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PREFACE

This book is directed primarily to mathematicians and mathematical physicists, but also to theo-
retical physicists and to other scientists with an interest in quantum theory. One of our purposes in
writing this book on the beautiful and closely related topics of the Feynman integral and Feynman’s
operational calculus is to make these subjects accessible to a wider audience, including graduate
students. Accordingly, much of the necessary background material is provided within: we call
the reader’s attention especially to Chapters 3, 4. 6, 9 and 10 in the table of contents. Chapter
7 also consists. in a sense, of background material, but it deals with the heuristic ideas that led
to the Feynman integral and with the difficulties that arise from attempts to make this subject
mathematically rigorous. Of course, many potential readers will know a significant portion of the
background information and will therefore be able to go quickly over the corresponding parts of
the book.

Both authors have taught courses in Lincoln and Riverside, respectively, over the material of
this book as it was being developed and refined. Also, both of us have given lectures, sometimes
series of lectures (or short courses). on these subjects in many places around the world. Our
experience suggests that it takes about three to four semesters to go through Chapters 1 to 19. The
material divides rather naturally into Chapters 1-13 and Chapters 14-19, although there is a grear
deal of overlap and cross-referencing between these two parts of the book. Many of the listeners
at the courses or conference talks mentioned above have been helpful to us by asking thoughtful
questions or by making insightful comments. and perhaps most usetul of all. by helping us to
maintain our enthusiasm for this long-term endeavor.

Gerald W. Johnson and Michel L. Lapidus. May 1999
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INTRODUCTION

The main purpose of this book is to provide a mathematical treatment of the Feynman
pathintegral and the related subject of Feynman’s operational calculus for noncommuting
operators. The former subject is more widely known than the latter and has the reputation
of being a formidable and rather elusive mathematical topic.

We will keep this introductory chapter, especially Section 1.1, nontechnical and
relatively brief as far as possible. A detailed table of contents is provided and additional
introductory chapters are included in the book in appropriate places. The main two are
Chapters 7 and 14, dealing, respectively, with the first and second subjects:

Chapter 7, entitled “The Feynman integral: Heuristic ideas and mathematical diffi-
culties”, provides an introduction to quantum theory mainly from the perspective of the
physicist Richard Feynman. Further, it points out why the Feynman “integral” is a dif-
ficult subject and shows how Feynman'’s ideas have led to the mathematical approaches
to the Feynman integral which are used in Chapters 11-13 and 15-18.

Chapter 14 provides an introduction to Feynman’s operational calculus for noncom-
muting operators, the subject of Chapters 15-19, and indicates how the Feynman integral
and Feynman’s operational calculus are related both in the present theory and in their
historical development.

1.1 General introductory comments
Feynman’s path integral

I find Feynman’s formula to be very beautiful. It connects the quantum mechanical propagator,
which is a twentieth-century concept, with the classical mechanics of Newton and Lagrange in a
uniquely compelling way.

Mark Kac, 1984 [Kac5, p. 116]

Bohr got up and said: “Already in 1925, 1926, we knew that the classical idea of a trajectory or a
path is not legitimate in quantum mechanics; one could not talk about the trajectory of an electron
in the atom, because it was something not observable.” In other words, he was telling me about
the uncertainty principle. It became clear to me that there was no communication between what I
was trying to say and [what] they were thinking. Bohr thought that I didn’t know the uncertainty
principle, and was actually not doing quantum mechanics right either. He didn’t understand at all
what I was saying. I got a terrible feeling of resignation. I said to myself, “I'll just have to write it
all down and publish it, so that they can read it and study it. because I know it’s right! That’s all
there is to it.
Richard P. Feynman, reminiscing about the 1948 Pocono conference.

(Quoted in [Me, p. 248].)
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We begin with Feynman’s famous heuristic formula [Fey1,2] for the evolution of a
nonrelativistic quantum system:

1 i
ELS:Lexp[gS(x)le, (1.1.1D)

where i = +/=1. We will make some comments about this formula here, but a much
more thorough discussion will be given in Chapter 7.

In(1.1.1), CB '+ is the space of all real-valued (more generally, R¢-valued) continuous
functions x on [0, #] such that x(0) = u and x(¢) = v. Further, Dx represents a measure
on C,?:f, which weighs all paths x equally (in much the same way as Lebesgue measure
weighs all points in R equally), £ is Planck’s constant divided by 27, and S(x) is the
action integral associated with the path x; that is,

t 2
S(x) = / {fn- [d_x] - V(x(s))] ds. (1.1.2)
0 2 | ds

The integrand in (1.1.2) is the Lagrangian; it equals, for each s in the time interval [0, 7],
the kinetic energy minus the potential energy at the point x (s).

Note that the potential V in (1.1.2) is real-valued, so that the integrand in (1.1.1) has
a constant absolute value of one. Hence, it is the net interference effect as x ranges over
the space of paths that determines the value of the oscillatory integral.

Feynman’s ideas on the path integral (or “sum over histories™) were ingenious and
have had far-reaching consequences in many parts of physics, and more recently, of
mathematics as well. At first, however, they seemed *“crazy” to many physicists, including
some famous ones (see [Me, §2.4]). Paths—and concepts that depend on paths, such as
the Lagrangian and the action integral—play a crucial role in Feynman’s formulation,
whereas they had been “banned” (in light of the Heisenberg uncertainty principle) from
the standard Hamiltonian approach to quantum dynamics (see Chapter 6).

The formula (1.1.1) seems hopeless at first to most mathematicians who come in
contact with it. The “integral” in (1.1.1) is over a space of functions x “most” of which
are nowhere differentiable, and yet the formula for the action S(x) in (1.1.2) involves
calculating the derivative of x. Further, there is a mathematical theorem which implies
that there is no countably additive measure on CB > which weighs all paths equally. (See
Section 3.1 for a closely related result.)

We should add that Feynman had some awareness of the mathematical difficulties
just described above and concentrated throughout much of [Fey2] on a second approach
(see Section 7.4) that begins with a discretization of the time interval [0, ¢]. (It enabled
him, in particular, to replace the normalization constant K—which is ill-defined and for
all practical purposes, infinite—by a suitable sequence of finite normalization constants.)
This alternative approach involves fewer but still substantial mathematical difficulties.

The path integral of Feynman is not a Lebesgue integral; indeed, there is no “Feynman
measure” (see Section 4.6, especially Theorem 4.6.1). At least for functions of physical
interest, conditional convergence—instead of absolute convergence (as in the Lebesgue
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theory)—is at the heart of the matter. Additionally, since the domain of integration of this
oscillatory “integral” is a set of paths, the subject is intrinsically infinite dimensional.
(Physically, the cancellation effects caused by the oscillatory nature of the Feynman
integral correspond to interference effects between quantum-mechanical matter waves. )

The Feynman integral has been approached from many different points of view by
mathematicians and physicists with varied background and interests. The resulting diver-
sity has led to many different definitions of “the” Feynman integral. In this book. we
address several (certainly not all) of these approaches in a setting appropriate for nonrela-
tivistic quantum mechanics. In each of the cases considered, the existence of the Feynman
integral is established under very general assumptions. The different approaches have
their own domain of validity as well as their own strengths and weaknesses. as will be
discussed further on in the book, especially in Chapters 11 and 13. However. under more
restrictive but still quite general hypotheses. we will show that there is far more agree-
ment than seems to have been previously realized between three of these approaches
to the Feynman integral and the standard Hamiltonian approach to quantum dynamics.
(See Section 13.4.)

Results on the Feynman integral for highly singular potentials are given in Chapters
11-13. Chapter 7, which was mentioned earlier, is crucial to an understanding of the
Feynman integral. There. the physical background for nonrelativistic quantum mechanics
is discussed from Feynman'’s point of view along with the way in which his ideas on the
subject have led to several of the definitions of the Feynman integral which are used in
Chapters 11-13. (Chapter 6 provides an extremely brief discussion of a few of the ideas
which are common both to the usual Hamiltonian approach to quantum dynamics and
to Feynman’s approach.)

We close this part of the general introductory comments by providing more specific
information on some issues that are central to the subject matter of this book through
Chapter 13.

The following are shortcomings of many of the mathematical theories of the Feynman
integral which are often pointed out:

(1) The existence theory is not sufficiently general. In particular, many of the standard
real-valued, time independent potentials (V : RY — R) which are used in model-
ing quantum systems are singular (for example. the attractive Coulomb potential)
and do not fit within the theory.

(2) Notmuch information is given about how the various approaches to “the” Feynman
integral are related to one another or to the unitary group which gives the evolution
of the quantum systems in the standard approach to quantum dynamics.

(3) There is a shortage of satisfactory limiting theorems. Indeed, in some cases. no
such theorems are available, while in others. the results do not seem natural from
a physical point of view.

One of the strong poinis of the work here is that we give quite satisfactorv responses
to all three of these objections, especially for three of the four approaches to the
Feynman integral which are developed in detail in this book. The Feynman integral
defined via the Trotter product formula is shown to exist under very general conditions in
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Corollary 11.2.22. Both the modified Feynman integral and the analytic-in-time operator-
valued Feynman integral are shown to exist under even more general conditions in Corol-
lary 11.4.5 and Theorem 13.3.1, respectively. Further, under the common conditions for
their existence in the corollary and theorem just referred to, the modified Feynman inte-
gral and the analytic-in-time operator-valued Feynman integral not only exist but agree
with each other and with the unitary group, as is shown in Corollary 13.4.1. Under the
somewhat more restrictive conditions of Corollary 11.2.22, we will see in Corollary
13.4.2 that the Feynman integral via the Trotter Product Formula can be added to the list
so that all three of these Féynman integrals exist and agree with one another and with the
unitary group associated with the usual Hamiltonian approach to quantum dynamics.

Our limiting theorems for the three approaches to the Feynman integral referred
to above are “dominated-type” convergence theorems. Since cancellation effects are
intrinsic to the Feynman integral, there cannot be dominated convergence theorems in
this subject that exactly parallel the Lebesgue dominated convergence theorem. However,
in the most frequently used models in nonrelativistic quantum mechanics, it is only the
potential energy function that may vary and our assumptions are that the sequence of
functions {V,,} is pointwise convergent (Lebesgue almost everywhere) and “dominated”
in an appropriate sense (see (11.5.20) and (11.5.21) for example). The result for the
modified Feynman integral, Theorem 11.5.19 (Lal2], is the key. The comresponding
result for the analytic in time operator-valued Feynman integral, Corollary 13.4.3. is an
easy corollary of Theorem 11.5.19 and Corollary 13.4.1. The convergence result for the
Feynman integral via the Trotter product formula, Corollary 13.4.6, rests on Theorem
11.5.19 and Corollary 13.4.2 but also on some further considerations.

Although it is not especially difficult, Section 13.4 is quite pleasing because it brings
together all of the positive results associated with items (1)=(3). (Note that we have omit-
ted from the present discussion the analytic-in-mass operator-valued Feynman integral
as studied in Sections 13.5 and 13.6. This material is interesting in its own right, but it
is not readily compared with the three approaches above.)

The questions raised in (1)~(3) above are clearly central to the mathematical theory
of the Feynman integral, but the answers provided in this book are not the only possible
ones. Moreover, there are other important issues besides those implicit in (1)-(3). For
example, the method of stationary phase is one of the heuristically appealing features of
the Feynman path integral (see Chapter 7) but is not discussed rigorously anywhere in
this book. However, it has been justified in the context of the Fresnel integral approach
to the Feynman integral (see, for example, [AlHo2, Rez, AlBrl]).

Feynman’s operational calculus

We turn now to the second topic in the title of this book, Feynman’s operational calculus
for noncommuting operators. A fuller introduction to this topic is given in Chapter 14.
It is easy to form functions of operators if the operators commute with one another.
However, the subject becomes far more difficult when the operators fail to commute.
Motivated by problems arising in quantum mechanics and quantum electrodynamics,
Feynman ([Fey8], 1951) gave heuristic “rules” for forming functions of noncommuting
operators. One of these “rules” says to treat the operators as though they commuted, once
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a suitable time-ordering convention has been adopted. For example, Feynman writes such
“equalities” as

exp(A + B) = exp(A) exp(B), (1.1.3)

even when A and B fail to commute.

The process of appropriately restoring the conventional ordering of the operators
after the use of “equalities” such as in (1.1.3) above is referred to as “disentangling”.
This “disentangling process” is central to Feynman's operational calculus.

Feynman'’s “rules”, as strange as they may seem. have led to useful results, notably
the time-ordered perturbation series (or Dyson series) of quantum theory.

Feynman’s work on his operational calculus is far from mathematically rigorous,
as he himself noted. One of the challenges to mathematicians is to suitably interpret
Feynman’s ideas and to put them on a firm mathematical basis. Our work in Chapters
15-18 and in Chapter 19, respectively, discusses two ways of carrying this out and also
further develops the subject in several directions.

What led Feynman to his operational calculus? He wanted a path “integral” in order
to calculate perturbation series in quantum electrodynamics, but he had no such integral
in that setting. His operational calculus was motivated initially by a desire to find methods
of calculation which would generalize those which could be carried out in nonrelativistic
quantum mechanics via his path “integral”.

The operational calculus for noncommuting operators which Feynman discovered
generalizes some aspects of path integration. This suggests that in settings where math-
ematically rigorous path integrals are available, it might be possible to use such integrals
to interpret and make rigorous Feynman'’s operational calculus. Indeed, this is what we
do in Chapters 15-18 using the Wiener and Feynman path integrals.

Feynman'’s operational calculus via the Feynman and Wiener integrals

Feynman’s operational calculus, the Feynman integral and the Wiener integral all come
together in Chapters 15-18 as well as in Sections 14.3-14.5. Chapters 15, 16 and 18 are
based on joint work of the authors; much of this material can be found in [JoLal] and
[JoLa4), respectively. Chapter 17 is adapted from the following papers of the second
author [Lal$, Lal8, Lal6].

The Wiener process (or Brownian motion) does not appear in the title of this book,
but it—along with the associated Wiener measure and integral—appears repeatedly in
this work. It plays an especially important role in Chapters 7 and 12-18. Chapters 3 and
4 present the information that we will need about Wiener measure from an analyst’s
point of view. A short Chapter 2 discusses physical Brownian motion and relates it to its
mathematical model, the Wiener process. In Chapter 5, another short chapter, we give a
very brief discussion of a more probabilistic approach to the Wiener process.

The main emphasis in Chapters 15-18 is on using the Feynman and Wiener inte-
grals to study Feynman’s operational calculus in the quantum-mechanical and diffusion
(alternatively, heat or probabilistic) settings, respectively. However, many of the results
in Chapters 15-18 have an interest of their own as contributions to the Feynman and
Wiener integrals, apart from their connection with Feynman’s operational calculus.
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We will now describe more precisely than above our approach to the operational
calculus in this context. A more detailed overview of Chapters 1518 is provided in
Chapter 14, especially in Sections 14.3-14.5.

The functions on the space of continuous paths on [0, ¢] that are Wiener and Feynman
integrated in Chapters 15-18 belong, for each time ¢ > 0, to the “disentangling algebra™
A;. This commutative Banach algebra consists of certain infinite sums of finite products
of functions of the form

F(x) = Fp p(x) := /{;} ]0(s. x(8))n(ds), (1.1.4)
N

where 6 (often thought of as a time-dependent potential) is a complex-valued function
on [0.7) x R? and 7 is a bounded Borel measure on [0. ¢). The function exp(F') is an
important example of a function in A4;. (It is called the “Feynman-Kac functional with
Lebesgue-Stieltjes measure” 7; see Chapter 17. More generally, the elements of A, will
often be referred to as “Wiener functionals” in Chapters 14-18.)

The operator-valued path integral of F € A4, is denoted K, (F). For 4 > 0 (the
diffusion case), K {( F) is defined as a Wiener integral and then extended first via ana-
lytic continuation in A to C., the open right half-plane, and then via continuity to
Cl:= C+\{0}. When A is purely imaginary (the quantum-mechanical case), K J(F)is
the “Feynman integral” of F. [This is the analytic (in mass) operator-valued Feynman
integral of F; see Definition 15.2.1 for a more precise statement.)

The disentangling process is carried out in Chapters 15-18 by calculating the path
integral K; (F) for A > 0 and then extending the result to 4 € C7. One need not invoke
Feynman'’s “rules” explicitly in this setting; the necessary time-ordering is done naturally
(but not always easily) while calculating the functional integrals.

The disentangled operators K (F) are expressed as time-ordered perturbation expan-
sions or “generalized Dyson series”. Generalized Feynman diagrams (see Section 15.6)
provide a visual aid for keeping track of the terms of a generalized Dyson series. (These
diagrams can be complicated in their own right but they generalize the simple diagrams
of nonrelativistic quantum mechanics and not those of quantum electrodynamics.)

The work in Chapters 15-18 (and also in Chapter 19) not only interprets Feynman's
ideas and makes them rigorous, but also extends them in several different ways. Non-
commutative operations * and + on the family of disentangling algebras {.4;},-0 are
introduced in Chapter 18. They can be thought of as a noncommutative multiplication
and addition, respectively, on the space of Wiener functionals; see Section 18.3. Such
operations—introduced by the authors in [JoLa3.4]—were not envisioned by Feynman
but they fit nicely into the operational calculus in various ways. If F € A;, and G € A,..
then we know that the operators K i‘ (F)and K ;Z(G) can be disentangled via general-
ized Dyson series. It is natural to ask if the product of K;' (F) and K;2(G) can also be
disentangled. It can; in fact (Theorem 18.5.6 and Corollary 18.5.7), F * G € Ay, 4., and
forall L € C2.

K'Y (F % G) = K} (F)K2(G). (1.15)
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Since we can show that
exp(F + G) = exp(F) * exp(G) (1.1.6)

on the level of the functionals, we immediately deduce from (1.1.5) that, on the level of
the operators.

K3 "2 (exp(F + G)) = K, (exp(F))K;? (exp(G)). (1.17)

Note that (1.1.6) formally resembles Feynman’s paradoxical formula (1.1.3) but involves
the noncommutative operations * and + on the disentangling algebras.

The family of commutative disentangling algebras {A, };~o—equipped with the non-
commutative operations * and + along with the (operator-valued. analytic-in-mass)
Feynman integrals K (-)—forms a rich interlocking algebraic and analytic structure that
enables us to explore more deeply the noncommutative aspects of Feynman'’s operational
calculus.

Our systematic use of measures as in (1.1.4) contributes significantly to the richness
of Feynman’s operational calculus. Different measures can provide different directions
for disentangling. For example, what is one exponential function of a sum of commuting
operators becomes infinitely many different exponential functions of a sum of noncom-
muting operators. This leads in Chapter 17, entitled “The Feynman-Kac formula with
a Lebesgue-Stieltjes measure and Feynman’s operational calculus’ and based on work
of Lapidus in [La14-18]. to the solution of a wide variety of evolution equations which
can incorporate both discrete and continuous phenomena.

Feynman’s operational calculus and evolution equations

Another approach to Feynman'’s operational calculus is considered in Chapter 19, based
on joint work of the authors with Brian DeFacio ([dFJoLal]) and especially [dFJoLa2]).
The setting is much more general than in Chapters 15-18. but, on the other hand. attention
is focused almost exclusively on exponentials of sums of noncommuting operators. In
[Fey8] and in the papers which led up to it, the emphasis was also on such exponential
functions. This particular focus came from Feynman’s desire to calculate formulas for
the evolution of physical systems.

The operators that appeared as the arguments of the exponential function in
Feynman’s work were associated with the different forces involved in the physical prob-
lem. Feynman seemed to have complete confidence that applying his “rules” to such
exponential expressions would yield a formula for the evolution of the physical system
at hand. The main results of Chapter 19. Theorems 19.5.1 and 19.6.1. justify (in a math-
ematical sense) Feynman's confidence (under a certain rather general set of hypotheses)
by showing that the disentangled exponential expression gives the unique solution to the
associated evolution equation. Our method is to use Feynman's heuristic ideas to “dis-
entangle” the exponential expression: we then prove that the disentangled expression
makes sense and satisfies the evolution equation.

We hope that the combination of some simple examples of disentangling found in
Chapter 14, the more complicated calculations from Chapter 19 that were just referred to
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above. along with some additional examples that are provided in Section 19.7, will help
to clarify Feynman’s heuristic “rules” for the reader. Chapters 15-18 will also be helpful
in this regard. Although the disentangling is carried out in these chapters in the process
of calculating the Wiener and Feynman integrals, one can see clearly the connections
with Feynman’s time-ordering ideas both in the details of the calculations and in the
resulting answers.

Further work on or related to the Feynman integral: Chapter 20

Chapter 20, our last chapter, has a very different character from the rest of this book.
Our main focus in regard to the Feynman integral will be on operator-valued approaches.
However, in Section 20.1, we will give a brief expository account (without proofs) of
scalar-valued approaches to the Feynman integral which involve “transform assump-
tions”. A great deal of work on the Feynman integral has been along these lines since
the 1976 monograph of Albeverio and Hoegh-Krohn [AlHo1] on the “Fresnel integral”.

In Section 20.2, our main concern is with the connections between the ‘heuristic
Feynman integral” and a variety of further topics in contemporary mathematics and
physics. The greatest emphasis will be on Section 20.2.A where we discuss Witten’s
heuristic Feynman integral [Wit14] and its influence on the subjects of knot theory and
low-dimensional topology. In Section 20.2.B, we briefly discuss the relationship between
heuristic path integrals and four additional topics: The Atiyah-Singer index theorem,
deformation quantization, gauge field theory, and string theory. We should stress that the
mathematical existence of the “Feynman integrals” used in Section 20.2 has usually not
been established. We should also caution the reader that the authors are far from being
experts on the subjects involved in Section 20.2.

Given its special nature, Chapter 20 will be excluded from our discussion in the
remainder of this introduction.

Section 1.1, with the exception of its last subsection, has been a brief introduction
to the main topics of this book. Next we turn to a discussion of some of the themes
that are repeated in several places in this work. An ordered (rather than thematic) and
quite detailed list of the topics treated in this book can be found in the list of contents;
the latter has been written partly with this goal in mind. Section 1.2 below is somewhat
more technical than Section 1.1. Depending on their background, some readers may wish
initially to go over parts of this material quickly and then return to it at a later time.

1.2 Recurring themes and their connections with the Feynman integral and
Feynman’s operational calculus

There are a number of subjects related to those in the title of this book which will play
an important role and will reappear frequently; the Wiener process has already been
mentioned in this connection. Product formulas, such as the Trotter Product Formula
and the product formula for imaginary resolvents discussed in detail in Chapter 11,
certainly fall into this category as well.

Product formulas and applications to the Feynman integral

Perhaps the approach to the Feynman integral which is most straightforwardly motivated
by Feynman's original paper ([Fey2], 1948), is the approach using the Trotter product
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formula. It is Trotter’s formula for the case of unitary groups that is used. Ignoring
some technicalities. this result says that if A and B are (unbounded, noncommuting)
self-adjoint operators on a Hilbert space H and if A + B is essentially self-adjoint (i.e.,
if it has a unique self-adjoint extension), then

it(ATB . —ita —itp\"
o~ itETB) _ e (e ita, tnB) , (1.2.1)
n—»00

where here, by the operator A + B on the left-hand side of (1.2.1), we mean the unique
self-adjoint extension of the algebraic sum A + B.

When (1.2.1) is applied to the Feynman integral, the Hilbert space H will be L2(R?),
and we will take, after normalizing the physical constants, A = -%A = Hy (the free
Hamiltonian), where A denotes the Laplacian on RY. Further, we will let B = V. the
operator of multiplication by the potential energy function. (The “potential” V : RY —
R is a suitable real-valued function on R?.) Finally, we let H = A+ B = Hyp+ V
denote the Hamiltonian or energy operator associated with V. Then. when applied to an
appropriate wave function g, the left-hand side of (1.2.1), namely, y/(t, ) := e~ "*H g,
yields the unique solution of the Schrédinger equation

i%=—§m+ws)w=uw & eR.1eR). (12.2)

with initial state ¥ (0, -) = ¢ in the domain of H.

The approach to the Feynman integral via the Trotter product formula is the first of two
approaches which appeared in Nelson’s paper ([Nel], 1964). An informal explanation
of the connection between [Fey2] and the Trotter product formula is given in Sections
7.2 and 7.5 and a precise discussion with proofs of a result which is more general than
the one in [Nel] appears in Sections 11.1 and 11.2.

Inspired by the product formula of Trotter and the work of Nelson, Lapidus found
{Lall] a “product formula for imaginary resolvents” and used it to define and establish
the existence of the “modified Feynman integral”. The result of Lapidus goes well beyond
the case where A + B is essentially self-adjoint; in fact, his formula involves the “form
sum” A + B of the operators A and B. Also, the unitary operators e s and e~*s 8 on
the right-hand side of (1.2.1) are replaced by the imaginary resolvents [/ + i(t/n)A] ™!
and [I + i(t/n)B]™}, respectively. Thus, we have the “product formula for imaginary
resolvents” (see Section 11.3, especially Theorem 11.3.1 and Corollary 11.3.7):

eTIAEE) = tim ([ +i/mAT T +iG/mBYTY. (123)

(If A+ B is essentially self-adjoint, as in the hypothesis of the product formula for unitary

groups (1.2.1), then the form sum A + B coincides with A + B, the unique self-adjoint
extension of the algebraic sum A + B—and so the left-hand side of (1.2.3) coincides
with that of (1.2.1); see Proposition 11.2.10(ii).)
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When the product formula (1.2.3) is applied to define and establish the convergence of
the modified Feynman integral, we obtain much as before a solution to the Schrodinger
equation, but now with the Hamiltonian given by the form sum of Hp and V; i.e.,
H = Hy+ V. (See Section 11.4, including Definition 11.4.4.)

In the setting we have been considering, the potential is a real-valued and time-
independent function V and the Hamiltonian is obtained by “adding” V to Hg, with the
sum allowed to be a form sum. The maximum domain of validity for V in this framework
is (as we will see in Section 11.4) exactly the same for the modified Feynman integral as
it is in the Hamiltonian approach to quantum dynamics. Further, this maximum domain
of validity is physically natural; the “form domain” of the Hamiltonian H = Ho+ V
consists precisely of those functions ¢ € L2(R?) which have finite total (i.e., kinetic +
potential) energy. Looking ahead and considering the same setting, the maximal domain
of validity for V in the case of the analytic-in-time operator-valued Feynman integral
agrees with the other two. It should be added, however. that the modified Feynman
integral extends nicely to the case of complex potentials V (see Section 11.6) whereas a
corresponding theorem has not been proved (and may not be true) for the analytic-in-time
operator-valued Feynman integral considered in Sections 13.3 and 13.4.

An advantage of the generality of the modified Feynman integral is that it allowed
Lapidus to obtain in [Lal2) a very general stability theorem (relative to the potential) and
to deduce a “dominated-type convergence theorem” appropriate for this context. (See
Section 11.5.)

The results leading to the definition of the “Feynman integral via TPF” [Nel] are
discussed in Section 11.2, while those concerning the “modified Feynman integral”
[Lal-2, La6-13] and various extensions of its definition (notably, to C-valued potentials
[BivLa)) are presented in Sections 11.3-11.6. In addition, we mention that Sections 13.5
and 13.6, respectively, describe analytic (in mass) versions of these two approaches to
the Feynman integral. Product formulas of various types—not themselves consequences
of (1.2.1) or of (1.2.3)—also play a prominent role in these sections.

Fevnman—Kac formula: Analytic continuation in time and mass

Mark Kac heard Feynman speak about his path integral in 1947. Kac realized that
if time ¢ in Feynman’s formula is replaced by —it (“imaginary time” from the per-
spective of quantum physics), then the expression involved before the limit is taken is
equal to a Wiener integral. a true integral in the Lebesgue sense with respect to the
countably additive Wiener measure m. The powerful results of the Lebesgue theory
of integration can then be used to rigorously justify the calculation of the limit. One
outcome of all this is the famous Feynman—Kac formula. (A detailed proof of a very
general version of the result is given in Chapter 12, based on work of B. Simon in
[Si9].)

Kac’s discovery expresses the solution to the heat equation as a certain Wiener
integral. More precisely. if the “Feynman-Kac functional” F is given by

t
F(x) :=exp l—f V(x(s))ds] s (1.2.4)
0
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then for ¢ > 0 and £ € R?, we have
u(t, &) = (e p)(®)
= /c' F(x 4+ &)px () + £)dm(x), (1.2.5)

0
where m denotes Wiener measure on the space C; of continuous paths x such that

x(0) = 0. The left-hand side of (1.2.5) yields the unique solution, u(z,-) = e~*f ¢, at
time ¢ > 0 of the heat (or diffusion) equation

‘?Tl: -———-I-Au+V('g')u—Hu € cR%, 1 > 0), (1.2.6)
with initial condition (0, -) = ¢. Here, as before, H = Hy+ V. with Hy = A

Note. however, that we now use the heat semigroup e ™*# to represent the solution to  the
heat equation (1.2.6) whereas we have used earlier the unitary group e ¥ to represent
the solution to the Schrodinger equation (1.2.2).

The “Feynman-Kac formula” (1.2.5) has been extremely useful for a variety of
purposes, both in mathematics and in physics (see Section 7.6 for a brief discussion of this
along with some references), but it does not by itself resolve the problem of making sense
of the Feynman integral since the change from ¢ to —it takes us from quantum theory
and the Schrodinger equation to the heat equation. The Feynman—Kac formula does.
however, suggest an approach to the Feynman integral. Start with imaginary time and the
theoretically powerful Wiener integral and define the Feynman integral by analytically
continuing to real time. Indeed, operator-valued analytic continuation in time is another
of the approaches to the Feynman integral which will be discussed in detail in this book.
These results on the analytic-in-time Feynman integral (at the level of generality found
here) are due to Johnson [Jo6] and are the subject of Sections 13.2 and 13.3. We should
mention that what is imaginary time from the point of view of quantum theory is real
time from the perspective of the heat equation. We shall adopt the latter point of view
in Chapter 13 (Sections 13.2, 13.3 and 13.7) and analytically continue from real time to
purely imaginary time—going in the process from the Wiener integral to the Feynman
integral.

We remark that Section 13.7 gives a brief discussion of an extension (see [AlJoMa])
of the analytic-in-time operator-valued Feynman integral which is based on the theory
of “additive functionals of Brownian motion” (see [Fuk, FukOT]) and Feynman—Kac
form:jllas in which, for example, the potential V can be replaced by a suitable measure
on R%.

The last of the approaches to the Feynman integral which will be treated in detail
in this book is operator-valued analytic continuation in mass. Again, one starts with
the Wiener integral but this time, the analytic continuation is in a mass parameter (or
alternately, in a variance parameter). The connection between Feynman'’s ideas and the
approach to the Feynman integral via operator-valued analytic continuation in mass is
discussed in an informal way in Section 7.6, with the approach via the Trotter product
formula serving to link the two.
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The precise discussion of the analytic-in-mass operator-valued Feynman integral
is given in Section 13.5. The crucial starting point for this work is Nelson’s second
approach developed in [Nel]. An earlier paper by Cameron ([Cal], 1960) used scalar-
valued analytic continuation in mass; the key contribution of [Cal] was the proof that
there is no countably additive “Wiener measure” with a complex variance parameter
(see Theorem 4.6.1). This result corrected an error in [GelYag], an interesting and even
earlier paper which used analytic continuation.

Various extensions of Nelson’s results are given in Sections 13.5 and 13.6. Among
them, the reader will find hybrids which combine a suitable product formula with analytic
continuation in mass. A comparison of the resulting analytic in mass Feynman integrals
within their common domain of validity is provided towards the end of Section 13.6.

We remind the reader that the analytic-in-mass operator-valued Feynman integral
will also be used in Chapters 15-18. Unlike the approaches in Chapter 13 via analytic
continuation in mass, this Feynman integral exists for every (rather than Lebesgue almost
every) value of the mass parameter. The class of functionals treated in Chapters 15-18
is, in some respects, much larger than in Chapter 13. However, in Chapters 15-18, no
attempt is made to deal with potential functions with strong spatial singularities.

There are four different versions of the analytic-in-mass Feynman integral discussed
in this book, as was alluded to above; in addition, three other approaches to the Feynman
integral have already been discussed in this introduction. In the next two paragraphs, we
indicate briefly what these are and where they are to be found.

The approaches to the Feynman integral that are discussed at any length in this
book are all operator-valued. (Recall that we are not taking Chapter 20 into account in
our present discussion.) Two of the analytic-in-mass approaches start from the Wiener
integral when the mass parameter is real. One of these is discussed in the first part of
Section 13.5; the other, which has quite different features, is defined in Section 15.2
and used throughout Chapters 15-18. The last two begin with product formulas for
semigroups (in Section 13.5) and resolvents (in Section 13.6) to yield analytic-in-mass
versions of the Feynman integral via TPF ([Kat7, BivPi]) and of the modified Feynman
integral [BivLa], respectively.

The Feynman integral defined via the Trotter product formula for unitary groups
is discussed in Section 11.2 and the modified Feynman integral (defined via a product
formula for imaginary resolvents established in Section 11.3) is treated in Sections 11.4-
11.6. Finally, the analytic-in-time Feynman integral appears in Sections 13.2 and 13.3,
with an extension given in Section 13.7.

The role of operator theory

As mentioned above, the approaches to the Feynman integral that will be discussed in
detail in this book are all operator-valued. Further, there is always at least one unbounded
operator involved; much of the time, it is Hyp = —%A, the free Hamiltonian, although
various physically meaningful substitutes for Hy are allowed in Sections 11.4, 11.6,
and Sections 13.5-13.6, and more abstract generators are considered in Chapters 11
and 19. In Sections 11.2-11.5, Chapter 12, Sections 13.2-13.4 and 13.7, the theory of
(not necessarily bounded) self-adjoint operators and functions of them is sufficient for
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our needs. These needs include various forms of the spectral theorem for unbounded
self-adjoint operators as well as basic results about unbounded quadratic forms and form
sums of operators. This background material is provided in Chapter 10 which is titled
*“Unbounded self-adjoint operators and quadratic forms”. (See also Section 9.6 for intro-
ductory material on unbounded self-adjoint operators and the associated semigroups.)
The spectral theorem enables us to define the functions e~#'!! (the unitary group) and,
if the spectrum of the self-adjoint operator H is bounded from below, the (self-adjoint)
semigroup e ~*# For us, in most applications, H is the Hamiltonian (or energy operator),
a suitable self-adjoint extension of Hy + V, where V is the potential. (More specifically.
in Section 11.2, H is the unique self-adjoint extension of Ho + V, and, more generally.
it is the form sum of Hp and V in Sections 11.3-11.5, Chapter 12, Sections 13.2-13.3
and 13.7,)

Self-adjoint operators—and the associated unitary groups or self-adjoint semi-
groups—are not adequate for everything that we will do. Strongly continuous (or (Cp))
semigroups of operators will be discussed in Chapter 9 (and in the brief and informal
chapter that precedes it). Such semigroups (not necessarily associated with self-adjoint
operators) will be used in Sections 11.1, 11.6, 13.5, 13.6, parts of Chapter 14 and through-
out Chapter 19. They will also frequently be present in Chapters 15-18 but will be used
in a more straightforward way there.

Connections between the Feynman—Kac and Trotter product formulas

The Feynman—Kac and Trotter product formulas have already been discussed above,
but there are additional places in the book where these related formulas or variations
of them appear. The Trotter product formula is the main tool in the crucial first step
of the proof of the Feynman—Kac formula in Chapter 12. A variation of the Fevnman-
Kac formula, the “Feynman—Kac formula with a Lebesgue—Stieltjes measure™. is—along
with its connection with Feynman’s operational calculus—the topic of Chapter 17, which
describes part of the work in [La14-18). A related product integral, a relative of the Trotter
product formula, is discussed in Section 17.6 [La18,16]. Example 16.2.7 (in conjunction
with Example 15.5.5) looks at the relationship between the Trotter product formula
and the Feynman—Kac formula from the point of view of weak (or vague) convergence
of measures. This broad perspective is informative even though the results are far less
general than those proved in Chapters 11 and 12. A version of the Feynman-Kac formula
which substantially extends the one in Chapter 12 is discussed briefly in Section 13.7.
There, for example, the potential energy function can be replaced by certain measures (in
the space rather than in the time variable, as in Chapter 17) which are singular with respect
to Lebesgue measure. Finally. a Feynman—Kac formula for certain complex potentials
is contained in the work presented in Sections 13.5 and 13.6.

Evolution equations

A fundamental concept of quantum mechanics is a quantity called the propagator. and the standard
way of finding it (in the non-relativistic case) is by solving the Schridinger equation. Feynman
found another way based on what became known as the Feynman path integral or “the sum over

histories™ . ..
Mark Kac, 1984 [Kac5, p. 116}
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The evolution of physical systems concerns us throughout this book, so it is not sur-
prising that the subject of evolution equations is another recurring theme. Our point
of view (following Feynman) is not, however, the usual one. Typically, the evolu-
tion equation comes first and is regarded as the model for the physical system. One
then looks for a method to solve the evolution equation and the solution gives the
evolving state. Our deviation from this point of view is perhaps seen most clearly in
Chapter 19. The idea there is: Given the forces involved in the problem, write down
and then “disentangle” the exponential of a sum of integrals (from, say, O to t) of
associated time-ordered operators (see (19.4.8)). The resulting time-ordered perturba-
tion series (see (19.3.14)) should give the evolution of the physical system. Of course,
it is of mathematical and physical interest to know if this series solves some related
evolution equation. Theorem 19.5.1 shows that this is so under a quite general set of
assumptions.

As remarked earlier in this introduction, the approach to quantum dynamics provided
by “the” Feynman path integral differs in several ways from the standard Hamiltonian
approach. The point we wish to make here is that the path integral itself should give the
evolving state. No evolution equation is needed ahead of time. Of course, it is of interest
to know conditions under which the evolving state given by the Feynman integral satisfies
the Schrodinger equation or some variation of it.

The different specific approaches to the Feynman integral discussed in this book have
differing relationships with the standard Hamiltonian approach to quantum dynamics.
Our first comments along these lines pertain to Chapter 17. Recall that in Chapters
15-18, the potentials can be time-dependent and complex-valued but are not allowed to
have strong singularities in the space variables. If we take the appropriate Wiener integral
involving the usual Feynman—Kac functional exp{ Fy ; (x)}, where Fy ; is given by (1.1.4)
and / is Lebesgue measure on the time interval (0, ¢), we obtain a function of time and
space which describes the evolution of a distribution of heat. By analytically continuing
in mass (and making an adjustment in the potential), we arrive at a function giving
a quantum evolution. These time evolutions are solutions to the heat and Schrodinger
equations, respectively. In Chapter 17, we replace the Feynman—Kac functional exp{ Fy 1}
by the Feynman-Kac functional exp{Fp ,} (where Fp , is given by (1.1.4) and n is a
Lebesgue-Stieltjes measure) and follow the procedure above. We show first that the
resulting evolutions involve an interesting variety of discrete and continuous phenomena
and then also that they are solutions to correspondingly adjusted versions of heat and
Schrédinger equations which are quite different from the usual ones (see especially
Sections 17.2 and 17.6).

Even though Feynman’s approach to quantum dynamics does not depend a priori
on the usual one, the method of proof for three of the specific approaches discussed
in this book, the Feynman integral via the Trotter product formula (Section 11.2), the
modified Feynman integral (Sections 11.3 and 11.4), and the operator-valued analytic-
in-time Feynman integral (Sections 13.3 and 13.7), not only depend heavily on operator-
theoretic results but also on the existence of the unitary group as established in the
standard Hamiltonian approach. [In the case of the modified Feynman integral with
complex (rather than real) potential studied in Section 11.6 ([BivLa]), the Schrodinger
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operator must be defined appropriately and the associated time evolution is dissipative
but in general, not unitary.]

The situation is quite different for the analytic-in-mass operator-valued Feynman
integral, whether you begin on the real line with a Wiener integral (Section 13.5) or with
product formulas (Section 13.6 and the last part of Section 13.5). Although operator
techniques are still heavily involved, they are not the ones based on self-adjointness that
are used commonly in quantum mechanics. Moreover, knowledge of the existence of
the unitary group from the usual approach to quantum dynamics is not needed in the
proof. In fact, for extremely singular potentials (see Examples 13.6.13 and 13.6.18), the
analytic-in-mass operator-valued Feynman integral exists but the Hamiltonian approach
does not, at least not in an unambiguous way.

Functions of noncommuting operators

The formation of functions of noncommuting operators is a theme which is implicit
in the title of this book and which is of direct concern to us throughout Chapters 14—
19. Although it is less obvious, the same subject is also involved in Chapters 6-13. For
example, if A and B are commuting self-adjoint operators, there is no need for the Trotter
product formula (1.2.1); we simply have e #/(A+B) = ¢=ifAo=itB The Trotter product
formula has sometimes been referred to as the noncommutative exponential law. (In light
of our later work, especially in Chapters 17 and 19, it would be more accurate to describe
it as an especially important example but just one of many noncommutative exponential
laws.) The spirit of the theory of semigroups of operators is that it is the theory of forming
the “exponential function” of operators. In practice for us (and in general), the operator
to be “exponentiated” is often of the form A + B. where A and B do not commute.
The Feynman-Kac formula expresses the heat semigroup e~*# = ¢~*(Ho+V) (where
Hy = —1A is the free Hamiltonian and V is the operator of multiplication by the
potential V) as a certain Wiener integral. (See equations (1.2.5) and (1.2.4) above.) In
some sense, this formula can be thought of as providing a way to handle the fact that the
operators Ho and V do not commute.

Time-ordered perturbation series

In [Fey8] and in the work in this book on Feynman’s operational calculus, the disen-
tangled functions of operators are more often than not expressed as time-ordered per-
turbation series. In Chapters 14-19, such series appear repeatedly. They are most often
referred to as generalized Dyson series in Chapters 15-18. Indeed, special cases of the
perturbation series in all of Chapters 14-19 coincide with the classical Dyson series of
nonrelativistic quantum mechanics.

In Chapter 15 (and then throughout Chapters 16-18), our generalized Dyson series
play a crucial role in defining the operators K (F) involved, especially in the quantum-
mechanical (or Feynman) case where a bona fide path integral (such as the Wiener
integral) is no longer available. In turn, these perturbation expansions—which can be
thought of, in some extended sense, as providing a “sum over all possible histories” of a
quantum particle—are very helpful mathematical tools and enable us to derive various
properties with relative ease. (See, for example, Sections 15.3, 15.5, and Chapter 16.)
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When F is an exponential functional (see Chapter 17), they also play akey role in deriving
the evolution equation (either in differential or integral form) satisfied by ¢ — K (F).
(This is especially true in the quantum-mechanical case.)

[For simplicity, we will limit ourselves here to the setting of Chapters 15-18. We point
out, however, that despite certain differences due to the generality of the assumptions
made in Chapter 19 and the absence of any kind of path integral in that framework, our
above comments regarding the definition of the operators involved and the derivation of
a corresponding evolution equation remain valid in the setting of Chapter 19 as well.]

At this point, it may be helpful to recall from our discussion in Section 1.1 that in
Chapter 15, given a Wiener functional F in the disentangling algebra A;, we associate
with it an operator K; (F), called the analytic (in mass) Feynman integral of F, which
can be disentangled via a generalized Dyson series. [Briefly, the bounded linear operator
K; (F) is defined as a genuine Wiener (path) integral in the diffusion case when A is real.
and then. for complex A, by analytic continuation followed by passage to the limit along
the imaginary axis of the resulting perturbation expansion.] Consequently, the time-
ordered perturbation series for K} (F) has the same general expression as a function of
the parameter A both in the diffusion (or probabilistic) case (A real and positive) and
in the quantum-mechanical (or Feynman) case (A purely imaginary and nonzero). This
fact enables us to deal with these two situations in parallel in much of Chapters 15-18.
(Notable exceptions occur in Sections 16.2 and 17.6.)

There is a last general comment that we wish to make about the “disentangling”
provided by our generalized Dyson series: It is not necessarily unique; indeed, a given
operator K} (F) can be represented in many different ways via a time-ordered perturba-
tion series, some of which may be more suitable than others in a given situation. (See
especially Section 15.5 for various examples; see also, for instance, Section 17.6.) We
stress that in spite of this fact. the operator K ,‘ (F) associated with a function F in the
“disentangling algebra” A, is always defined uniquely (and hence unambiguously). In
some suitable sense, the mapping K (defined in Section 15.7) can be thought of as a
quantization map from the commutative disentangling algebra A; to a noncommutative
algebra of (bounded linear) operators. [See especially Chapter 18 (including Appendix
18.6), where the action of the noncommutative operations * and + on the family of
disentangling algebras {.A, : ¢ > 0} is taken into account.]

The use of measures

Measures and their associated integrals enter into this book in various ways. We mention
some of these here and emphasize those which are less widely familiar but will be
especially important to us.

Two of the definitions of “the” Feynman integral that are stressed in this book start
with the Wiener integral. Our purpose in Chapter 3 is to give the reader who is not
acquainted with Wiener measure some idea of how it can be constructed and some
familiarity with the properties of the Wiener process that will be needed in subsequent
work. The construction follows the pattern of Lebesgue measure on the line. a topic
familiar to most mathematicians. It begins with the definition of the measure of an
“interval” and ends with an application of the Carathéodory extension theorem.
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We expect that many potential readers will be familiar with the results of Chapter 3
and with Lévy’s quadratic variation law which is the subject of Section 4.1. However,
we anticipate a much lower degree of familiarity with most of the rest of Chapter 4
which deals with such topics as the family of scaled Wiener measures {m, : ¢ > 0},
scale-invariant measurability [JoSk7] and the refined equivalence classes of functions
that are needed for a careful discussion of the Feynman integral obtained via analytic
continuation in mass. This definition of the Feynman integral will concern us in Section
13.5 (the second approach in [Nel]) as well as throughout Chapters 15-18.

Measures on subintervals of R (Lebesgue-Stieltjes measures) are used systemat-
ically throughout Chapters 14-19 in connection with Feynman’s operational calculus.
They serve not only to assign weights but also to time-order the integrands which are
usually (perhaps after some preliminary steps) products of noncommuting operators. The
measures give directions for “disentangling”, and a different set of measures can yield
very different results. The first few pages of Section 14.2 (through Example 14.2.1) can
be read independently of all of the earlier material in this book and will provide the reader
with a discussion of Feynman'’s heuristic “rules” and an extremely simple example of
the points made above.

1.3 Relationship with the motivating physical theories: background and
quantum-mechanical models

What does this book have to say about the physical theories which motivate it? The
reader will not find here applications to concrete and detailed physical problems of the
mathematical results contained within. However, in certain respects, we do discuss in a
number of places related physical theories and especially quantum mechanics.

Physical background

A discussion of the relevant physical background is provided in key places. Most import-
antly, Feynman’s way of looking at quantum mechanics and his path integral and how
this has led to the approaches to the Feynman integral found in this book is the subject of
Chapter 7. Chapter 6 contains an extremely brief discussion of some parts of the usual
Hamiltonian approach to quantum dynamics; this chapter is included partly for the sake
of contrast but also because the two approaches have, of course, some common features.
It seems to us that it is difficult to get an appreciation for the mathematics of the Feyman
integral without at least some understanding of the physical background.

As noted earlier, this book contains a good deal of information about the Wiener
integral (see Chapters 2-5. 7 and 12-18). Much of this material, apart from Chapter 3,
Section 4.1 and Chapter 5, is not the standard fare but consists of special topics related to
the two items in the title of this book. Chapter 2 discusses the character of physical Brown-
ian motion and the way in which that led Norbert Wiener, through the work of Brown.
Einstein and Perrin. to what is now known as the Wiener process. the mathematical
model of Brownian motion.

Chapter 14 is an introduction to Feynman’s operational calculus. Some discussion
of the physical problems that led Feynman to this calculus can be found there, but much
less than one might guess. Why is that?
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The primary purpose of the paper [Fey8], “An operator calculus having applications
in quantum electrodynamics”, was to present the ideas and rules which Feynman had
developed in connection with [Fey5-7] for forming functions of noncommuting oper-
ators. While most of the examples in [Fey8] are from quantum theory, Feynman was
well aware that he had found a computational technique with implications beyond that
particular setting. [In fact, this point was stressed repeatedly by Richard Feynman him-
self in a number of conversations with the second-named author (M. L. L.), during the
first of which (in about 1981) Feynman mentioned his paper [Fey8] on the subject and
urged M. L. L. to develop his operational calculus and to put it on a firm mathematical
basis.] Chapter 14 is an exposition of these mathematical (but not mathematically rigor-
ous) ideas of Feynman and how they will be interpreted, extended and developed with
mathematical rigor in Chapters 15-19.

[The reader may be aware of Feynman’s sometimes negative comments about some
of the mathematicians’ musings (see, for example, [Fey16,17]). However, he/she may
wish to contrast this impression with Feynman’s comments in [Fey8, p. 108] regarding
the need for mathematical rigor and for further mathematical exploration of his “operator
calculus”. (See the second quote from [Fey8] at the very beginning of Chapter 14, which
is in complete agreement with the second author’s conversations with Feynman.) Perhaps
it is appropriate at this point to add two more personal recollections. When asked by a
physics Ph.D. student how much mathematics he needed to learn, Feynman answered
without hesitation: “As much as possible.” (This was witnessed by the second author in
Los Angeles in 1981.) Finally, and to give a more balanced view, when during his 1983
UCLA public lectures for a general scientifically curious audience (of which his book
QED, [Fey15], is an edited version), he was asked what were the relationships between
mathematicians and physicists, he began his answer (approximately) as follows: “They
are very good friends, but they do not consider the same problems, and they do not have
the same point of view. The mathematician looks at a very broad area and is interested
in everything related to it. The physicist, on the other hand, who is interested in certain
specific questions, can go much further in some particular directions. . .”]

The discussion of physical background and physical interpretation of results goes
beyond the introductory chapters mentioned above. It can be found in various places
throughout the book. We mention Chapters 11, 13, 15, 16 and especially, Chapters 17
and 19.

Highly singular potentials

A variety of quantum-mechanical models are discussed in this book. These include in
Chapters 11 and 13 highly singular potentials V and the standard Hamiltonian

H=-3A+V. (13.1)

In (1.3.1), V denotes the operator of multiplication by a time independent, real-valued
potential energy function V. [The precise form of H when the mass m and /i = (Planck’s
constant)/2 are not normalized is given in (6.4.1). For the case of an N-particle system
where the jth particle has mass mj, j = 1...., N, see (6.4.2).] The inclusion of highly
singular potentials in the approaches to the Feynman integral discussed in Chapters 11
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and 13 is a major advantage of those approaches. Some of the most basic potentials of
quantum mechanics such as the Coulomb potential are singular in the space variables.
(See [FrLdSp] for a detailed account from a physicist’s point of view of the role of
singular potentials in quantum theory.)

A discussion of highly singular central potentials is provided in Example 11.4.7 and
pursued in Example 13.6.13. The interesting special case of the inverse-square potential
is treated in Example 13.6.18.

We give in Example 11.4.12 and in parts of Sections 13.5 and 13.6 a brief discussion
of a refined and highly singular Hamiltonian which is obtained by supplementing H in
(1.3.1) by a magnetic vector potential. This corresponds to the Schrodinger equation asso-
ciated with a magnetic as well as an electric field. Further, in Example 11.4.10, we con-
sider the case where a d-dimensional Riemannian manifold replaces Euclidean space R¢.

Time-dependent potentials

The operator-valued Feynman integral used in Chapters 15-18 is defined via analytic
continuation in mass. In those chapters, the emphasis is on Feynman's operational cal-
culus and, in particular, on disentangling via time-ordered perturbation series by using
the Wiener and Feynman integrals. The “potentials” allowed there are very general
in most respects: they can be time-dependent and complex-valued and no smoothness
assumptions are made. However, they are required to be essentially bounded in the space
variables; that is, no spatial singularities are permitted. (Hence, for instance, the Coulomb
potential is not allowed in this setting since it has a blow-up singularity at the origin.)

Potentials which are bounded and may be time-dependent appear in various places
in the physics literature. Forces that are under the control of an experimenter provide a
natural source of examples of potentials that are both time-dependent and bounded.

It is not just the potentials 6 that influence the possible physical models in Chapters
15-18, but also the Lebesgue-Stieltjes measure 1 as in (1.1.4). These measures determine
the disentangling (as noted earlier) and, when combined appropriately with an exponen-
tial function, determine the evolution of an associated physical system (see Chapter 17).
[We refer, in particular, to Section 17.5 for possible physical interpretations of the corres-
ponding results both in the quantum-mechanical (or Feynman) case and in the diffusion
(or probabilistic) case.] The fact that such measures may have continuous and/or discrete
parts allows us to study both continuous and discrete phenomena and their relationships
with one another. This considerably broadens our approach to Feynman's operational
calculus via Wiener and Feynman path integrals in Chapters 15-18. Mathematically, it
also gives a rich combinatorial structure to the time-ordered perturbation expansions (or
generalized Dyson series) and the associated generalized Feynman graphs introduced in
Chapter 15 and used throughout the above chapters.

A brief discussion is given in Section 13.5 of Haugsby’s extension of Nelson's second
approach to the Feynman integral. This is the only place in the book where potentials
are treated which can be both singular in the space variables and time-dependent.

Phenomenological models: complex and nonlocal potentials

We are also able to treat certain phenomenological models. By a phenomenological
model, we mean one that does not arise from the basic principles of quantum mechanics
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but has, nevertheless, been found useful in modeling certain quantum systems. We have
already mentioned complex potentials above. Such potentials are used in modeling dis-
sipative (or open) quantum systems. An extensive discussion of this topic—including
its strengths and weaknesses and its relationship with “the” Feynman integral—can be
found in Exner’s book [Ex], Open Quantum Systems and the Feynman Integral. Com-
plex potentials are permitted in some of the results in Chapters 11 and 13 (see especially
Sections 11.6 and 13.6, as well as the end of Section 13.5) and in nearly all of the results
in Chapters 15-18. The setting of Chapter 19 is more general, but operators of multipli-
cation by a potential can be considered, and, when they are, the potentials involved can
be both time-dependent and complex-valued.

Chapter 19 deals with time-dependent families {8(s) : 0 < s < oo} of bounded oper-
ators on a Hilbert space. (A strongly continuous semigroup of operators on the Hilbert
space and the generator of that semigroup are also involved but are not particularly
relevant to the present comments.) Nonlocal potentials are used phenomenologically in
many body problems in several areas of quantum physics (see [Tab, ChSa, Mc] and the
relevant references therein). The operator is an integral operator whose kernel V (x, y)
(or V(s; x, y) if we have time-dependence) is referred to as a “nonlocal potential”. It
is nonlocal in that this “potential” does not depend on one sharp choice for the space
coordinates (see formula (19.7.15)). Such nonlocal potentials are used, for example, in
nuclear physics where the kernels used to model various situations are surprisingly sim-
ple: they are, in practice, separable kernels of finite (and low) rank (see Example 19.7.5).

Finally, we mention that some of the highly singular potentials discussed just above
and treated in Section 11.4 and Sections 13.5-13.6 can also be viewed as providing
suitable phenomenological models for certain problems occurring in quantum physics
or in molecular chemistry. (See, for example, [LL, Nel, FrLdSp).) For instance, the
attractive inverse-square potential (Example 13.6.18) and more generally, highly singu-
lar attractive or repulsive central potentials (as in Examples 11.4.7 and 13.6.13), can be
used to model problems occurring in quantum field theory or in polymer physics. They
are often considered as “nonphysical” or only of academic interest because, in particular,
they may lead (as in Example 13.6.18) to nonunitary evolutions and thus to Schrédinger
operators which are no longer self-adjoint—in contradiction with one of the basic tenets
of standard Hamiltonian quantum mechanics. (This unusual aspect is apprehended natu-
rally within the context of the various approaches to analytic-in-mass Feynman integrals
discussed in Sections 13.5 and 13.6; see [Nel, Kat7, BivPi, BivLa].) Actually, the sit-
uation is somewhat more complicated than that and a suitable dose of pragmatism is
needed to decide which model (whether of Feynman type or of Hamiltonian type, say) is
most appropriate for a given physical situation; see, for instance, [Case, R, FrLdSp] and
Example 13.6.18. In spite of these drawbacks, it can be argued convincingly that such
highly singular potentials provide better approximate (or “phenomenological”’) models
of suitable physical systems than their more regular counterparts. (See especially the
review article [FrLdSp] as well as, for example, [LL, Nel, PariZi, MarPari] and the
relevant references therein.)

In closing the main part of this introduction, we briefly return to Chapter 20 which,
as was mentioned earlier, is of a very different nature than the rest of this book. We
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recall. in particular, that in Section 20.2. we discuss some of the relationships between
heuristic Feynman-type integrals (as well as aspects of Feynman’s operational calcu-
lus) and a variety of subjects from contemporary physics (or mathematics). In addi-
tion. in Section 20.2.A, several mathematical or physical models inspired by quantum
field theory (specifically, “Chern-Simons gauge theory™ defined in terms of a heuristic
Feynman-Witten functional integral {Wit14]), are used to gain insight into (and extend)
the celebrated Jones polynomial, along with other topological invariants that are central
to modern knot theory and low-dimensional topology.

We hope that despite its relative brevity, Section 20.2 will prove helpful to a reader
interested in getting a sense of the fascinating interplay between heuristic Feynman path
integrals and a number of topics lying at the border of mathematics and theoretical
physics.

Prerequisites, new material, and organization of the book

We end this introduction by making some specific comments about the content and the
structure of this book, along the lines suggested in the title of the present italicized
subsection.

As was mentioned in the preface and further explained earlier on in this chapter.
much of the background material needed for the main part of this book is provided here:
see especially Chapters 3.4, 6, 8-10. along with Chapter 7.

Detailed proofs—based mainly on the background material just referred to—are
given for nearly all the theorems which deal with the main topics of this book. Most of
the exceptions come in Sections 13.6, 13.7 and in the last part of Section 13.5, as well
as in Section 17.6.

The reader will see that proofs are provided even for a good portion of the background
material itself; see, in particular, Sections 3.1-3.4, 4.1-4.2, 4.5-4.6, and 10.2-10.3. We
remark that if the reader is willing to forego the proofs in Sections 11.6, 13.5 and 13.6, then
the operator-theoretic background needed for the book (especially through Chapter 13)
is reduced to the information about self-adjoint operators and quadratic forms found
in Section 9.6 and in Chapter 10 plus relatively few basic facts about semigroups of
operators provided in Chapters 8 and 9.

We should mention that the comments in the preceding paragraphs do not apply to
Chapter 20; no attempt there is made to supply proofs. (In the case of Section 20.2.
in which much of the material connected with Feynman path integrals is of a heuristic
nature, rigorous mathematical proofs are usually not known.)

The Lebesgue theory of measure and integration is employed in many places in
this book. Precise references are typically given for the results used, but no systematic
presentation of measure-theoretic prerequisites is provided. Brief discussions of this
subject can be found in the books [BKExH, Appendix A, pp. 531-544], [Ru2. pp. 5-75]
and [ReSil, pp. 12-26). Fuller treatments are given in many places. for example, in [Roy,
Fol2. Coh, Du].

The list of references provided at the end of this book is extensive but certainly not
complete. (We note that a significant fraction of the references is connected in some
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way with Chapter 20, which deals with a broad selection of topics.) When the references
are given in the main body of the text, they are typically presented in enough detail so
that the relevant material can be easily located. The topics discussed in this book are
interrelated in a variety of ways; we try to keep track of these relationships by systematic
cross-referencing.

A substantial part of the material in this book other than the background material has
appeared previously only in the research literature and, in a number of cases, only in the
recent research literature. A few results that will play a prominent role come from sources
that are not widely available. The primary example of that is the Sherbrooke monograph
of the first author [Jo6] which plays a key role in the operator-valued analytic continuation
in time results in Chapter 13.

There is a significant amount of novelty to the exposition in several places. For exam-
ple. in Section 4.6, we discuss in detail what is meant by the “nonexistence of Feynman's
measure” as well as related issues. Chapter 14 is an introduction to Feynman’s opera-
tional calculus for noncommuting operators. This subject extends certain aspects of the
Feynman integral, a fact that does not seem to be widely understood in the mathematical
literature. We explain this in some detail in Chapter 14, and the idea is developed further
in Chapters 15-19.

It will be clear to the reader of this book that the research interests of the authors
have influenced much of the content. However, the influence went the other way as well;
the desire to fill in missing pieces of the book directed some of our research in recent
years. (For instance, reference [dFJoLa2}—on which Chapter 19 is based—was very
much written with our book in mind.) A portion of that work is new here. We wish to
call the reader’s attention to a few such items.

In Section 13.4, we show that under rather general conditions, three of the four
approaches that are discussed in this book are closely related. Most of this material is
new.

The last part of Section 13.5 and nearly all of Section 13.6 deal with product formulas
and operator-valued analytic continuation in mass from such formulas (rather than from
the Wiener integral). A good portion of this material is new as well, particularly with
regard to the explicit connections with the Feynman integral. Further, a comparison of
the various analytic-in-mass Feynman integrals is provided, along with related results;
see Theorems 13.6.10 and 13.6.11, along with Corollary 13.5.18. In addition, a detailed
treatment of highly singular central potentials is given in this context; see Examples
13.6.13 and 13.6.18.

In Section 15.7, a “time-reversal map” is introduced and studied for our disentangling
algebras in Chapters 15 and 18: see Definition 15.7.5, Theorem 15.7.6 and Corollary
15.7.8. This enables us, in particular, to clarify the connections with the usual “physical
ordering” in the context of Feynman’s operational calculus. In turn, these changes have
repercussions in Chapter 17. We expect that more work will be done along related lines
in the future.

New examples are provided in several places. We mention one, Example 15.5.3, that
may be of particular interest. This example involves the purely continuous but singular
measure associated with the Cantor function.
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At the end of Chapter 16, we indicate how results from our earlier work (contained
in [JoLal]) on “stability” in the measures can be extended. We carry this out in detail in
one case (see Proposition 16.2.14) and indicate how to go further in another case.

In Remark 11.5.15(d), we point out that the requirements on the negative part of
the dominating “potential” in Theorem 11.5.13 (from [Lal2]) can be reduced to mem-
bership in the “Kato class” of functions on R¢. (Theorem 11.5.13 is a dominated-type
convergence theorem for the modified Feynman integral; it is the subject of Section 11.5
and is also applied in Chapter 13 to other approaches to the Feynman integral.)

Additional work on Feynman’s operational calculus by Brian Jefferies and the first
author ([JeJo]) is discussed briefly in IIl of Section 14.4. That work provides a nice
supplement to the treatment given in Chapters 15-19 of Feynman’s operational calculus
(and based on [JoLal—4. Lal4-18. dFJoLal,2]). However, some aspects of the new
material still need further development and so a fuller discussion of this topic could not
be included in this book.

Several exercises or problems are proposed throughout the book. They are of vary-
ing degrees of difficulty. Typically, the exercises are mainly intended to illustrate a new
concept, apply a new technique, or suppiement some material in the text. Most of them
should be accessible to graduate students. However. in a few instances, some of the pro-
posed problems are extremely difficult and not yet solved in the literature (e.g. Problem
11.3.9). In other cases, they correspond to results already published but the proof of
which is not discussed fully in the book (e.g. Problem 17.3.6 or 17.6.28). In addition. a
few open-ended problems—the precise interpretation or formulation of which is left to
the reader—are provided either formally (e.g. Problem 17.6.31) or in various comments
or remarks scattered in the text. When appropriate, we have usually indicated the nature
or the difficulty of the problem at hand.

The numbering system used in this book is straightforward. For example, Theorem
11.5.13 is the thirteenth numbered item in Section 5 of Chapter 11; a similar comment
applies to the numbering of equations. Further, Section 15.4 is the fourth section of
Chapter 15. Frequently, unnumbered subsections with italicized headings are used within
a given section in order to delineate or highlight certain topics.

Indexes for symbols or notation, authors, and subjects are provided just after the
bibliography. Along with the detailed list of contents, we hope that they will prove to be
a useful guide to the reader throughout this book.
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