Zygmund spaces to construct an approximation sequence, developing
bounds uniform with respect to the approximation parameter, and passing to the
limit.

1.2. Main results. We state our main results in Theorems 1.1 and 1.2, more com-
pletely stated in Theorems 3.1, 4.2, and 5.2. See Sections 2.2 and 2.3 for the definitions
of the function spaces Cr, Ċr, and Hs

ul.

Theorem 1.1. Let θ0 ∈ Cr(R2), r ∈ (1,∞), and let u0 ∈ Cr(R2) satisfy u0 =
∇⊥(−∆)−1/2θ0 in Ċr(R2). There exists T > 0 and a unique solution (u, θ) to (SQG)
with the constitutive law in the form

u(t) = u0 + (aΦ) ∗ ∇⊥(θ(t)− θ0)−
∫ t

0

(∇∇⊥((1− a)Φ))∗·(θu)

satisfying, for any r′ ∈ (0, r),

θ ∈ L∞(0, T ;Cr(R2)) ∩ Lip([0, T ];Cr−1(R2)) ∩ C([0, T ];Cr′(R2)),

u ∈ L∞(0, T ;Cr(R2)) ∩ C([0, T ];Cr′(R2)).

If θ0 ∈ Hs
ul(R2) and u0 ∈ Hs

ul(R2) for some s ≥ 3 satisfy u0 = ∇⊥(−∆)−1/2θ0 in

Ċα(R2), where α > 1 satisfies the embedding Hs
ul(R2) ↪→ Cα(R2), then

θ ∈ L∞(0, T ;Hs
ul(R2)) ∩ Lip([0, T ];Hs−1

ul (R2)),

u ∈ L∞(0, T ;Hs
ul(R2)).

Theorem 1.2. Let u0 ∈ Hs
ul(R3) for some s ≥ 3, and let ω0 = ∇× u0. There exists

T > 0 and a unique classical solution (u, p) to (E) satisfying

u ∈ L∞(0, T ;Hs
ul(R3)) ∩ Lip([0, T ];Hs−1

ul (R3)).
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1.3. Prior work. There are a number of approaches to studying non-decaying solu-
tions of nonlinear systems of partial differential equations, one of which is to focus on
rough solutions, while another is to study more regular solutions.

For rough data, there is prior work on non-decaying solutions of the two-dimensional
Euler equations under the assumption that the initial velocity and initial vorticity are
only in L∞. This approach was pioneered by Serfati [25], and extended to contexts
such as exterior domains by two of the authors and collaborators [3].

Wu has previously developed existence theory for (SQG) in Hölder spaces [30],
with the restriction that the initial data is not only in a Hölder space but also in
an Lq space for some q < ∞. In the present work, by incorporating estimates which
stem from the Serfati identity, we remove this assumption that the data are in Lq,
finding existence of non-decaying Hölder solutions for (SQG). Without membership
in the Hölder space, Marchand demonstrates existence of weak solutions with data
in Lp for 4

3
< p < ∞ (Marchand also treats the case of data in Ḣ−1/2) [22]. An

interesting question, which the authors will seek to address in the future, is whether
the current formulation using a Serfati identity can be used to extend Marchand’s
result, developing existence theory for (SQG) with L∞ data. A particular class of
solutions of (SQG) with L∞ data has been studied in a series of papers by Hunter,
Shu, and Zhang [13], [14], [15], [16], [17]. These works study the case of fronts in
(SQG), in which θ takes on two distinct values, and includes both the case of vortex
patches and halfspace-like fronts. Hunter, Shu, and Zhang develop contour dynamics
equations, similarly to what has been done for vortex patches in the Euler equations
(see e.g. [21] for a summary of such theory), and prove existence of solutions to the
contour dynamics equation. We mention that seeking a more general L∞ existence
theory will be complementary to these works, as more general data may be treated,
but such a theory will result in much less detailed information about the structure of
solutions at positive times.

Our use of the Serfati identity has the purpose of allowing one to unambigously
construct u from θ; with membership in an Lq space as in [22] or [30] there is no
difficulty in making the reconstruction, but this is an issue in general for non-decaying
solutions. An alternate way of dealing with this has been introduced by Albritton and
Bradshaw, imposing m-fold rotational symmetry in a study of similarity solutions [2].

In recent work Córdoba and Mart́ınez-Zoroa [9] have shown non-existence of so-
lutions for (SQG) with data in Hölder spaces Ck for integer k ≥ 2. This is not a
contradiction to the present work, for although Hölder-Zygmund spaces coincide with
Hölder spaces for non-integer exponents, they are larger than Hölder spaces for inte-
ger indices. This is discussed in more detail in Section 2 below. The same situation,
non-existence of solutions in classical Hölder spaces but existence instead in Hölder-
Zygmund spaces, has been shown to hold for the incompressible Euler equations as
well [6, 7].

Majda sketches a proof of existence for the compressible Euler equations in uni-
formly local Sobolev spaces in [20]; Majda remarks that the approach of [20] does
not work for the incompressible case. Other work for existence of fluid equations in
the uniformly local Sobolev spaces includes a series of papers by Zelik, Anthony and
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Zelik, and Chepyzhov and Zelik on the Navier-Stokes equations, the damped Euler
equations, and the damped Navier-Stokes equations, all in two spatial dimensions [4],
[8], [31], [32]. Alazard, Burq, and Zuily have proved well-posedness of the gravity
water waves system (i.e. the incompressible, irrotational Euler equations with the
fluid region bounded above by a free surface, subject to gravity) in uniformly local
Sobolev spaces [1]; of course the water waves system is dispersive, and is thus of a
different character than the systems studied in the present work. Uniformly local
solutions of the water waves system were then further studied by Nguyen [23].

1.4. Organization of the paper. We define Hölder -Zygmund spaces and uniformly
local Sobolev spaces in Section 2, and introduce notation and provide some key lem-
mas. In Section 3, we obtain existence of solutions to (SQG) in Hölder spaces, and
then employ this result in Section 4 to construct an approximation sequence to ob-
tain existence to (SQG) in uniformly local Sobolev spaces. In Section 5 we obtain
existence of solutions to the 3D Euler equations in uniformly local Sobolev spaces.

In the appendices, we establish Serfati-like identities for (SQG) and 3D Euler, a
constitutive relation for (SQG), and a pressure identity for 3D Euler akin to one used
in 2D in [26].

2. Definitions and preliminary lemmas

In this section, we state some notation, definitions, and lemmas that will be useful
in what follows.

We let a : Rd → R, d ≥ 2, denote a radially symmetric, smooth, compactly
supported cutoff function which is identically 1 in a neighborhood of the origin and
which vanishes outside of the ball of radius 2. For each λ > 0 and each x ∈ Rd, we
let aλ(x) = a(x/λ).

Define G on R3 by

G(x) =
1

4π |x|
,(2.1)

the fundamental solution to the Laplacian in R3, meaning that ∆G = δ, the Dirac
delta function. We use Φ to denote the fundamental solution of the fractional Lapla-
cian (−∆)1/2 on R2; that is,

Φ(x) =
C

|x|
for a constant C > 0. Finally, we have the simple estimates,

‖aλΦ‖L1(R2) ≤ λ,
∥∥∇∇⊥((1− aλ)Φ)

∥∥
L1(R2)

≤ Cλ−1.(2.2)

2.1. The Littlewood-Paley operators. In Section 3, we establish existence of so-
lutions to (SQG) in the spaces Cr(R2) for r > 1, where Cr(R2) is defined using the
Littlewood-Paley decomposition. We therefore begin this section with an overview
of the Littlewood-Paley operators and some of their properties. It is classical that
there exists two functions χ, ϕ ∈ S(Rd) with supp χ̂ ⊂ {ξ ∈ Rd : |ξ| ≤ 5

6
} and supp
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ϕ̂ ⊂ {ξ ∈ Rd : 3
5
≤ |ξ| ≤ 5

3
}, such that, if for every j ∈ Z we set ϕj(x) = 2jdϕ(2jx),

then

χ̂+
∑
j≥0

ϕ̂j = χ̂+
∑
j≥0

ϕ̂(2−j·) ≡ 1.

For n ∈ Z, define χn ∈ S(Rd) in terms of its Fourier transform χ̂n, where χ̂n
satisfies

χ̂n(ξ) = χ̂(ξ) +
∑
j≤n

ϕ̂j(ξ)

for all ξ ∈ Rd. For f ∈ S ′(Rd), define the operator Sn by

Snf = χn ∗ f.
Finally, for f ∈ S ′(Rd) and j ∈ Z, define the inhomogeneous Littlewood-Paley oper-
ators ∆j by

∆jf =

 0, j < −1
χ ∗ f, j = −1
ϕj ∗ f, j ≥ 0,

and, for all j ∈ Z, define the homogeneous Littlewood-Paley operators ∆̇j by

∆̇jf = ϕj ∗ f.
Note that ∆̇jf = ∆jf when j ≥ 0.

We will make use of Bernstein’s Lemma in what follows. A proof of the lemma can
be found in [7], Chapter 2. Below, Ca,b(0) denotes the annulus with inner radius a
and outer radius b.

Lemma 2.1. (Bernstein’s Lemma) Let r1 and r2 satisfy 0 < r1 < r2 <∞, and let p
and q satisfy 1 ≤ p ≤ q ≤ ∞. There exists a positive constant C such that for every
integer k, if u belongs to Lp(Rd), and supp û ⊂ Br1λ(0), then

(2.3) sup
|α|=k
||∂αu||Lq ≤ Ckλk+d( 1

p
− 1
q

)||u||Lp .

Furthermore, if supp û ⊂ Cr1λ,r2λ(0), then

(2.4) C−kλk||u||Lp ≤ sup
|α|=k
||∂αu||Lp ≤ Ckλk||u||Lp .

Lemma 2.2. Let Ψ(x) = C |x|1−d on Rd. There exists C > 0 such that for every
j ∈ Z,

‖∆̇j(∇Ψ ∗ f)‖L∞(Rd) ≤ C‖∆̇jf‖L∞(Rd).(2.5)

The result holds with ∇Ψ replaced by ∇(aΨ).

Proof. The proof of (2.5) follows from an argument identical to the proof of Lemma
8 in [11]. To see that the result holds for ∇(aΨ) in place of ∇Ψ, first note that the
equivalent of this lemma for a Calderón-Zygmund operator T is well-known [27]. We
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note, however, that T = ∇(aΨ)∗ is not quite a Calderón-Zygmund operator; rather
(see, for instance, Proposition 6.1 of [5]),

∇(aΨ) ∗ f(x) = p. v.

∫
Rd
∇(aΨ)(x− y)f(y) dy + Cf(x)I,

where the principal value integral does represent a Calderón-Zygmund operator. The
result then follows immediately. �

Remark 2.3. The convolution ∇(aΨ) ∗ f in Lemma 2.2 is that of a compactly sup-
ported distribution with a distribution. As in Theorem 6.37(e) of [24], we can move
derivatives on and off each factor, so

∇(aΨ) ∗ f = (aΨ) ∗ ∇f = ∇((aΨ) ∗ f).

2.2. Hölder-Zygmund spaces. We now introduce the Littlewood-Paley-based ver-
sion of Hölder (more properly Hölder-Zygmund ) spaces.

Definition 2.4. For r ∈ R, we define Cr(Rd) to be the set of all f ∈ S ′(Rd) such
that

sup
j≥−1

2jr‖∆jf‖L∞ <∞.

We set
‖f‖Cr = sup

j≥−1
2jr‖∆jf‖L∞ .

It is well-known that when r > 0 is a non-integer, the space Cr(Rd) defined above
coincides with the classical Hölder space C̃r(Rd), with norm

(2.6) ‖f‖C̃r =
∑

0≤|α|≤[r]

‖Dαf‖L∞ + sup
x 6=y

|f(x)− f(y)|
|x− y|r−[r]

.

However, when r is an integer, Cr(Rd) does not coincide with the space C̃r(Rd) of
bounded functions with bounded derivatives up to and including order r. In this case,
we have the inclusion

C̃r(Rd) ⊂ Cr(Rd).

Finally, we define the homogeneous Hölder spaces.

Definition 2.5. For r ∈ R, we define Ċr(Rd) to be the set of all f ∈ S ′(Rd) such
that

sup
j∈Z

2jr‖∆̇jf‖L∞ <∞.

We set
‖f‖Ċr = sup

j∈Z
2jr‖∆̇jf‖L∞ .
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The homogeneous Littlewood-Paley operators and Hölder-Zygmund spaces Ċr(Rd)
will be useful in our analysis of non-decaying solutions to (SQG) and (E). In par-
ticular, the operators ∆̇j allow us to make sense of the Riesz transforms applied to
non-decaying functions by defining, for f ∈ L∞(Rd),

(2.7) ∆̇j∂k(−∆)−1/2f = F−1

(
ϕ̂j
iξk
|ξ|
f̂

)
= F−1

(
ϕ̂j
iξk
|ξ|

)
∗ f.

The following lemmas will be useful when proving estimates on (SQG) in the Cr

spaces.

Lemma 2.6. Let s > 1. If for every j ≥ 0, f ∈ L∞(Rd) and g ∈ Cs(Rd) satisfy

∆jf = ∆j∇⊥(−∆)−1/2g

almost everywhere on Rd, then f belongs to Cs(Rd), and there exists an absolute
constant C > 0 such that

‖f‖Cs ≤ C(‖f‖L∞ + ‖g‖Cs).

Proof. Young’s inequality gives

‖f‖Cs ≤ C‖∆−1f‖L∞ + sup
j≥0

2js‖∆jf‖L∞

≤ C‖f‖L∞ + sup
j≥0

2js‖∇⊥(−∆)−1/2∆jg‖L∞

≤ C‖f‖L∞ + C sup
j≥0

2js‖∆jg‖L∞

≤ C‖f‖L∞ + C‖g‖Cs ,
where we used Lemma 2.2 to get the third inequality. �

The following Lemma is Proposition 2.2 of [30].

Lemma 2.7. Let k be a nonnegative integer and let s ∈ (0, 1). For f ∈ Ck+s(Rd),
there exists a constant C, depending only on s, such that

‖f‖C̃k ≤ C‖f‖Ck+s .
Moreover, C →∞ as s→ 0.

Lemma 2.8. Let s > 0, and assume f ∈ Cs(R2). Then

‖∇⊥(aλΦ) ∗ f‖L∞ ≤ C‖f‖Cs ,
where C depends only on λ and s.
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Proof. Write

‖∇⊥(aλΦ) ∗ f‖L∞ ≤
∑
j≥−1

‖∆j(∇⊥(aλΦ) ∗ f)‖L∞

= ‖∆−1(∇⊥(aλΦ) ∗ f)‖L∞ +
∑
j≥0

2js2−js‖∆j(∇⊥(aλΦ) ∗ f)‖L∞

≤ ‖aλΦ ∗ (∆−1∇⊥f)‖L∞ + C sup
j≥0

2js‖∇⊥(aλΦ) ∗∆jf‖L∞

≤ C‖f‖L∞ + C sup
j≥0

2js‖∆jf‖L∞ ≤ C‖f‖Cs ,

where we used Young’s inequality, Bernstein’s Lemma and Lemma 2.2 to get the third
inequality. This proves the lemma.

�

2.3. Uniformly local Sobolev spaces. We now define the uniformly local Sobolev
spaces and mention some of their properties. We refer the reader to [18] for further
details. We begin with a definition of Lpul(Rd).

Definition 2.9. For p ∈ [1,∞), we define Lpul(Rd) to be the set of all functions f on
Rd such that

(2.8) ‖f‖Lpul := sup
x∈Rd

(∫
|x−y|<1

|f(y)|p dy
)1/p

<∞.

Definition 2.10. For a nonnegative integer s, we define the space Hs
ul(Rd) to be the

set of all functions f ∈ L2
ul(Rd) such that all distributional derivatives Dαf , with

|α| ≤ s, also belong to L2
ul(Rd). We set

(2.9) ‖f‖Hs
ul

=
∑
|α|≤s

‖Dαf‖L2
ul
.

In what follows, we make use of an equivalent norm to (2.9), as given in Proposition
2.11 below. For this purpose, throughout the paper we let φ ∈ C∞c (Rd) be a standard
bump function, identically 1 on B1(0), with support contained in B2(0), and we set

φx(y) = φ(y − x).

We have the following proposition (see, for example, [18]).

Proposition 2.11. One can define an equivalent norm to (2.8) on Lpul(Rd) by

sup
x∈Rd
‖φxf‖Lp .

Moreover, if for λ > 0 fixed,

(2.10) φx,λ(y) = φ

(
y − x
λ

)
,

then for any pair λ1, λ2 > 0, the two norms

sup
x∈Rd
‖φx,λ1f‖Lp , sup

x∈Rd
‖φx,λ2f‖Lp
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are equivalent. Therefore, for any λ > 0, the norm

(2.11) ‖f‖Hs
ul,λ

:=
∑
|α|≤s

sup
x∈Rd
‖φx,λDαf‖L2

is equivalent to that in (2.9). Finally, the norm

sup
x∈Rd
‖φx,λf‖Hs

is equivalent to that in (2.11) and can also be used as a norm on Hs
ul(Rd).

We now state a few useful lemmas regarding Hs
ul spaces. Several of these lemmas

demonstrate that many properties of Hs spaces extend to the Hs
ul spaces. We begin

with the following Calculus inequalities. Parts (i) and (iii) below can be found in
[20].

Lemma 2.12. Assume s ≥ 1 is an integer.
(i) Given f , g ∈ Hs

ul ∩ L∞(Rd) and |α| ≤ s,

‖Dα(fg)‖L2
ul
≤ Cs(‖f‖L∞‖g‖Hs

ul
+ ‖g‖L∞‖f‖Hs

ul
).

(ii) Given f ∈ C̃s(Rd), g ∈ Hs(Rd),

‖fg‖Hs ≤ C‖f‖C̃s ‖g‖Hs(supp f) , ‖fg‖Hs
ul
≤ C‖f‖C̃s ‖g‖Hs

ul
.

(iii) Given f ∈ Hs
ul ∩ C̃1(Rd) and g ∈ Hs−1

ul ∩ L∞(Rd), for |α| ≤ s,

‖Dα(fg)− fDαg‖L2
ul
≤ Cs(‖f‖C̃1‖g‖Hs−1

ul
+ ‖g‖L∞‖f‖Hs

ul
).

Lemma 2.13. ([18]) Let j and m be nonnegative real numbers. If 2m > d, then
Hj+m
ul (Rd) ↪→ C̃j(Rd).

Lemma 2.14. Let p ∈ [1,∞), and assume f belongs to Lpul(Rd). There exists C > 0
such that for all n ∈ N,

‖Snf‖Lpul ≤ C‖f‖Lpul .

Proof. By Minkowski’s inequality,

‖Snf‖Lpul = sup
z∈Rd

(∫
Rd

∣∣∣ ∫
Rd

φz(x)f(x− y)χn(y)dy
∣∣∣pdx)1/p

≤ sup
z∈Rd

∫
Rd

‖φz(·)f(· − y)χn(y)‖Lpdy = sup
z∈Rd

∫
Rd

‖φz(·)f(· − y)‖Lp |χn(y)|dy

≤ ‖f‖Lpul

∫
Rd
|χn(y)|dy ≤ C‖f‖Lpul .

�

Lemma 2.15. With Ψ as in Lemma 2.2, for any f ∈ Hr
ul(Rd), r ≥ 0,

‖∇((aλΨ) ∗ f)‖Hr
ul
≤ Cλ ‖f‖Hr

ul
.
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Proof. This follows for Hr in place of Hr
ul from a Littlewood-Paley decomposition or

by using the expression in Lemma 2.2. It then follows for the Hr
ul norm by taking

advantage of the identity, φx∇((aλΨ)∗f) = φx(∇(aλΨ)∗f) = φx(∇(aλΨ)∗φx,8f). �

Definition 2.16. For v, w vector fields, we define v∗·w = vi ∗wi, where we sum over
the repeated indices. Similarly, for A, B matrix-valued functions on Rd, we define
A∗·B = Aij ∗Bij.

In Lemma 2.17, we obtain a stream function for ψ, but it is not the classical
stream function in that it is not divergence-free. It can be written in the form of a
one-dimensional integral, however, as in (2.13), which makes it amenable to localized
estimates.

Lemma 2.17. For any divergence-free u ∈ Hs
ul(R3) there exists a (non-divergence

free) stream function ψ ∈ Hs+1
ul (R3) with the properties that curlψ = u, ψ(0) = 0.

For any bounded convex U ⊆ BR(0),

‖ψ‖Hs(U) ≤ CR ‖u‖Hs
ul(R3) ,(2.12)

where the constant C depends upon the Lebesgue measure, |U |, of U .

Proof. It is sufficient to prove the result for u ∈ C∞(R3)∩Hs
ul(R3), as the result then

follows from the density of this space in Hs
ul(R3). We can then define the stream

function as

ψ(x) = −
∫ 1

0

τx× u(τx) dτ.(2.13)

Using curl(A×B) = divBA−divAB+B ·∇A−A ·∇B, div(u(τx)) = 0, div x = 3,
∇x = I, we have

curl(x× u(τx)) = −3u(τx) + u(τx) · ∇x− τx · ∇u(τx)

= −3u(τx) + u(τx) · I − τx · ∇u(τx) = −2u(τx)− τx · ∇u(τx).

Hence,

curlψ(x) =

∫ 1

0

[
2τu(τx) + τ 2x · ∇u(τx)

]
dτ.

Integrating the first term by parts, we have∫ 1

0

2τu(τx) dτ = τ 2u(τx)
∣∣1
0
−
∫ 1

0

τ 2x · ∇u(τx) dτ

= u(x)−
∫ 1

0

τ 2x · ∇u(τx) dτ.

It follows that curlψ = u.
For estimates, it is perhaps easier to write (2.13) in indices, as

ψi(x) =

∫ 1

0

[
τxi+2u

i+1(τx)− τxi+1u
i+2(τx)

]
dτ,(2.14)

where if i+ 1 or i+ 2 > 3 we subtract 3 from it.
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In (2.14), we have |x| ≤ R on U , so

‖ψ‖L2(U) ≤ CR

∫ 1

0

τ‖u(τ ·)‖L2(U) dτ = CR

∫ 1

0

τ

τ
3
2

‖u‖L2(τU) dτ.

But, |τU | ≤ |U | for all τ ∈ [0, 1], so ‖u‖L2(τU) ≤ C(|U |)‖u‖L2
ul

and

‖ψ‖L2(U) ≤ CR

∫ 1

0

τ−
1
2‖u‖L2

ul
dτ = CR.

Let α = (α1, α2, α3) be a multi-index. Then

Dα
[
τxju

`(τx)
]

= τxjτ
|α|Dαu`(τx) + ττ |α|−1Dα′u`(τx),

where α′ has the j index decreased by one, with the second term absent if αj = 0.
Arguing as for ‖ψ‖L2(U), we conclude from this that

sup
|α|=k
‖Dαψ‖L2(U) ≤ CR ‖u‖Hk

ul
+ C ‖u‖Hk−1

ul
,

from which (2.12) follows by summing over k ≤ s.
Finally, using div(A×B) = (curlA) ·B − (curlB) · A, we have

divψ(x) = −
∫ 1

0

τ [curlx · u(τx)− τ(curlu)(τx) · x] dτ

=

∫ 1

0

τ 2x · (curlu)(τx) dτ.

Because curlu ∈ L2
ul, curlψ and divψ lie in L2

ul, this is enough to conclude that
ψ ∈ Hs+1

ul (R3). As we use only Hs
ul regularity, we do not include further details. �

3. Existence of solutions to (SQG) in Hölder spaces

In this section, we prove the following theorem.

Theorem 3.1. For r ∈ (1,∞), let θ0 be a function in Cr(R2), and let u0 in Cr(R2)
satisfy

u0 = ∇⊥(−∆)−1/2θ0 in Ċr(R2).

There exists T > 0 and a unique solution (u, θ) to

∂tθ + u · ∇θ = 0,

(u, θ)|t=0 = (u0, θ0),
(3.1)

satisfying, for any r′ ∈ (0, r),

θ ∈ L∞(0, T ;Cr(R2)) ∩ Lip([0, T ];Cr−1(R2)) ∩ C([0, T ];Cr′(R2)),

u ∈ L∞(0, T ;Cr(R2)) ∩ C([0, T ];Cr′(R2)).

Moreover, there exists C > 0 such that (u, θ) satisfies the estimate

(3.2) ‖u‖L∞(0,T ;L∞) + ‖θ‖L∞(0,T ;Cr) ≤
C(‖u0‖L∞ + ‖θ0‖Cr)

1− CT (‖u0‖L∞ + ‖θ0‖Cr)
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and the equality (see Definition 2.16)

u(t) = u0 + (aΦ) ∗ ∇⊥(θ(t)− θ0)−
∫ t

0

(∇∇⊥((1− a)Φ))∗·(θu)(3.3)

for each t ∈ [0, T ].

Before proving the theorem, we make a few remarks.

Remark 3.2. For r > 0 a non-integer, a pair (u0, θ0) satisfying the conditions of
Theorem 3.1 can be easily generated from any function ψ ∈ Cr+1(R2) by setting u0 =
∇⊥ψ and ω0 = (−∆)1/2ψ. Note that ω0 belongs to Cr(R2) by the classical Schauder
estimates for the fractional Laplacian (see for example [28]). By the containment
Cr(R2) ⊂ Ċr(R2) and Lemma 2.2, both u0 and θ0 belong to Ċr(R2). Moreover, we
have for every j ∈ Z,

∆̇ju
0 = ∆̇j∇⊥(−∆)−1/2θ0

almost everywhere on R2.

Remark 3.3. Since (3.3) holds for aλ in place of a for any λ > 0, and θ and u lie in
L∞([0, T ]× R2), by (2.2) we have

u(t) = u0 + lim
λ→∞

(aλΦ) ∗ ∇⊥(θ(t)− θ0),

the limit holding pointwise. This gives a form of the constitutive law for (3.1) and is
the analog for (SQG) of the renormalized Biot-Savart law of [3, 19] that applies to
non-decaying solutions to the 2D Euler equations.

Proof of Theorem 3.1. We adapt the general strategy used in the proof of Theo-
rem 4.1 in [30]. In particular, we construct an approximating sequence of solutions
and pass to the limit in the appropriate norm. To obtain uniform bounds on the
approximating sequence, the proof in [30] relies heavily on the estimate

(3.4) ‖Rf‖Cr ≤ C‖f‖Cr∩Lq
for q < ∞ and r > 1, where R denotes a Riesz transform. Since our approximating
sequence must converge to a solution lacking spatial decay (and hence not belonging
to Lq(R2) for any q <∞), we utilize Lemma 2.6 and a Serfati-type identity (see (3.6)
below) in place of (3.4).

Approximating sequence. We define sequences (θn)∞n=1 and (un)∞n=1 as follows:

θ1(t, x) = S2θ
0(x),

u1(t, x) = S2u
0(x),

(3.5)
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for all t ≥ 0, while, for n ≥ 1,

∂tθ
n+1 + un · ∇θn+1 = 0,

θn+1(x, 0) = Sn+2θ
0, un+1(x, 0) = Sn+2u

0,

un+1(t) = un+1(0) + (aΦ) ∗ ∇⊥(θn+1(t)− θn+1(0))

−
∫ t

0

(∇∇⊥((1− a)Φ))∗·(θn+1un).

(3.6)

Note that with (un) and (θn) as in (3.6), Lemma A.2 gives that for all j ∈ Z, n ∈ N,
and t ∈ [0, T ],

∆̇ju
n(t) = ∆̇j∇⊥(−∆)−1/2θn(t)

almost everywhere on R2, which will allow us to apply Lemma 2.6 repeatedly in what
follows.

Uniform Bounds. The proof of Proposition 4.2 in [30] yields the following estimate:

‖θn+1(t)‖Cr ≤ ‖θn+1(0)‖Cr

+ C(r)

∫ t

0

(
‖∇θn+1(s)‖L∞‖un(s)‖Cr + ‖∇un(s)‖L∞‖θn+1(s)‖Cr

)
ds

≤ ‖θn+1(0)‖Cr + C(r)

∫ t

0

‖θn+1(s)‖Cr‖un(s)‖Cr ds.

(3.7)

We now use (3.6)3 to estimate ‖un+1(t)‖L∞ . In particular, one can write

‖un+1(t)‖L∞ ≤ ‖un+1(0)‖L∞ + C‖∇θn+1(t)‖L∞

+ C‖∇θn+1(0)‖L∞ + C

∫ t

0

‖θn+1(s)‖L∞‖un(s)‖L∞ ds.
(3.8)

Adding (3.7) and (3.8) gives

‖un+1(t)‖L∞ + ‖θn+1(t)‖Cr ≤ ‖un+1(0)‖L∞ + C(r)‖θn+1(t)‖Cr + C(r)‖θn+1(0)‖Cr

+ C(r)

∫ t

0

(‖θn+1(s)‖L∞‖un(s)‖L∞ + ‖θn+1(s)‖Cr‖un(s)‖Cr) ds,

where we used Lemma 2.7. The term C(r)‖θn+1(t)‖Cr appearing on the right hand
side can again be estimated using (3.7). Then we have

‖un+1(t)‖L∞ + ‖θn+1(t)‖Cr ≤ ‖un+1(0)‖L∞ + C(r)‖θn+1(0)‖Cr

+ C(r)

∫ t

0

‖θn+1(s)‖Cr‖un(s)‖Cr ds

≤ ‖un+1(0)‖L∞ + C(r)‖θn+1(0)‖Cr

+ C(r)

∫ t

0

(‖un+1(s)‖L∞ + ‖θn+1(s)‖Cr)‖un(s)‖Cr ds.

(3.9)
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Grönwall’s Lemma gives
(3.10)

‖un+1(t)‖L∞ + ‖θn+1(t)‖Cr ≤ C(r)(‖un+1(0)‖L∞ + ‖θn+1(0)‖Cr)eC(r)
∫ t
0 ‖u

n(s)‖Cr .

By (3.10) and Lemma 2.6,

‖un+1(t)‖L∞ + ‖θn+1(t)‖Cr

≤ C(r)(‖un+1(0)‖L∞ + ‖θn+1(0)‖Cr)eC(r)
∫ t
0 (‖un(s)‖L∞+‖θn(s)‖Cr ) ds,

(3.11)

where we can assume C(r) ≥ 2.
We use induction and (3.11) to show that there exists M > 0 and T > 0 such that,

for all t < T , and for all n ≥ 1,

(3.12) ‖un(t)‖L∞ + ‖θn(t)‖Cr ≤M.

To prove the case n = 1, first note that by properties of Littlewood-Paley operators
and Young’s inequality, there exists a constant C2 such that, for all n ≥ 1,

(3.13) ‖Sn+2u
0‖L∞ + ‖Sn+2θ

0‖Cr ≤ C2(‖u0‖L∞ + ‖θ0‖Cr).
In particular, we have

‖u1‖L∞ + ‖θ1‖Cr ≤ C2(‖u0‖L∞ + ‖θ0‖Cr).
Set M = 2C(r)C2(‖u0‖L∞ + ‖θ0‖Cr), where C(r) is as in (3.11), and choose T such
that exp(C(r)TM) ≤ 2. Then

‖u1‖L∞ + ‖θ1‖Cr ≤ C2(‖u0‖L∞ + ‖θ0‖Cr) < M.

This proves (3.12) for n = 1.
Now assume, for fixed k ∈ N, ‖uk(s)‖L∞ + ‖θk(s)‖Cr ≤ M for each s ∈ [0, T ]. By

(3.11) and (3.13),

‖uk+1(t)‖L∞ + ‖θk+1(t)‖Cr ≤ C(r)(‖uk+1(0)‖L∞ + ‖θk+1(0)‖Cr)eC(r)TM

≤ 2C(r)C2(‖u(0)‖L∞ + ‖θ(0)‖Cr) = M.

Thus (3.12) holds for all n.
From (3.12) and Lemma 2.6, it follows that, for r > 1, there exists C > 0 such that

for all n ∈ N, ‖un‖Cr ≤ CM . Therefore, for each n ∈ N,

‖∂tθn+1‖Cr−1 ≤ ‖un · ∇θn+1‖Cr−1

≤ C(‖un‖Cr−1‖∇θn+1‖L∞ + ‖un‖L∞‖∇θn+1‖Cr−1)

≤ C(r)‖un‖Cr−1‖θn+1‖Cr ≤ C(r)M2.

(3.14)

From this we conclude that for each n ∈ N, ∂tθ
n ∈ L∞(0, T ;Cr−1) and θn ∈

Lip([0, T ];Cr−1), with norms uniformly bounded in n.

(un) and (θn) are Cauchy. We now show (θn) is Cauchy in C([0, T ];Cr−1(R2)) and
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(un) is Cauchy in C([0, T ];L∞(R2)). As in [30], let ηn = θn−θn−1 and vn = un−un−1.
From (3.5) and (3.6), we have the system

η1 = S2θ
0 − θ0,

v1 = S2u
0 − u0,

(3.15)

and for n ≥ 1,

∂tη
n+1 + un · ∇ηn+1 = vn · ∇θn,

ηn+1(x, 0) = ηn+1
0 (x) = ∆n+2θ

0(x),

vn+1(x, 0) = vn+1
0 (x) = ∆n+2u

0(x).

(3.16)

Moreover,

vn(t)− vn(0) = (aλΦ) ∗ ∇⊥(ηn(t)− ηn(0))

−
∫ t

0

(∇∇⊥((1− aλ)Φ))∗·(ηnun−1 + θnvn−1).
(3.17)

We have the following estimate from [30]:

‖ηn+1(t)‖Cr−1 ≤ ‖ηn+1(0)‖Cr−1

+ C(r)

∫ t

0

(‖ηn+1(s)‖Cr−1‖un(s)‖Cr + ‖vn(s)‖Cr−1‖θn(s)‖Cr) ds

≤ ‖ηn+1(0)‖Cr−1 + C(r)M

∫ t

0

(‖ηn+1(s)‖Cr−1 + ‖vn(s)‖Cr−1) ds,

(3.18)

where we applied the uniform bounds on ‖un‖Cr and ‖θn‖Cr to get the second in-
equality. We apply the L∞-norm to (3.17), which gives

‖vn+1(t)‖L∞ ≤ ‖vn+1(0)‖L∞ + ‖(aΦ) ∗ ∇⊥ηn+1(t)‖L∞ + ‖(aΦ) ∗ ∇⊥ηn+1(0)‖L∞

+

∫ t

0

(‖ηn+1(s)‖L∞‖un(s)‖L∞ + ‖θn+1(s)‖L∞‖vn(s)‖L∞) ds

≤ ‖vn+1(0)‖L∞ + ‖(aΦ) ∗ ∇⊥ηn+1(t)‖L∞ + ‖(aΦ) ∗ ∇⊥ηn+1(0)‖L∞

+ CM

∫ t

0

(‖ηn+1(s)‖L∞ + ‖vn(s)‖L∞) ds.

(3.19)

Adding (3.18) and (3.19) gives

‖vn+1(t)‖L∞ + ‖ηn+1(t)‖Cr−1 ≤ ‖vn+1(0)‖L∞ + ‖ηn+1(0)‖Cr−1

+ ‖∇⊥(aΦ) ∗ ηn+1(0)‖L∞ + ‖∇⊥(aΦ) ∗ ηn+1(t)‖L∞

+MC(r)

∫ t

0

(‖vn+1‖L∞ + ‖ηn+1(s)‖Cr−1 + ‖vn(s)‖L∞ + ‖ηn(s)‖Cr−1) ds,

(3.20)
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where we applied Lemma 2.6. To estimate the terms ‖∇⊥(aΦ) ∗ ηn+1(t)‖L∞ and
‖∇⊥(aΦ) ∗ ηn+1(0)‖L∞ , we apply Lemma 2.8, giving

‖∇⊥(aΦ) ∗ ηn+1(t)‖L∞ ≤ C(r)‖ηn+1(t)‖Cr−1 ,

‖∇⊥(aΦ) ∗ ηn+1(0)‖L∞ ≤ C(r)‖ηn+1(0)‖Cr−1 .

We then bound the resulting term ‖ηn+1(t)‖Cr−1 using (3.18) and again apply Lemma
2.6. Substituting the resulting estimate into (3.20) gives

‖vn+1(t)‖L∞ + ‖ηn+1(t)‖Cr−1 ≤ C1(r)(‖vn+1(0)‖L∞ + ‖ηn+1(0)‖Cr−1)

+ C1(r)M

∫ t

0

(
(‖vn+1(s)‖L∞ + ‖ηn+1(s)‖Cr−1) + (‖vn(s)‖L∞ + ‖ηn(s)‖Cr−1)

)
ds.

(3.21)

Set Dn(t) = ‖vn(t)‖L∞ + ‖ηn(t)‖Cr−1 . Then (3.21) gives

(3.22) Dn+1(t) ≤ C1(r)Dn+1(0) + C1(r)M

∫ t

0

(Dn+1(s) +Dn(s)) ds.

Let

E(t) :=
∞∑
n=0

Dn+1(t),

noting that E(0) is finite because θ0 and u0 lie in Cr(R2). Summing (3.22) over n
and using (3.12), we have that

E(t) ≤ CE(0) + CMt+ CM

∫ t

0

E(s) ds.

By Grönwall’s lemma,

E(t) ≤ (CE(0) + CMT )eCMt.

It follows that for any fixed time t ∈ [0, T ], the sequences (un(t)) and (θn(t)) are
Cauchy in L∞(R2) and Cr−1(R2), respectively.

Now let ε > 0. From (3.14), we also have uniform-in-time control on (∂tθ
n(t)) in

Cr−1(R2), so we can choose a δ > 0 such that for any s1, s2 ∈ [0, T ],

|s1 − s2| < δ =⇒ ‖θn(s1)− θn(s2)‖Cr−1(R2) <
ε

3
.

Let N1 be an integer greater than T/δ, and let tk = kT/N1, k = 0, . . . , N1. Choose
an integer N2 (which we note depends upon N1) such that for all k,

m,n ≥ N2 =⇒ ‖θn(tk)− θm(tk)‖Cr−1(R2) <
ε

3
.

Then by the triangle inequality, for all t ∈ [0, T ],

m,n ≥ N2 =⇒ ‖θn(t)− θm(t)‖Cr−1(R2) ≤ ‖θ
n(t)− θn(tk)‖Cr−1(R2)

+ ‖θn(tk)− θm(tk)‖Cr−1(R2) + ‖θm(tk)− θm(t)‖Cr−1(R2) < ε,
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where we choose k so that |t− tk| < δ. This is enough to conclude that (θn) is Cauchy
in C([0, T ];Cr−1(R2)).

Similarly, taking the time derivative of (3.6)3 gives uniform-in-time control on
(∂tu

n(t)) in L∞(R2), and we can conclude that (un) is Cauchy in C([0, T ];L∞(R2)).

Limit of the sequence solves (3.1). We conclude that the sequence (θn) converges
to some θ in C([0, T ];Cr−1(R2)), and (un) converges to some u in C([0, T ];L∞(R2)).
Moreover, we have

θ ∈ L∞(0, T1;Cr(R2)) ∩ Lip([0, T1];Cr−1(R2)),

u ∈ L∞(0, T1;Cr(R2)).

Interpolation between Cr−1 and Cr shows that (θn) converges to θ in C([0, T ];Cr′(R2))
for all r′ ∈ [r− 1, r), and interpolation between C0 and Cr shows that (un) converges
to u in C([0, T ];Cα(R2)) for all α ∈ (0, r). Having established convergence in these
spaces, we can then pass to the limit in (3.6)1 and (3.6)2. Note also that, for r′ ∈
[r − 1, r) and α ∈ (0, r),

θ ∈ L∞([0, T ];Cr(R2)) ∩ Lip([0, T ];Cr−1(R2)) ∩ C([0, T ];Cr′(R2)),

u ∈ L∞([0, T ];Cr(R2)) ∩ C([0, T ];Cα(R2)).

Solution (u, θ) satisfies (3.2). We now show that the resulting solution (u, θ) of
(3.1) satisfies (3.2). Set Ψn(τ) = ‖un(τ)‖L∞ + ‖θn(τ)‖Cr , τ ∈ [0, T ]. From (3.11), it
follows that

Ψn(τ) ≤ CΨn(0)eC
∫ τ
0 Ψn(s) ds,

so that
Ψn(τ)e−C

∫ τ
0 Ψn(s) ds ≤ CΨn(0).

By the chain rule,

− 1

C

d

dτ

(
e−C

∫ τ
0 Ψn(s) ds

)
≤ CΨn(0).

For t ∈ [τ, T ], integrating both sides from 0 to t gives

−e−C
∫ t
0 Ψn(s) ds + 1 ≤ CΨn(0)t,

which implies

(3.23) eC
∫ t
0 Ψn(s) ds ≤ 1

1− CΨn(0)t
.

The inequality Ψn(t)
CΨn(0)

≤ eC
∫ t
0 Ψn(s) ds, combined with (3.23), imply that

‖un(t)‖L∞ + ‖θn(t)‖Cr = Ψn(t) ≤ CΨn(0)

1− CΨn(0)t
≤ C(‖u0‖L∞ + ‖θ0‖Cr)

1− Ct(‖u0‖L∞ + ‖θ0‖Cr)
,

where we used that Ψn(0) ≤ C(‖u0‖L∞+‖θ0‖Cr) for all n to get the second inequality.
It follows that for each fixed t ∈ [0, T ],

‖u(t)‖L∞ + ‖θ(t)‖Cr ≤
C(‖u0‖L∞ + ‖θ0‖Cr)

1− Ct(‖u0‖L∞ + ‖θ0‖Cr)
.
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This yields (3.2).

(u, θ) satisfies (3.3). It remains to prove (3.3). We have that (θn) converges
to θ in C([0, T ];Cr′(R2)) for all r′ < r, and (un) converges to u in C([0, T ];L∞(R2)).
We claim that this is enough to pass to the limit in (3.6)3. For n ∈ N, we subtract
the right-hand side of (3.6)3 as satisfied by (u, θ) from the right-hand-side as satisfied
by (un, θn). Taking the L∞-norm of the resulting difference and applying Young’s
inequality gives

‖(un − u)(t)‖L∞
≤ ‖(un − u)(0)‖L∞ + ‖(aΦ) ∗ ∇⊥(θn − θ)(t)‖L∞ + ‖(aΦ) ∗ ∇⊥(θn − θ)(0)‖L∞

+

∫ t

0

‖∇∇⊥((1− a)Φ)‖L1

(
‖(θn − θ)(s)un−1(s)‖L∞ + ‖θ(s)(un−1 − u)(s)‖L∞

)
ds.

It is clear that
‖(un − u)(0)‖L∞ → 0,∫ t

0

(
‖(θn − θ)(s)un−1(s)‖L∞ + ‖θ(s)(un−1 − u)(s)‖L∞

)
ds→ 0

as n approaches infinity, for all t ∈ [0, T ].
We now show that ‖(aΦ) ∗ ∇⊥(θn − θ)(t)‖L∞ = ‖∇⊥(aΦ) ∗ (θn − θ)(t)‖L∞ → 0 for

all t ∈ [0, T ] as well. We utilize that ∇⊥(aΦ) integrates to 0. Surpressing the time
variable, and setting δn = θn − θ for each n, we have, for any α ∈ (0,min{1, r − 1})
and any x ∈ R2,∣∣∇⊥(aΦ) ∗ (θn − θ)(x)

∣∣ ≤ ∣∣∣∣p. v.∫
R2

∇⊥(aΦ)(y) (δn(x− y)− δn(x)) dy

∣∣∣∣+ |Cδn(x)I|

≤
∫
R2

|∇(aΦ)(y)||y|α
(
|δn(x− y)− δn(x)|

|y|α

)
dy + |Cδn(x)I| ≤ C‖δn‖Cα → 0,

since (θn) converges to θ in C([0, T ];Cα(R2)). This implies (3.3) and completes the
proof of the theorem.

Uniqueness An argument similar to the demonstration above that (un) and (θn) are
Cauchy gives uniqueness of solutions. �

4. (SQG) in uniformly local Sobolev spaces

4.1. A priori estimates. In this section, we establish a priori estimates on smooth
solutions to (SQG) in uniformly local Sobolev spaces. We prove the following theo-
rem.

Theorem 4.1. Assume d = 2 and s ≥ 3 is an integer. Let (u, θ) be a solution to
(SQG) on [0, T ] as given in Theorem 3.1 with Hölder exponent r = s+ 2. Then

‖θ(t)‖2
Hs
ul
≤ ‖θ0‖2

Hs
ul

exp

(
C

∫ t

0

(‖u(τ)‖C̃1 + ‖∇θ(τ)‖L∞) dτ

)
.
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Proof. Set W = Dαθ with 0 ≤ |α| ≤ s and s ≥ 3. Apply Dα to (3.1)1 to get

(4.1) ∂tW + u · ∇W = F,

where

F = u · ∇W −Dα(u · ∇θ).

Multiplying (4.1) by φx gives

∂t(φxW ) + u · ∇(φxW ) = (u · ∇φx)W + φxF.(4.2)

After multiplying (4.2) by φxW and integrating, we conclude that∫
R2

φxW∂t(φxW ) +

∫
R2

φxW (u · ∇(φxW ))

=

∫
R2

φxW (u · ∇φx)W +

∫
R2

φxWφxF.

Now observe that ∫
R2

φxW∂t(φxW ) =
1

2

d

dt
‖φxW‖2

L2 .

Moreover, one can show using the divergence-free property of u and integration by
parts that ∫

R2

φxW (u · ∇(φxW )) = 0.

By properties of φx and Hölder’s inequality, we also have∫
R2

φxW (u · ∇φx)W =

∫
R2

φxW (u · ∇φx)φx,2W

≤ ‖φx,2W‖2
L2‖u · ∇φx‖L∞ ≤ C‖u‖L∞‖θ‖2

Hs
ul
.

Finally, another application of Hölder’s inequality gives∫
R2

φxWφxF ≤ ‖φxW‖L2‖φxF‖L2 .

We apply Lemma 2.12 to ‖φxF‖L2 with f = u and g = ∇θ. This gives

‖φxF‖L2 ≤ C
(
‖u‖C̃1‖θ‖Hs

ul
+ ‖∇θ‖L∞‖u‖Hs

ul

)
.

Combining the above estimates and integrating in time gives

‖φxW (t)‖2
L2 ≤ C‖φxW (0)‖2

L2

+ C

∫ t

0

(
‖u‖L∞‖θ‖2

Hs
ul

+ ‖θ‖Hs
ul

(‖u‖C̃1‖θ‖Hs
ul

+ ‖∇θ‖L∞‖u‖Hs
ul

)
)
dτ.

We now take the supremum of both sides of the inequality over x ∈ R2. We conclude
that

‖θ(t)‖2
Hs
ul
≤ C‖θ0‖2

Hs
ul

+ C

∫ t

0

(
‖u(τ)‖C̃1‖θ(τ)‖2

Hs
ul

+ ‖θ(τ)‖Hs
ul
‖∇θ(τ)‖L∞‖u(τ)‖Hs

ul

)
dτ.

(4.3)
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It remains to close the estimate and apply Grönwall’s lemma. To do this, note
that, for each fixed t ∈ [0, T ], the approximating sequences (θn(t)) and (un(t)) from
the proof of Theorem 3.1 converge to θ(t) and u(t), respectively, in L∞(R2). This
convergence, along with Lemma 2.2, allow us to pass to the limit in Lemma A.2. This
gives, for all j ∈ Z,

∆̇ju = ∆̇j(∇⊥(−∆)−1/2θ).

Applying a differential operator Dγ with 1 ≤ |γ| ≤ s gives

∆̇jD
γu = ∆̇jD

γ(∇⊥(−∆)−1/2θ).

This implies that, for |γ| ≥ 1,

Dγu = Dγ−1P + (aΦ) ∗ ∇⊥Dγθ + [Dγ(∇⊥((1− a)Φ))] ∗ θ

for almost every x ∈ R2, where P is a polynomial. But Dγu and Dγ+1θ are in
C([0, T ];L∞(R2)) for each |γ| ≤ s, which implies that P is a constant. We conclude
that for 2 ≤ |γ| ≤ s, Dγu and Dγθ satisfy

(4.4) Dγu = (aΦ) ∗ ∇⊥Dγθ + [Dγ(∇⊥((1− a)Φ))] ∗ θ
for almost every x ∈ R2. Applying Lemma 2.15, for any multi-index β with |β| = 2,

(4.5) ‖Dβu‖Hs−2
ul
≤ C(‖θ‖Hs

ul
+ ‖θ‖L∞) ≤ C‖θ‖Hs

ul
,

where we applied the Sobolev embedding theorem to get the last inequality. This
estimate, combined with ‖u‖L2

ul
≤ C‖u‖L∞ and ‖∇u‖L2

ul
≤ ‖∇u‖L∞ , gives

(4.6) ‖u‖Hs
ul
≤ C(‖θ‖Hs

ul
+ ‖u‖C̃1).

Substituting this estimate into (4.3) gives

‖θ(t)‖2
Hs
ul
≤ ‖θ0‖2

Hs
ul

+ C

∫ t

0

(
‖u(τ)‖C̃1‖θ(τ)‖2

Hs
ul

+ ‖θ(τ)‖Hs
ul
‖∇θ(τ)‖L∞(‖θ(τ)‖Hs

ul
+ ‖u(τ)‖C̃1)

)
dτ

≤ ‖θ0‖2
Hs
ul

+ C

∫ t

0

(‖u(τ)‖C̃1 + ‖∇θ(τ)‖L∞)‖θ(τ)‖2
Hs
ul
dτ

+ C

∫ t

0

‖θ(τ)‖Hs
ul
‖∇θ(τ)‖L∞‖u(τ)‖C̃1 dτ

≤ ‖θ0‖2
Hs
ul

+ C

∫ t

0

(‖u(τ)‖C̃1 + ‖∇θ(τ)‖L∞)‖θ(τ)‖2
Hs
ul
dτ,

(4.7)

where, to get the last inequality, we applied the Sobolev embedding theorem to con-
clude that ‖∇θ(τ)‖L∞ ≤ C‖θ(τ)‖Hs

ul
. By Grönwall’s Lemma,

‖θ(t)‖2
Hs
ul
≤ ‖θ0‖2

Hs
ul

exp

(
C

∫ t

0

(‖u(τ)‖C̃1 + ‖∇θ(τ)‖L∞) dτ

)
.

This completes the proof of Theorem 4.1. �
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4.2. Existence of solutions. In this section, we prove the following theorem.

Theorem 4.2. Let s ≥ 3. Let θ0 be a function in Hs
ul(R2), and let u0 in Hs

ul(R2)
satisfy

u0 = ∇⊥(−∆)−1/2θ0 in Ċα(R2),

where α > 1 satisfies the embedding Hs
ul(R2) ↪→ Cα(R2). There exists T > 0 and a

unique solution (u, θ) to

∂tθ + u · ∇θ = 0,

(u, θ)|t=0 = (u0, θ0)
(4.8)

satisfying

θ ∈ L∞(0, T ;Hs
ul(R2)) ∩ Lip([0, T ];Hs−1

ul (R2)),

u ∈ L∞(0, T ;Hs
ul(R2)).

Moreover, (u, θ) satisfies

u(t) = u0 + ((aΦ)) ∗ ∇⊥(θ(t)− θ0)−
∫ t

0

(∇∇⊥((1− a)Φ))∗·(θu) ds.(4.9)

Proof. For the proof of Theorem 4.2, we will construct an approximation sequence of
smooth solutions (un, θn) given by Theorem 3.1 on [0, T ]. We will then use Theorem
4.1 to establish uniform bounds on (un, θn) in the Hs

ul norm, which will allow us to
pass to the limit to obtain (4.8).

Approximation Sequence and Uniform Bounds. Consider the sequences u0
n =

Snu
0 and θ0

n = Snθ
0. We see that for each n, u0

n and θ0
n belong to Cr(R2) for every

r > 0. Moreover, by Lemma 2.14, there exists C̃ > 0, depending only on s, such that

‖u0
n‖Hs

ul
≤ C̃‖u0‖Hs

ul
,

‖θ0
n‖Hs

ul
≤ C̃‖θ0‖Hs

ul
.

(4.10)

We claim there exists a single T > 0 such that both (un) and (θn) are uniformly
bounded in L∞(0, T ;Hs

ul(R2)). To see that such a T exists, note that Lemma 2.13
and construction of u0

n and θ0
n give an α > 1 such that both (u0

n) and (θ0
n) are uniformly

bounded in Cα(R2). Thus, by Theorem 3.1, a solution (un, θn) exists in Cα(R3) at
least on [0, Tn], with (un, θn) satisfying (3.2). Choose T > 0 such that, for every n,
T ≤ Tn and

1

2C
≤ Tn(‖u0

n‖L∞ + ‖θ0
n‖Cα) ≤ T (‖u0‖L∞ + ‖θ0‖Cα) <

1

C
,

where C is as in (3.2). We have that for every n, (un, θn) is a solution satisfying
Theorem 3.1 on [0, T ]. In particular, by (3.2),

(4.11) ‖un‖C([0,T ];L∞) + ‖θn‖C([0,T ];Cα) ≤
C(‖u0‖L∞ + ‖θ0‖Cα)

1− CT (‖u0‖L∞ + ‖θ0‖Cα)
,

and ‖un‖C([0,T ];L∞), ‖θn‖C([0,T ];Cα) are therefore uniformly bounded in n.
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To establish a uniform bound on ‖un‖C([0,T ];Cα) in n, note that by Lemma 2.6,

(4.12) ‖un‖C([0,T ];Cα) ≤ C(‖un‖C([0,T ];L∞) + ‖θn‖C([0,T ];Cα)).

Then the uniform bound on ‖un‖C([0,T ];Cα) again follows from (4.11).
Theorem 4.1, (4.10), and an application of the uniform bound on ‖un‖C([0,T ];Cα)

imply that there exists a constant C > 0, depending only on the initial data and T ,
such that

(4.13) ‖θn‖C([0,T ];Hs
ul)
≤ C.

This bound, combined with the estimate (4.6), imply that there exists a constant
C > 0, depending only on the initial data and T , such that

(4.14) ‖un‖C([0,T ];Hs
ul)
≤ C

as well.
To simplify notation in what follows, we set φR = φ0,R, where φ0,R is as in (2.10).

(φRθn) is Cauchy. We now show that (φRθn) is a Cauchy sequence in the space
C([0, T ];Hs−1(R2)) for every R > 0. For some α > 1 and for each n, we know that
un, θn ∈ C([0, T ];Cα(R2)), and that our solutions satisfy

(4.15) ∂tθn + un · ∇θn = 0.

Multiplying (4.15) by φR for some fixed R > 0, we have

‖φR∂tθn‖Hs−1 ≤ ‖φRun · ∇θn‖Hs−1 ≤ C(R)‖un · ∇θn‖Hs−1
ul

≤ C(R)‖un‖Hs−1
ul
‖∇θn‖Hs−1

ul
≤ C(R),

(4.16)

where the third inequality follows because Hs−1
ul (R2) is a Banach algebra, and the

last inequality follows since ‖∇θn‖Hs−1
ul

and ‖un‖Hs−1
ul

are uniformly bounded in n by

a quantity depending only on the initial data.
Via Rellich’s theorem, since for each t ∈ [0, T ], ‖θn(t)‖Hs

ul
is uniformly bounded

over n, we can conclude that for each R and t ∈ [0, T ], there exists a subsequence of
(φRθn(t)) which converges in Hs−1(R2). A diagonalization argument shows that for
each t ∈ [0, T ], there is a subsequence of (θn(t)) (relabeled to (θn(t))) such that for
every R > 0, the sequence (φRθn(t)) converges in Hs−1(R2).

It remains to find a subsequence which converges for all t ∈ [0, T ]. From (4.16), it
follows that given ε > 0, there exists δ > 0 such that for all n and for all s, t ∈ [0, T ]
such that |t− s| < δ,

(4.17) ‖φRθn(t)− φRθn(s)‖Hs−1 < ε/3.

Consider a partition of [0, T ], 0 = t0 < t1 < ... < tM = T such that ti−ti−1 < δ. Since
there are finitely many elements in the partition, we can find a further subsequence of
(φRθn) (relabeled as (φRθn)) such that for each ti in our partition, (φRθn(ti)) converges
in Hs−1(R2) for all R > 0. Let N be such that for all m,n ≥ N and for all ti in our
partition,

‖φRθn(ti)− φRθm(ti)‖Hs−1 < ε/3.
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It follows that for all pairs m,n ≥ N and for each t ∈ [0, T ], with ti chosen to satisfy
|t− ti| < δ,

‖φRθn(t)− φRθm(t)‖Hs−1 ≤ ‖φRθn(t)− φRθn(ti)‖Hs−1

+ ‖φRθn(ti)− φRθm(ti)‖Hs−1 + ‖φRθm(ti)− φRθm(t)‖Hs−1 < ε.

Therefore, (φRθn) is a Cauchy sequence in C([0, T ];Hs−1(R2)), and thus converges
in C([0, T ];Hs−1(R2)). We conclude that there exists θ such that φRθn → φRθ in
C([0, T ];Hs−1(R2)) for all R > 0.

(φRun) is Cauchy. The proof that for all R > 0, (φRun) is also Cauchy in
C([0, T ];Hs−2(R2)) is similar. Indeed, for each t ∈ [0, T ], the uniform bound on
‖un(t)‖Hs

ul
over n and a diagonalization argument, as above, allow us to conclude

that there exists a subsequence of (φRun(t)) which converges in Hs−2(R2) for every
R > 0. It remains to find a single subsequence which converges for all t ∈ [0, T ]. We
observe that by Theorem 3.1, for s, t ∈ [0, T ],

un(t)− un(s) = (aΦ) ∗ ∇⊥(θn(t)− θn(s))−
∫ t

s

(∇∇⊥((1− a)Φ))∗·(θnun),

so that for each R > 0,

‖φRun(t)− φRun(s)‖Hs−2 ≤ C(R)‖φ8Rθn(t)− φ8Rθn(s)‖Hs−1 + C(R)

∫ t

s

‖θn‖L∞‖un‖L∞

≤ C(R)|t− s|+ C(R)|t− s| sup
τ∈[s,t]

‖θn(τ)‖L∞‖un(τ)‖L∞ ,

where we used the equality φR((aΦ) ∗ f) = φR((aΦ) ∗ (φ8Rf)) to get the first inequal-
ity, and we used (4.16) to get the second inequality. Since ‖θn‖L∞ and ‖un‖L∞ are
uniformly bounded in n, given ε > 0, there exists δ > 0 such that for all R > 0,
whenever s, t ∈ [0, T ] satisfy |s− t| < δ,

‖φRun(t)− φRun(s)‖Hs−2 < ε.

Following an argument identical to that used to show (φRθn) is a Cauchy sequence in
C([0, T ];Hs−1(R2)), we can conclude that (φRun) is Cauchy in C([0, T ];Hs−2(R2)),
and there exists u with φRun → φRu in C([0, T ];Hs−2(R2)) for all R > 0.

(u, θ) satisfies Theorem 4.1. We now pass to the limit in the Hs−2(R2) norm.
Given R > 0, if we multiply (4.15) by φR, then for n,m ∈ N,

φR(∂tθn − ∂tθm) = φR(un − um) · ∇θm + φRun · ∇(θn − θm)

= φR(un − um) · (φ2R∇θm) + φRun · φ2R∇(θn − θm).
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Hence, at each t ∈ [0, T ],

‖φR(∂tθn − ∂tθm)‖Hs−2 ≤ ‖φR(un − um) · (φ2R∇θm)‖Hs−2

+ ‖φRun · φ2R∇(θn − θm)‖Hs−2

≤ ‖φR(un − um)‖Hs−2‖φ2R∇θm‖∞ + ‖φR(un − um)‖∞‖φ2R∇θm‖Hs−2

+ ‖φRun‖Hs−2‖φ2R∇(θn − θm)‖∞ + ‖φRun‖∞‖φ2R∇(θn − θm)‖Hs−2 .

Since ‖φ2R∇θm‖∞, ‖φ2R∇θm‖Hs−2 , ‖φRun‖Hs−2 , and ‖φRun‖∞ are uniformly bounded
in n on [0, T ], as N →∞, we have

sup
m,n≥N

‖φR(un − um)‖Hs−2‖φ2R∇θm‖∞ → 0,

sup
m,n≥N

‖φR(un − um)‖∞‖φ2R∇θm‖Hs−2 → 0,

sup
m,n≥N

‖φRun‖Hs−2‖φ2R∇(θn − θm)‖∞ → 0,

sup
m,n≥N

‖φRun‖∞‖φ2R∇(θn − θm)‖Hs−2 → 0.

From these estimates, it follows that (φR∂tθn) is Cauchy in C([0, T ];Hs−2(R2)).
Since φRθn → φRθ in C([0, T ]× R2), we also have φRθn → φRθ in D′([0, T ]× R2).

This implies that φR∂tθn → φR∂tθ in D′([0, T ]× R2), so by the uniqueness of limits,
for all R > 0, φR∂tθn → φR∂tθ in C([0, T ];Hs−2(R2)).

We multiply (4.8)1, as satisfied by (un, θn), by φR, and we pass to the limit in
C([0, T ];Hs−2(R2)). This gives φR∂tθ = −φRu · ∇θ for all R > 0.

To see that θ belongs to L∞(0, T ;Hs
ul(R2)), we use (4.13) and a weak-* compactness

argument. Note that by (4.13), for every x ∈ R2, n ∈ N, and t ∈ [0, T ],

‖φxθn(t)‖Hs ≤ C.

Therefore, up to a subsequence which depends on t and x, φxθn(t) converges weak-*
in Hs(R2). Note, however, that for every R > 0 and t ∈ [0, T ], φRθn(t) → φRθ(t)
in Hs−1(R2). Given x, since we can always choose R large enough to ensure that
φx = φxφR, we have φxθn(t) → φxθ(t) in L2(R2). By uniqueness of limits, φxθn(t)
converges weak-* in Hs(R2) to φxθ(t), and

‖φxθ(t)‖Hs ≤ C.

This holds for all t ∈ [0, T ] and for all x ∈ R2, so θ belongs to L∞(0, T ;Hs
ul(R2)). The

argument showing that u belongs to L∞(0, T ;Hs
ul(R2)) is similar.

(u, θ) satisfies (4.9). Note that (4.9) follows from Theorem 3.1 since, by the Sobolev
Embedding Theorem, u and θ belong to C([0, T ];Cα(R2)) for some α > 1. This com-
pletes the proof of Theorem 4.2.

Uniqueness Applying a cutoff function φR to two solutions and making the same
argument that showed (φRun) is Cauchy gives uniqueness of solutions. �
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5. (E) in uniformly local Sobolev spaces

5.1. A priori estimates. We now prove an analogous theorem to Theorem 4.1 for
the Euler equations.

Theorem 5.1. Assume s is an integer satisfying s ≥ 3, with d = 2 or 3. Let u
be a solution to (E) in C1([0, T ];Hk(Rd)) for all k ∈ N. Then there exists C > 0,
depending on s, such that the following estimate holds for each t ∈ [0, T ]:

(5.1) ‖ω(t)‖2
Hs−1
ul
≤ (1 + ‖ω0‖2

Hs−1
ul

) exp

(
C

∫ t

0

‖u(τ)‖C̃1(‖u(τ)‖2
L∞ + 1) dτ

)
.

Proof. The proof is similar to that of Theorem 4.1. We prove the theorem for d = 3.
The proof clearly extends to the case d = 2.

Set W = Dαω with 0 ≤ |α| ≤ s− 1 and s ≥ 3. Apply Dα to the vorticity equation
to get

(5.2) ∂tW + u · ∇W = Dα(ω · ∇u) + F,

where

F = u · ∇W −Dα(u · ∇ω).

For x ∈ R3 fixed, multiply (5.2) by φx to get

∂t(φxW ) + u · ∇(φxW ) = (u · ∇φx)W + φxD
α(ω · ∇u) + φxF.(5.3)

After taking the dot product of (5.3) with φxW and integrating, we conclude that∫
R3

φxW · ∂t(φxW ) +

∫
R3

φxW · (u · ∇(φxW )) =

∫
R3

φxW · ((u · ∇φx)W )

+

∫
R3

φxW · (φxDα(ω · ∇u)) +

∫
R3

φxW · φxF.

Now observe that ∫
R3

φxW · ∂t(φxW ) =
1

2

d

dt
‖φxW‖2

L2 .

Moreover, one can show using the divergence-free property of u and integration by
parts that ∫

R3

φxW · (u · ∇(φxW )) = 0.

By properties of φx and Hölder’s inequality, we also have∫
R3

φxW · ((u · ∇φx)W ) =

∫
R3

φxW · ((u · ∇φx)φx,2W )

≤ ‖φx,2W‖2
L2‖u · ∇φx‖L∞ ≤ C‖u‖L∞‖ω‖2

Hs−1
ul
,

and, again from Hölder’s inequality,∫
R3

φxW · (φxDα(ω · ∇u)) ≤ C‖φxW‖L2‖φxDα(ω · ∇u)‖L2

≤ ‖ω‖Hs−1
ul

(‖ω‖Hs−1
ul
‖∇u‖L∞ + ‖ω‖L∞‖∇u‖Hs−1

ul
) ≤ C‖u‖2

Hs
ul
‖∇u‖L∞ ,
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where we used Lemma 2.12 to get the second inequality. Finally, another application
of Hölder’s inequality gives∫

R3

φxW · φxF ≤ ‖φxW‖L2‖φxF‖L2 .

Since u is divergence free, we can write

F = u · ∇W −Dα div(uω),

which allows us to apply Lemma 2.12 to ‖φxF‖L2 with f = u and g = ω. This gives

‖φxF‖L2 ≤ C
(
‖u‖C̃1‖ω‖Hs−1

ul
+ ‖ω‖L∞‖u‖Hs

ul

)
≤ C‖u‖C̃1‖u‖Hs

ul
.

Combining the above estimates gives

1

2

d

dt
‖φxW‖2

L2 ≤ C‖u‖C̃1

(
‖ω‖Hs−1

ul
‖u‖Hs

ul
+ ‖u‖2

Hs
ul

)
≤ C‖u‖C̃1‖u‖2

Hs
ul
.

After integrating in time and taking the supremum over x ∈ R3 of both sides, we
conclude that

‖ω(t)‖2
Hs−1
ul
≤ ‖ω0‖2

Hs−1
ul

+ C

∫ t

0

‖u(τ)‖C̃1‖u(τ)‖2
Hs
ul
dτ.(5.4)

It remains to close the estimate and apply Grönwall’s lemma. To do this, we use the
Biot-Savart law.

Let K3 = ∇G, with G as in (2.1), be (one form of) the Biot-Savart kernel in
dimension 3. Setting ωik = (∇u − (∇u)T )ik = ∂ku

i − ∂iuk, since u and ω are smooth
and decaying, for 1 ≤ i ≤ 3, using implicit sum notation,

ui = Kk
3 ∗ ωik = (aKk

3 ) ∗ ωik + ((1− a)Kk
3 ) ∗ ωik

= (aKk
3 ) ∗ ωik + (∂k((1− a)Kk

3 )) ∗ ui − (∂i((1− a)Kk
3 )) ∗ uk.

(5.5)

Applying a differential operator Dβ, with 0 ≤ |β| ≤ s− 1, to both sides of (5.5) gives

Dβui = (aKk
3 ) ∗Dβωik + [Dβ∂k((1− a)Kk

3 )] ∗ ui − [Dβ∂i((1− a)Kk
3 )] ∗ uk.

Setting Dγ = ∂jD
β and applying ∂j then gives

Dγui = ∂j((aK
k
3 ) ∗Dβωik) + [Dγ∂i((1− a)Kk

3 )] ∗ ui.(5.6)

Applying Lemma 2.15 gives

‖∇u‖Hs−1
ul
≤ C(‖ω‖Hs−1

ul
+ ‖u‖L∞).

This estimate, combined with ‖u‖L2
ul
≤ C‖u‖L∞ , gives

(5.7) ‖u‖Hs
ul
≤ C(‖ω‖Hs−1

ul
+ ‖u‖L∞).
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We use (5.7) and (5.4) to write

‖ω(t)‖2
Hs−1
ul
≤ ‖ω0‖2

Hs−1
ul

+ C

∫ t

0

‖u(τ)‖C̃1(‖ω(τ)‖Hs−1
ul

+ ‖u(τ)‖L∞)2 dτ

≤ ‖ω0‖2
Hs−1
ul

+ C

∫ t

0

‖u(τ)‖C̃1(‖ω(τ)‖2
Hs−1
ul

+ ‖u(τ)‖2
L∞) dτ,

≤ ‖ω0‖2
Hs−1
ul

+ C

∫ t

0

‖u(τ)‖C̃1(‖u(τ)‖2
L∞ + 1)(‖ω(τ)‖2

Hs−1
ul

+ 1) dτ,

where we used that for A,B ≥ 0, (A+B)2 ≤ C(A2 +B2) to get the second inequality.
Setting h(t) = 1 + ‖ω(t)‖2

Hs−1
ul

, we have

h(t) ≤ h(0) + C

∫ t

0

‖u(τ)‖C̃1(‖u(τ)‖2
L∞ + 1)h(τ) dτ.

An application of Grönwall’s Lemma gives

‖ω(t)‖2
Hs−1
ul
≤ (1 + ‖ω0‖2

Hs−1
ul

) exp

(
C

∫ t

0

‖u(τ)‖C̃1(‖u(τ)‖2
L∞ + 1) dτ

)
.

This completes the proof of Theorem 5.1. �

5.2. Existence of solutions. We prove the following theorem.

Theorem 5.2. Let s ≥ 3. Let u0 be a function in Hs
ul(R3), and let ω0 = ∇ × u0.

There exists T > 0 and a unique classical solution (u, p) to (E) satisfying

u ∈ L∞(0, T ;Hs
ul(R3)) ∩ Lip([0, T ];Hs−1

ul (R3)).

Moreover, p satisfies

∇p(x) = −
∫
R3

a(x− y)∇G(x− y) div div(u⊗ u)(y) dy

+

∫
R3

(u⊗ u)(y) · ∇∇ [(1− a(x− y))∇G(x− y)] dy.

(5.8)

To prove the theorem, we construct an approximation sequence of smooth, decaying
solutions to (E), and we pass to the limit in (E). The construction of the sequence
of initial velocities is slightly more tedious in the three-dimensional setting than in
two dimensions, as we must make use of a more complicated explicit formula for a
three-dimensional stream function.

Because we are seeking a strong solution to (E) in Hs
ul, we are forced to consider

the meaning of the pressure for such solutions. We are able to make sense of the
pressure by passing to a certain limit of the sequence of smooth pressures generated
from the smooth velocity solutions.

To prepare the initial velocity, we adapt the classical strategy employed in [3]
and [10] of cutting off and smoothing the stream function associated with the initial
velocity u0. Some additional care is required because of the lack of inherent decay of
the velocity field.
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Lemma 5.3. Let u0 ∈ Hs
ul(R3) and let s be a nonnegative integer. There exists

a sequence (u0
n) of Schwarz-class, divergence-free vector fields uniformly bounded in

Hs
ul(R3) for which φRu

0
n → φRu

0 in Hs(R3) for any fixed R > 0.

Proof. Let (mn)∞n=1 be a sequence of positive integers that we will specify later. We
define u0

n by

u0
n = Smn(∇× (φnψ)) = Smn(φnu

0) + Smn(∇φn × ψ),(5.9)

where ψ is the stream function for u0 given in Lemma 2.17. Observe that u0
n is

Schwarz-class and divergence-free.
Using Lemmas 2.12 and 2.14,

‖Smn(φnu
0)‖Hs

ul
≤ C‖φnu0‖Hs

ul
≤ C‖φn‖Cs‖u0‖Hs

ul
≤ C‖u0‖Hs

ul
.

Again by Lemmas 2.12 and 2.14,

‖Smn(∇φn × ψ)‖Hs
ul
≤ C‖∇φn × ψ‖Hs

ul
= C sup

z∈R3

‖φz∇φn × ψ‖Hs

= C sup
z∈R3

‖φz∇φn × ψ‖Hs(U) ≤ C sup
z∈R3

‖φ
1
2
z∇φn‖C̃s(U)‖φ

1
2
z ψ‖Hs(U),

where U = B2n(0) ∩ B2(z). But by Lemma 2.17, ‖ψ‖Hs(U) ≤ Cn‖u0‖Hs
ul

= Cn and

hence ‖φ
1
2
z ψ‖Hs(U) ≤ Cn. Since ∇φn(·) = n−1∇φ(n−1·), we have ‖φ

1
2
z∇φn‖C̃s(U) ≤

Cn−1. It follows that

‖Smn(∇φn × ψ)‖Hs
ul
≤ C

n
Cn = C.

This shows that (u0
n) is uniformly bounded in Hs

ul(R3).
We now show that φRu

0
n → φRu

0 in Hs(R3). Because Smn commutes with ∇×,

φR(u0
n − u0) = φR [Smn(∇× (φnψ))−∇× ψ] = φR∇× (Smn(φnψ)− ψ).

But,

Smn(φnψ)− ψ = Smn(φnψ)− φnψ + (φn − 1)ψ.

For n > 2R, φn − 1 = 0, so φR∇× ((φn − 1)ψ) = 0, leaving

φR(u0
n − u0) = φR∇× (Smn(φnψ)− φnψ) .

It is now time to choose mn. Because ∇ × (φnψ) ∈ Hs(R3), we know that ∇ ×
(Sk(φnψ)− φnψ)→ 0 in Hs(R3), as k →∞, so choose mn ≥ n sufficiently large that

‖∇ × (Sk(φnψ)− φnψ)‖Hs(R3) ≤
1

n
for all k ≥ mn.

It follows that ∥∥φR(u0
n − u0)

∥∥
Hs(R3)

≤ C(R)

n
.

This gives φRu
0
n → φRu

0 in Hs(R3) for any R > 0. �
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Proof of Theorem 5.2.
Uniform time of existence. From the sequence of initial velocities in Lemma 5.3,
we generate a sequence (un) of solutions to (E) in Hk(R3) for all k, where the time
interval of existence in Hk(R3) for each un may vary with n. We claim, however, that
there exists a single T > 0 such that un solves (E) with (un) uniformly bounded in
L∞(0, T ;Hs

ul(R3)).
To see that such a T exists, note that Lemma 2.13 gives an α > 1 such that u0

n

belongs to Cα(R3) for each n. Thus, a solution un will exist in Cα(R3) at least on
[0, Tn], with un satisfying the estimate (see [6] and chapter 4 of [7])

‖un‖C([0,Tn];Cα) ≤
‖u0

n‖Cα
1− CTn‖u0

n‖Cα
≤

C̃‖u0
n‖Hs

ul

1− C̃Tn‖u0
n‖Hs

ul

.(5.10)

Choose T > 0 such that, for every n, T ≤ Tn and satisfies

1

2C̃
≤ Tn‖u0

n‖Hs
ul
≤ T‖u0‖Hs

ul
<

1

C̃
,

where C̃ is as in (5.10). We have that for every n, un is a solution to (E) in Cα(R3) on
[0, T ]. Moreover, by (5.10) and Lemma 5.3, ‖un‖C([0,T ];Cα) is uniformly bounded in n.
But this implies that for every n, ‖∇un‖L∞(0,T ;L∞(R3)) < ∞. From this and classical
theory we can conclude that un belongs to C([0, T ];Hk(R3)) for every k. Thus, for
every n, un satisfies Theorem 5.1 on [0, T ]. Theorem 5.1, Lemma 5.3, and another
application of the uniform bound on ‖un‖C([0,T ];Cα) imply that there exists a constant
C > 0, depending only on the initial data and T , such that for all n,

(5.11) ‖ωn‖C([0,T ];Hs−1
ul ) ≤ C.

Moreover, by (5.7), (5.11), and (5.10), there exists a constant C > 0, depending only
on the initial data and T , such that for all n,

(5.12) ‖un‖C([0,T ];Hs
ul)
≤ C.

(un) converges to u. Note that for each n, un belongs to the space C1([0, T ];Hs(R3)).
Moreover, we have

(5.13) ∂tun + un · ∇un = −∇pn,
where pn satisfies pn = ∆−1∇(un · ∇un). For fixed R > 0, multiply (5.13) by φR.
Then

‖φR∂tun‖Hs−1 ≤ ‖φR(un · ∇un)‖Hs−1 + ‖φR∇pn‖Hs−1 .

Note that
‖φR(un · ∇un)‖Hs−1 ≤ C(R)‖un · ∇un‖Hs−1

ul
≤ C(R)‖un‖L∞‖∇un‖Hs−1

ul

+ C(R)‖∇un‖L∞‖un‖Hs−1
ul
≤ C(R)‖un‖2

Hs
ul
,

which can be bounded uniformly in n by (5.12).
To estimate the pressure term, observe that

∇pn = −(a∇G) ∗ div div(un ⊗ un) + [∇∇((1− a)∇G)] · ∗(un ⊗ un).(5.14)
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Applying Dγ to this identity with 1 ≤ |γ| ≤ s− 1 and applying Lemma 2.15,

‖∇pn‖Hs−1
ul
≤ C(‖un ⊗ un‖Hs

ul
+ ‖un ⊗ un‖L∞) ≤ C‖un ⊗ un‖Hs

ul
,

where we used the Sobolev embedding theorem. Thus,

(5.15) ‖φR∇pn‖Hs−1 ≤ C(R)‖∇pn‖Hs−1
ul
≤ C‖un‖2

Hs
ul
,

which can be uniformly bounded in n.
Combining the above inequalities, we conclude that

(5.16) ‖φR∂tun‖Hs−1 ≤ C,

with C depending on the initial data and R, but not on n.
By Rellich’s Theorem and the uniform bounds on ‖un(t)‖Hs

ul
for each t, we can

conclude that for each t and each R, there exists a subsequence of (φRun(t)) which
converges in Hs−1(R3). Using a standard diagonalization argument, for each fixed
t, one can find a subsequence of (φRun(t)), relabelled (φRun(t)), which converges in
Hs−1(R3) for every R.

To find a single subsequence that works for all t, we use (5.16). Given ε > 0, there
exists δ > 0 such that for all n,

(5.17) ‖φRun(s)− φRun(t)‖Hs−1 < ε/3

whenever |s − t| < δ. Given this δ, construct a partition of [0, T ], 0 = t0 < t1 <
t2 < ...... < tM = T such that ti − ti−1 < δ. Using the process above, one can find a
subsequence of (φRun), which we relabel (φRun), such that (φRun(ti)) converges, and
hence is Cauchy in, Hs−1 for each ti, i = 1, 2, ...,M and for every R > 0.

Let N be such that for all n,m ≥ N and for all ti in the partition,

‖φRun(ti)− φRum(ti)‖Hs−1 < ε/3.

Then for all pairs m, n ≥ N and for each t ∈ [0, T ], there exists ti such that

‖φRun(t)− φRum(t)‖Hs−1 ≤ ‖φRun(t)− φRun(ti)‖Hs−1

+ ‖φRun(ti)− φRum(ti)‖Hs−1 + ‖φRum(ti)− φRum(t)‖Hs−1 < ε.

We conclude that (φRun) is Cauchy in C([0, T ];Hs−1(R3)), and thus there exists u
such that (φRun) converges to φRu in C([0, T ];Hs−1(R3)) for all R > 0.

(pn) converges to p. We now show that, up to subsequences, for all R > 0, (φR∇pn)
is Cauchy (and thus converges) in C([0, T ];Hs−2(R3)). The process is very similar to
that above. As above, using the uniform bound in (5.15) and Rellich’s Theorem, we
can conclude that for each fixed t, there exists a subsequence of (φR∇pn(t)), relabel
it (φR∇pn(t)), which converges in Hs−2(R3) for every R. To find a single subsequence
that works for all t, we must find a time modulus of continuity for (φR∇pn(t)) which
is uniform in n. To do this, first note that by Proposition C.1,

‖∂tun‖L∞ ≤ ‖un‖L∞‖∇un‖L∞ + ‖∇pn‖L∞
≤ C‖un‖2

C̃1 ≤ C‖un‖2
Hs
ul
≤ C
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for all n and for all t ∈ [0, T ]. Thus there exists C > 0 such that for all s, t ∈ [0, T ]
and for all n,

(5.18) ‖un(t)− un(s)‖L∞ ≤ C|t− s|.
Applying (5.14) and Lemma 2.15, for s, t ∈ [0, T ],

‖φR∇pn(t)− φR∇pn(s)‖Hs−2 ≤ C‖φ4R(un ⊗ un(t)− un ⊗ un(s))‖Hs−1

+ C‖un ⊗ un(t)− un ⊗ un(s)‖L∞ .
It follows from uniform bounds on ‖un‖L∞ and ‖un‖Hs−1

ul
in n, along with (5.18) and

(5.17), that given ε > 0, there exists δ > 0 such that for all n, whenever |s− t| < δ,

‖φR∇pn(t)− φR∇pn(s)‖Hs−2 < ε.

With this uniform continuity in hand, we follow a process identical to that used to
show for all R > 0, (φRun) is Cauchy in C([0, T ];Hs−1(R3)). We conclude that for all
R > 0, (φR∇pn) is Cauchy in C([0, T ];Hs−2(R3)), and thus there exists p such that
(φR∇pn) converges to φR∇p in C([0, T ];Hs−2(R3)).

(u, p) solve (E). For fixed R > 0, multiply (5.13) by φR. Then for any m,n,

φR(∂tun − ∂tum) = φR(un − um) · ∇um + φRun · ∇(um − un)− φR∇(pn − pm)

= φR(un − um)φ2R · ∇um + φRun · φ2R∇(um − un)− φR∇(pn − pm),

so that, for each t,

‖φR(∂tun − ∂tum)‖Hs−2 ≤ ‖φR(un − um)φ2R∇um‖Hs−2

+ ‖φRun · φ2R∇(um − un)‖Hs−2 + ‖φR∇(pn − pm)‖Hs−2

≤ ‖φR(un − um)‖L∞‖φ2R∇um‖Hs−2 + ‖φR(un − um)‖Hs−2‖φ2R∇um‖L∞
+ ‖φRun‖L∞‖φ2R∇(um − un)‖Hs−2 + ‖φRun‖Hs−2‖φ2R∇(um − un)‖L∞
+ ‖φR∇(pn − pm)‖Hs−2 .

Note that ‖φ2R∇un‖Hs−2 , ‖φ2R∇un‖L∞ , ‖φRun‖L∞ , and ‖φRun‖Hs−2 are uniformly
bounded in n. We conclude that as N →∞,

sup
m,n≥N

‖φR(un − um)‖L∞‖φ2R∇um‖Hs−2 → 0,

sup
m,n≥N

‖φR(un − um)‖Hs−2‖φ2R∇um‖L∞ → 0,

sup
m,n≥N

‖φRun‖L∞‖φ2R∇(um − un)‖Hs−2 → 0,

sup
m,n≥N

‖φRun‖Hs−2‖φ2R∇(um − un)‖L∞ → 0,

sup
m,n≥N

‖φR∇(pn − pm)‖Hs−2 → 0.

From the estimates above, it follows that (φR∂tun) is Cauchy in C([0, T ];Hs−2(R3)).
Since φRun → φRu in C([0, T ] × R3), φRun → φRu in D′([0, T ] × R3), which means
φR∂tun → φR∂tu in D′([0, T ] × R3). Thus, by uniqueness of weak limits, φR∂tun →
φR∂tu in C([0, T ];Hs−2(R3)) for every R. This, combined with convergence of (φRun)
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to (φRu) in C([0, T ];Hs−1(R3)) for every R, allows us to conclude that for every
R > 0,

φR∂tun → φR∂tu,

φRun · ∇un → φRu · ∇u
in C([0, T ];Hs−2(R3)).

It remains to take the limit of (φR∇pn) in C([0, T ];Hs−2(R3)). To do this, first
note that by Proposition C.1, for every n,

∇pn(t, x) = −
∫
R3

a(x− y)∇G(x− y) div div(un ⊗ un)(t, y) dy

+

∫
R3

(un ⊗ un)(t, y) · ∇∇ [(1− a(x− y))∇G(x− y)] dy.

Since (un ⊗ un) is uniformly bounded in C([0, T ];L∞(R3)), for each t ∈ [0, T ], there
exists a subsequence (unk(t) ⊗ unk(t)) converging weak-* in L∞(R3). Since (φRun)
converges to φRu in C([0, T ];Hs−1(R3)) for each R, (φRun ⊗ φRun) converges to
φRu ⊗ φRu in C([0, T ];Hs−1(R3)) for each R. It follows from uniqueness of weak
limits that for this fixed t ∈ [0, T ], (unk(t) ⊗ unk(t)) converges weak-* in L∞ to
u(t)⊗ u(t). Since, for each x ∈ R3, ∇∇ [(1− a(x− y))∇G(x− y)] is in L1

y(R3),∫
R3

(unk ⊗ unk)(t, y) · ∇∇ [(1− a(x− y))∇G(x− y)] dy

→
∫
R3

(u⊗ u)(t, y) · ∇∇ [(1− a(x− y))∇G(x− y)] dy

for each x ∈ R3.
Similarly, since (div div(un ⊗ un)) = (∇un · (∇un)T ) is uniformly bounded in the

space C([0, T ];L∞(R3)), for each t ∈ [0, T ], there exists a subsequence (div div(unk(t)⊗
unk(t))) converging weak-* in L∞(R3). But again, since (φRun ⊗ φRun) converges to
φRu ⊗ φRu in C([0, T ];Hs−1(R3)) for each R, for this fixed t ∈ [0, T ], (div div(unk ⊗
unk)) converges to div div(u⊗ u) in D′(R3). By uniqueness of weak limits, the weak-
* limit of (div div(unk(t) ⊗ unk(t))) must be (div div(u(t) ⊗ u(t))). Since, for each
x ∈ R3, a(x− y)∇G(x− y) is in L1

y(R3),∫
R3

a(x− y)∇G(x− y) div div(unk ⊗ unk)(t, y) dy

→
∫
R3

a(x− y)∇G(x− y) div div(u⊗ u)(t, y) dy

for each x ∈ R3.
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We conclude that for each t ∈ [0, T ], there exists a subsequence (∇pnk) such that
∇pnk(t, x)→ ∇p(t, x) for every x ∈ R3, where

∇p(t, x) = −
∫
R3

a(x− y)∇G(x− y) div div(u⊗ u)(t, y) dy

+

∫
R3

(u⊗ u)(t, y) · ∇∇ [(1− a(x− y))∇G(x− y)] dy.

(5.19)

Finally, since (φR∇pn) converges in C([0, T ];Hs−2(R3)), by the above it must con-
verge to φR∇p in C([0, T ];Hs−2(R3)). Thus, (u, p) solves (E), where p satisfies (5.19).

u belongs to L∞(0, T ;Hs
ul(R

3)). By (5.12), for every x ∈ R2, n ∈ N, and t ∈ [0, T ],

‖φxun(t)‖Hs ≤ C.

Therefore, up to a subsequence which depends on t and x, φxun(t) converges weak-*
in Hs(R2). Note, however, that for every R > 0 and t ∈ [0, T ], φRun(t) → φRu(t)
in Hs−1(R2). Given x, since we can always choose R large enough to ensure that
φx = φxφR, we have φxun(t) → φxu(t) in L2(R2). By uniqueness of limits, φxun(t)
converges weak-* in Hs(R2) to φxu(t), and

‖φxu(t)‖Hs ≤ C.

This holds for all t ∈ [0, T ] and for all x ∈ R2, so u belongs to L∞(0, T ;Hs
ul(R2)).

Uniqueness Applying a cutoff function φR to two solutions and making the same
estimates that showed (u, p) solve (E) yields uniqueness. Moreover, uniqueness also
follows from [29] or from [12]. �

Appendix A. A constitutive relation for (SQG)

Lemma A.1. Assume that (u, θ) are smooth solutions on [0, T ]×R2, with θ compactly
supported in space, to 

∂tθ + u · ∇θ = 0,

u(t) = ∇⊥(∆)−
1
2 θ(t),

(u, θ)|t=0 = (u0, θ0).

Then for all t ∈ [0, T ] and any λ > 0, we have the Serfati-type identity,

u(t) = u0 + (aλΦ) ∗ ∇⊥(θ(t)− θ0)−
∫ t

0

(∇∇⊥((1− aλ)Φ)∗·(θu(s)) ds.

In indices, this is

ui(t) = (u0)i + (aΦ) ∗ (∇⊥(θ(t)− θ0))i −
∫ t

0

∂j(∇⊥((1− a)Φ))i ∗ (θuj(s)) ds.
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Proof. Because θ is compactly supported in space, we can write the constitutive law
in the form u(t) = ∇⊥(Φ ∗ θ(t)). Taking the time derivative, we can introduce the
cutoff function to obtain

∂tu(t) = ∇⊥(Φ ∗ ∂tθ(t)) = ∇⊥((aλΦ) ∗ ∂tθ(t)) +∇⊥(((1− aλ)Φ) ∗ ∂tθ(t))
= ∂t((aλΦ) ∗ ∇⊥θ(t))−∇⊥(((1− aλ)Φ) ∗ (u · ∇θ)(t)).

But u · ∇θ = div(θu), so[
∇⊥(((1− aλ)Φ) ∗ (u · ∇θ)(t))

]i
=
[
∇⊥(((1− aλ)Φ)

]i ∗ (div(θu)(t))

= ∇
[
∇⊥(((1− aλ)Φ)

]i ∗·(θu)(t).

Integrating in time completes the proof. �

Lemma A.2. Assume the sequences (un) and (θn) are generated as in (3.5) and
(3.6). For every j ∈ Z, n ∈ N, and t ∈ [0, T ],

∆̇ju
n(t) = ∆̇j∇⊥(−∆)−1/2θn(t),

equality holding almost everywhere on R2.

Proof. Applying ∂t to (3.6)3 gives, for every j ∈ Z,

ϕj ∗ ∂tun(t) = ϕj ∗ ((aΦ) ∗ ∂t∇⊥θn(t))− ϕj ∗
(
∇L∗·(un−1θn)(t)

)
,(A.1)

where L = ∇⊥((1 − a)Φ), which we note has the singularity at the origin removed
and which decays like C |x|−2 as x → ∞. We apply the Fourier transform to both
sides of (A.1). This gives

ϕ̂jF(∂tu
n) = ϕ̂jF(aΦ)F(∂t∇⊥θn)− ϕ̂jF(∇L)F(un−1θn)

= ϕ̂j(â ∗ Φ̂)(iξ⊥)F(∂tθ
n)− ϕ̂j(iξ⊥)(F(1− a) ∗ Φ̂)

[
iξ · F(un−1θn)

]
= iϕ̂jξ

⊥
[
(â ∗ Φ̂)F(∂tθ

n)− (F(1− a) ∗ Φ̂)
[
iξ · F(un−1θn)

]]
.

But,

iξ · F(un−1θn) = F(div(θnun−1)) = F(un−1 · ∇θn) = −F(∂tθ
n),

so

ϕ̂jF(∂tu
n) = iF(∂tθ

n)ϕ̂jξ
⊥
[
(â ∗ Φ̂) + (F(1− a) ∗ Φ̂)

]
.

Note that â ∈ S, and Φ̂ decays like |ξ|−1, so that â ∗ Φ̂ = â ∗ (aΦ̂) + â ∗ ((1− a)Φ̂)
is in L1 + Lp for all p > 2, by Young’s inequality. Moreover, observe that

(A.2) ϕ̂j(F(1− a) ∗ Φ̂) = ϕ̂j((δ − â) ∗ Φ̂) = ϕ̂jΦ̂− ϕ̂j(â ∗ Φ̂).

Since ϕ̂jΦ̂ ∈ S, we have that ϕ̂j(F(1−a)∗Φ̂) belongs to L1 +Lp as well. In particular,
all three terms in (A.2) are defined almost everywhere as, then, are the products. This
allows us to write the following equality, which holds in the distributional sense:

ϕ̂jF(∂tu
n) = ϕ̂j(iξ

⊥)Φ̂F(∂tθ
n).(A.3)
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Defining G ∈ S(R2) by G = F−1[ϕ̂j(iξ
⊥)Φ̂] and applying the inverse Fourier trans-

form to (A.3) gives

(A.4) ϕj ∗ ∂tun = G ∗ ∂tθn in S ′(R2).

Since both sides of the equality in (A.4) are convolutions of Schwarz functions with
bounded functions, both sides belong to L1

loc(R2). Therefore, equality in (A.4) holds
pointwise almost everywhere on R2. Moreover, by (2.7), we can write

∆̇j∂tu
n(t) = ∆̇j∇⊥(−∆)−1/2∂tθ

n,

which also holds almost everywhere. Integrating in time and using the identity ∆̇ju
0 =

∆̇j∇⊥(−∆)−1/2θ0 for all j ∈ Z, we have that for all t ≥ 0,

∆̇ju
n(t) = ∆̇j∇⊥(−∆)−1/2θn,

proving the lemma. �

Appendix B. Serfati identity for 3D Euler

We establish the 3D version of the Serfati identity of [26]. The key point of this
identity is not its precise form, but rather the order of the derivatives that appear on
its near and far field terms.

Lemma B.1. Let

K(x) =
x

4π |x|3
,

one form of the 3D Biot-Savart kernel. Any smooth solution to the 3D Euler equations
with velocity u and with vorticity ω compactly supported in space satisfies, for any
λ > 0, the 3D Serfati identity,

uk(t) = (u0)k +

∫
R3

(aλK)(x− y)× ω(t, y) dy

+

∫
R3

∇∇((1− aλ)Kk)(x− y)∗·(u⊗ u)(t, y) dy

+

∫
R3

∇ div((1− aλ)K)(x− y)∗·(uk u)(t, y) dy.

Proof. Because ω is compactly supported in space, we can write the constitutive law
in the form (see, for instance, Proposition 2.16 of [21])

u(t, x) =

∫
R3

K(x− y)× ω(t, x) dy.

Proceeding as in the proof of (A.1), we have

∂tu(t) =
d

dt

∫
R3

(aλK)(x− y)× ω(t, y) dy +

∫
R3

L(x− y)× ∂tω(t, y) dy,
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where L = (1 − aλ)K. But ∂tω = curl(∂tu) = − curl(u · ∇u) = − curl div(u ⊗ u).
Hence, the ith component of the second integral above, using Lemma B.2, becomes

−
[∫

R3

L(x− y)× curl div(u⊗ u)(t, y) dy

]k
=

∫
R3

∂yiL
k(x− y) · [div(u⊗ u)(t, y)]i + ∂yiL

i(x− y)[div(u⊗ u)(t, y)]k dy

=

∫
R3

∂yiL
k(x− y)∂j(u

j ⊗ ui)(t, y) + ∂yiL
i(x− y)∂j(u

j ⊗ uk)(t, y) dy

= −
∫
R3

∂j∂iL
k(x− y)(uj ⊗ ui)(t, y) + ∂j∂iL

i(x− y)(uj ⊗ uk)(t, y) dy.

Integrating in time yields the result. �

Lemma B.2. For u, v smooth with uv compactly supported,∫
R3

u× curl v =

∫
R3

(−∇u · v + div u v) =

∫
R3

(−∂iukvi + ∂iu
i vk)ek.

Proof. We have,

u× curl v =

∣∣∣∣∣∣
i j k
u1 u2 u3

∂2v
3 − ∂3v

2 ∂3v
1 − ∂1v

3 ∂1v
2 − ∂2v

1

∣∣∣∣∣∣ .
Working only on the first component and integrating by parts, we have∫

R3

(u× curl v)1 =

∫
R3

u2(∂1v
2 − ∂2v

1)− u3(∂3v
1 − ∂1v

3)

=

∫
R3

(−∂1u
2v2 + ∂2u

2v1 + ∂3u
3v1 − ∂1u

3v3).

But ∂2u
2 + ∂3u

3 = div u− ∂1u
1, so∫

R3

(u× curl v)1 =

∫
R3

(−∂1u
2v2 + (div u− ∂1u

1)v1 − ∂1u
3v3)

=

∫
R3

(−∂1u · v + div u v1).

Similar expressions for the other two terms give the result. �

Appendix C. Pressure identity

We derive in this appendix the pressure identity for solutions to the Euler equations,
adapted from the 2D version due to Serfati [26], as derived in [19].

We work throughout with a sufficiently smooth decaying solution, (u, p), to the 3D
Euler equations in all of R3. It is classical in that setting that

p(t, x) = −G ∗ div div(u(t)⊗ u(t))(x),(C.1)

where G is the fundamental solution to the Laplacian on R3, defined in (2.1).
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Proposition C.1. Let a be as in Section 2. The identity,

∇p(x) = −
∫
R3

a(x− y)∇G(x− y) div div(u⊗ u)(y) dy

+

∫
R3

(u⊗ u)(y) · ∇∇ [(1− a(x− y))∇G(x− y)] dy,

(C.2)

holds independently of the choice of cutoff function, and ∇p ∈ L∞([0, T ]× R3) with

‖∇p(t)‖L∞ ≤ C ‖u(t)‖2
C̃1 .

Proof. Applying ∂i to (C.1) gives

∂ip(x) = −
∫
R3

∂iG(x− y) div(u · ∇u)(y) dy.

Here, we suppress the time variable to streamline notation. Applying a cutoff and
integrating by parts,

∂ip(x) = −
∫
R3

a(x− y)∂iG(x− y) div(u · ∇u)(y) dy

−
∫
R3

(1− a(x− y))∂iG(x− y) div(u · ∇u)(y) dy

= −
∫
R3

a(x− y)∂iG(x− y) div(u · ∇u)(y) dy

+

∫
R3

(u · ∇u)(y) · ∇ [(1− a(x− y))∂iG(x− y)] dy.

Integrating as in Lemma C.2 gives

∂ip(x) = −
∫
R3

a(x− y)∂iG(x− y) div(u · ∇u)(y) dy

+

∫
R3

(u(y) · ∇y)∇y [(1− a(x− y))∂iG(x− y)] · u(y) dy,

which we can write more succinctly as (C.2).
We conclude, since div(u · ∇u) = ∇u · (∇u)T , that

‖∂ip‖L∞ ≤ ‖a∂iG‖L1 ‖∇u‖2
L∞ + ‖∇∇ [(1− a)∂iG] ‖L1 ‖u‖2

L∞ .

Here, we are using that (in any dimension), ∇G is locally in L1 and, away from its
singularity, ∇3G lies in L1. This gives the bound on ∇p(t) in L∞.

That the expression in (C.2) is independent of the choice of cutoff function a can
be seen by subtracting the expression for two different cutoffs then undoing the inte-
grations by parts. �

We used the following lemma above.

Lemma C.2. Let V ∈ H1(R3). Then∫
R3

(u · ∇u) · V = −
∫
R3

(u · ∇V ) · u.
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Proof. Using the vector identity, (u · ∇u) · V = u · ∇(V · u)− (u · ∇V ) · u gives∫
R3

(u · ∇u) · V =

∫
R3

u · ∇(V · u)−
∫
R3

(u · ∇V ) · u = −
∫
R3

(u · ∇V ) · u,

where the one integral vanishes since div u = 0. �
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Pures Appl., 74: 95-104, 1995. 5, 36, 37
[27] E. Stein. Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals.

Princeton University Press, Princeton, New Jersey, 1993. 6
[28] P. Stinga. User’s guide to the fractional Laplacian and the method of semigroups. Handbook

of Fractional Calculus with Applications, Vol. 2: Fractional Differential Equations, A. Kochubei
and Y. Luchko, eds, De Gruyter, 235-265, 2019. 13

[29] Y. Taniuchi, T. Tashiro, and T. Yoneda. On the two-dimensional Euler equations with spatially
almost periodic initial data. J. Math. Fluid Mech., 12(4): 594–612, 2010. 34

[30] J.-H. Wu. Solutions of the 2D quasi-geostrophic equations in Hölder spaces. Nonlinear Anal.,
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