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Abstract

In this paper, we give a more direct proof of the results by Clair and Mokhtari-Sharghi [B. Clair,
S. Mokhtari-Sharghi, Zeta functions of discrete groups acting on trees, J. Algebra 237 (2001) 591–620]
on the zeta functions of periodic graphs. In particular, using appropriate operator-algebraic techniques, we
establish a determinant formula in this context and examine its consequences for the Ihara zeta function.
Moreover, we answer in the affirmative one of the questions raised in [R.I. Grigorchuk, A. Żuk, The Ihara
zeta function of infinite graphs, the KNS spectral measure and integrable maps, in: V.A. Kaimanovich, et al.
(Eds.), Proc. Workshop, Random Walks and Geometry, Vienna, 2001, de Gruyter, Berlin, 2004, pp. 141–
180] by Grigorchuk and Żuk. Accordingly, we show that the zeta function of a periodic graph with an
amenable group action is the limit of the zeta functions of a suitable sequence of finite subgraphs.
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0. Introduction

The zeta functions associated to finite graphs by Ihara [20], Hashimoto [15,18], Bass [4] and
others, combine features of Riemann’s zeta function, Artin L-functions, and Selberg’s zeta func-
tion, and may be viewed as analogues of the Dedekind zeta functions of a number field. They
are defined by an Euler product and have an analytic continuation to a meromorphic function
satisfying a functional equation. They can be expressed as the determinant of a perturbation of
the graph Laplacian and, for Ramanujan graphs, satisfy a counterpart of the Riemann hypothe-
sis [28]. Other relevant papers are [3,10,16,17,19,21,22,25,27,29–31].

In differential geometry, researchers have first studied compact manifolds, then infinite covers
of those, and finally, noncompact manifolds with greater complexity. Likewise, in the graph
setting, one passes from finite graphs to infinite periodic graphs, and then possibly to other types
of infinite graphs. In fact, the definition of the Ihara zeta function was extended to (countable)
periodic graphs by Clair and Mokhtari-Sharghi [8], and a corresponding determinant formula
was proved. They deduce this result as a specialization of the treatment of group actions on trees
(the so-called theory of tree lattices, as developed by Bass, Lubotzky and others, see [5]). We
mention [13] for a recent review of some results on zeta functions for finite or periodic simple
graphs, and [7–9,12] for the computation of the Ihara zeta function of several periodic simple
graphs.

In [12], Grigorchuk and Żuk defined zeta functions of infinite discrete groups, and of some
class of infinite periodic graphs (which they call residually finite), and asked how to obtain the
zeta function of a periodic graph by means of the zeta functions of approximating finite sub-
graphs, in the case of amenable or residually finite group actions.

The purpose of the present work is twofold: first, to give a different proof of the main result
obtained by Clair and Mokhtari-Sharghi in [8]; second, to answer in the affirmative one of the
questions raised by Grigorchuk and Żuk in [12].

As for the first point, some combinatorial results in Section 1 give a more direct proof of the
determinant formula in Theorem 4.1. Moreover, the theory of analytic determinants developed
in Section 3 allows us to use analytic functions instead of formal power series in that formula,
as well as to establish functional equations for suitable completions of the Ihara zeta function,
generalizing results contained in [13].

As for the second point, we take advantage of the technical framework developed in this
paper to show, in the case of amenable group actions, that the Ihara zeta function is indeed the
limit of the zeta functions of a suitable sequence of approximating finite graphs. For the sake of
completeness, we mention that, in [9], Clair and Mokhtari-Sharghi have given a positive answer
in the case of residually finite group actions.

This paper is organized as follows. We start in Section 1 by recalling some notions from graph
theory and prove all the combinatorial results we need in the following sections. In Section 2, we
then define the analogue of the Ihara zeta function and show that it is a holomorphic function in
a suitable disc, while, in Section 4, we prove a corresponding determinant formula, which relates
the zeta function with the Laplacian of the graph. The formulation and proof of this formula
requires some care because it involves the definition and properties of a determinant for bounded
operators (acting on an infinite-dimensional Hilbert space and) belonging to a von Neumann
algebra with a finite trace. This issue is addressed in Section 3. In Section 5, we establish several
functional equations for various possible completions of the zeta function. In the final section,
we prove the approximation result mentioned above.
Please cite this article in press as: D. Guido et al., Ihara’s zeta function for periodic graphs and its approximation in
the amenable case, J. Funct. Anal. (2008), doi:10.1016/j.jfa.2008.07.011
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In closing this introduction, we note that in [14] we define and study the Ihara zeta functions
attached to a new class of infinite graphs, called self-similar fractal graphs, which have greater
complexity than the periodic ones.

The contents of this paper have been presented at the 21st Conference on Operator Theory in
Timisoara (Romania) in July 2006.

1. Preliminary results

We recall some notions from graph theory, following [26]. A graph X = (VX,EX) consists of
a collection VX of objects, called vertices, and a collection EX of objects called (oriented) edges,
together with two maps e ∈ EX �→ (o(e), t (e)) ∈ VX × VX and e ∈ EX �→ e ∈ EX, satisfying
the following conditions: e = e, o(e) = t (e), ∀e ∈ EX. The vertex o(e) is called the origin of e,
while t (e) is called the terminus of e. The edge e is said to join the vertices u := o(e), v := t (e),
while u and v are said to be adjacent, which is denoted u ∼ v. The edge e is called a loop if
o(e) = t (e). The degree of a vertex v is deg(v) := |{e ∈ EX: o(e) = v}|, where |·| denotes the
cardinality. A path of length m in X from u = o(e1) ∈ VX to v = t (em) ∈ VX is a sequence of m

edges (e1, . . . , em), where o(ei+1) = t (ei), for i = 1, . . . ,m − 1. In the following, the length of a
path C is denoted by |C|. A path is closed if u = v. A graph is said to be connected if there is a
path between any pair of distinct vertices.

The couple {e, e} is called a geometric edge. An orientation of X is the choice of one oriented
edge for each couple, which is called positively oriented. Denote by E+X the set of positively ori-
ented edges. Then the other edge of each couple will be called negatively oriented, and denoted e,
if e ∈ E+X. The set of negatively oriented edges is denoted E−X. Then EX = E+X ∪ E−X.

In this paper, we assume that the graph X = (VX,EX) is connected, countable (i.e. VX and EX
are countable sets) and with bounded degree (i.e. d := supv∈VX deg(v) < ∞). We also choose,
once and for all, an orientation of X.

Let Γ be a countable discrete subgroup of automorphisms of X, which acts

(1) without inversions, i.e. γ (e) 
= e, ∀γ ∈ Γ, e ∈ EX,
(2) discretely, i.e. Γv := {γ ∈ Γ : γ v = v} is finite, ∀v ∈ VX,
(3) with bounded covolume, i.e. vol(X/Γ ) := ∑

v∈F0
1

|Γv | < ∞, where F0 ⊂ VX contains ex-
actly one representative for each equivalence class in VX/Γ .

We note that the above bounded covolume property is equivalent to

vol(EX/Γ ) :=
∑
e∈F1

1

|Γe| < ∞,

where F1 ⊂ EX contains exactly one representative for each equivalence class in EX/Γ .
Let us now define two useful unitary representations of Γ .
Denote by �2(VX) the Hilbert space of functions f : VX → C such that ‖f ‖2 :=∑
v∈VX |f (v)|2 < ∞. A unitary representation of Γ on �2(VX) is given by (λ0(γ )f )(x) :=

f (γ −1x), for γ ∈ Γ , f ∈ �2(VX), x ∈ VX. Then the von Neumann algebra N0(X,Γ ) :=

Please cite this article in press as: D. Guido et al., Ihara’s zeta function for periodic graphs and its approximation in
the amenable case, J. Funct. Anal. (2008), doi:10.1016/j.jfa.2008.07.011
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{λ0(γ ): γ ∈ Γ }′ of all the bounded operators on �2(VX) commuting with the action of Γ ,
inherits a trace given by

TrΓ (A) :=
∑
x∈F0

1

|Γx |A(x,x), A ∈N0(X,Γ ). (1.1)

Analogously, denote by �2(EX) the Hilbert space of functions ω : EX → C such that ‖ω‖2 :=∑
e∈EX |ω(e)|2 < ∞. A unitary representation of Γ on �2(EX) is given by (λ1(γ )ω)(e) :=

ω(γ −1e), for γ ∈ Γ , ω ∈ �2(EX), e ∈ EX. Then the von Neumann algebra N1(X,Γ ) :=
{λ1(γ ): γ ∈ Γ }′ of all the bounded operators on �2(EX) commuting with the action of Γ , inherits
a trace given by

TrΓ (A) :=
∑
e∈F1

1

|Γe|A(e, e), A ∈N1(X,Γ ). (1.2)

At this stage, we need to introduce some additional terminology from graph theory.

Definition 1.1 (Reduced paths).

(i) A path (e1, . . . , em) has backtracking if ei+1 = ei , for some i ∈ {1, . . . ,m − 1}. A path with
no backtracking is also called proper.

(ii) A closed path is called primitive if it is not obtained by going n � 2 times around some
other closed path.

(iii) A proper closed path C = (e1, . . . , em) has a tail if there is k ∈ N such that em−j+1 = ej ,
for j = 1, . . . , k. Denote by C the set of proper tail-less closed paths, also called reduced
closed paths.

Definition 1.2 (Cycles). Given closed paths C = (e1, . . . , em), D = (e′
1, . . . , e

′
m), we say that

C and D are equivalent, and write C ∼o D, if there is k ∈ N such that e′
j = ej+k , for all j ,

where em+i := ei , that is, the origin of D is shifted k steps with respect to the origin of C. The
equivalence class of C is denoted [C]o. An equivalence class is also called a cycle. Therefore, a
closed path is just a cycle with a specified origin.

Denote by R the set of reduced cycles, and by P ⊂ R the subset of primitive reduced cycles,
also called prime cycles.

Definition 1.3 (Equivalence relation).

(i) Given C,D ∈ C, we say that C and D are Γ -equivalent, and write C ∼Γ D, if there is
an isomorphism γ ∈ Γ such that D = γ (C). We denote by [C]Γ the set of Γ -equivalence
classes of reduced closed paths.

(ii) Similarly, given C, D ∈ R, we say that C and D are Γ -equivalent, and write C∼Γ D, if there
is an isomorphism γ ∈ Γ such that D = γ (C). We denote by [R]Γ the set of Γ -equivalence
classes of reduced cycles, and analogously for the subset P .

Remark 1.4. In the rest of the paper, we denote by Cm the subset of C consisting of closed paths
of length m. An analogous meaning is attached to Rm and Pm.
Please cite this article in press as: D. Guido et al., Ihara’s zeta function for periodic graphs and its approximation in
the amenable case, J. Funct. Anal. (2008), doi:10.1016/j.jfa.2008.07.011
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Our proof of formula (iv) in Theorem 2.2 requires a generalization of a result by Kotani and
Sunada [21] to infinite covering graphs. This is done in Proposition 1.6, whose proof depends on
a new combinatorial result contained in Lemma 1.5.

Define the effective length of a cycle C, denoted by �(C), as the length of the prime cycle
underlying C, and observe that �(C) is constant on the Γ -equivalence class of C. Therefore, if
ξ ∈ [R]Γ , we can define �(ξ) := �(C), for any representative C ∈ ξ . Recall that, for any cycle C,
the stabilizer of C in Γ is the subgroup ΓC := {γ ∈ Γ : γ (C) = C}. Moreover, if C1,C2 ∈ ξ ,
then the stabilizers ΓC1 ,ΓC2 are conjugate subgroups in Γ , and we denote by S(ξ) their common
cardinality.

For the purposes of the next few results, for any closed path D = (e0, . . . , em−1), we also
denote ej by ej (D).

Lemma 1.5. Let ξ ∈ [Rm]Γ . Then

∑
e∈F1

1

|Γe|
∣∣{D ∈ Cm: [D]o,Γ = ξ, e0(D) = e

}∣∣ = �(ξ)

S(ξ)
.

Proof. Let us first observe that, if C1,C2 ∈ ξ , then
⋂

e∈EC1
Γe is conjugate in Γ to

⋂
e∈EC2

Γe,
and we denote by I(ξ) their common cardinality.

Let C ∈ Rm be such that [C]Γ = ξ . By choosing each time a different starting edge, we
obtain � := �(C) ≡ �(ξ) closed paths from C. Denote them by D1, . . . ,D�, and observe that
any two of them can be Γ -equivalent, i.e. Di = γ (Dj ), for some γ ∈ Γ , if and only if γ ∈ ΓC .
Moreover, if γ ∈ ⋂

e∈EC Γe ⊂ ΓC , then γ (Di) = Di , for i = 1, . . . , �. Therefore, there are only

k ≡ k(ξ) := �(ξ)I(ξ)
S(ξ)

distinct Γ -classes of closed paths generated by the Di ’s, and we denote
them by π1, . . . , πk .

Let π be one of them, and observe that, for any e ∈ F1, there are either no closed paths D rep-
resenting π and such that e0(D) = e, or there are |Γe|

I(ξ)
distinct closed paths D representing π and

such that e0(D) = e. Indeed, if there is a closed path D representing π and such that e0(D) = e,
then any γ ∈ Γe generates a closed path γ (D) representing π and such that e0(γ (D)) = e, but,
if γ ∈ ⋂

e∈ED Γe, then γ (D) = D. Hence, the claim is established.
Let us now introduce a discrete measure on F1. Let us say that a Γ -class of closed paths π

starts at e ∈ F1 if there is D ∈ π such that e0(D) = e. Let us set, for e ∈ F1, μξ (e) = 1, if e is
visited by some πi , i = 1, . . . , k, and μξ(e) = 0, otherwise. It is easy to see that μξ depends only
on ξ and is in particular independent of the representative C. Observe that μξ (F1) = k(ξ).

Therefore, for any e ∈F1, we get

∣∣{D ∈ Cm: [D]o,Γ = ξ, e0(D) = e
}∣∣ = μξ (e) · |Γe|

I(ξ)
,

and, finally,

∑ 1

|Γe|
∣∣{D ∈ Cm: [D]o,Γ = ξ, e0(D) = e

}∣∣ = 1

I(ξ)

∑
μξ (e) = k(ξ)

I(ξ)
= �(ξ)

S(ξ)
. �
Please cite this article in press as: D. Guido et al., Ihara’s zeta function for periodic graphs and its approximation in
the amenable case, J. Funct. Anal. (2008), doi:10.1016/j.jfa.2008.07.011
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Define, for ω ∈ �2(EX), e ∈ EX,

(T ω)(e) =
∑

t (e′)=o(e)
e′ 
=e

ω(e′).

Then, we have

Proposition 1.6.

(i) T ∈ N1(X,Γ ), ‖T ‖ � d − 1,
(ii) for m ∈ N, T me = ∑

m(e,e1,...,em)
proper path

em, for e ∈ EX,

(iii) TrΓ (T m) = NΓ
m := ∑

[C]Γ ∈[Rm]Γ
�([C]Γ )
S([C]Γ )

, the number of Γ -equivalence classes of reduced
cycles of length m. Here, TrΓ is the trace on N1(X,Γ ) introduced in (1.2).

Proof. (i), (ii) are easy to check.
(iii) Using Lemma 1.5, we obtain

TrΓ
(
T m

) =
∑
e∈F1

1

|Γe|T
m(ẽ, ẽ)

=
∑
e∈F1

1

|Γe|
∑

(e,e1,...,em−1,e)
reduced path

1

=
∑
e∈F1

1

|Γe|
∣∣{C ∈ Cm: e0(C) = e

}∣∣

=
∑

[C]Γ ∈[R]Γ

∑
e∈F1

1

|Γe|
∣∣{D ∈ Cm: [D]0 ∼Γ C, e0(D) = e

}∣∣
= NΓ

m . �
2. The Zeta function

Before introducing the zeta function of an infinite periodic graph, we recall its definition for
a finite (q + 1)-regular graph X (i.e. such that deg(v) = q + 1, for all v ∈ VX). In that case, the
Ihara zeta function ZX is defined by an Euler product of the form

ZX(u) :=
∏
C∈P

(
1 − u|C|)−1

, for |u| < 1

q
, (2.1)

where P is the set of prime cycles of X. By way of comparison, recall that the Riemann zeta
function is given by the Euler product

ζ(s) :=
∏(

1 − p−s
)−1

, for Re s > 1, (2.2)
Please cite this article in press as: D. Guido et al., Ihara’s zeta function for periodic graphs and its approximation in
the amenable case, J. Funct. Anal. (2008), doi:10.1016/j.jfa.2008.07.011
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where p ranges over all the rational primes. To see the correspondence between ZX and ζ , simply
let u := q−s and observe that u|C| = (q |C|)−s . Also note that |u| < 1

q
if and only if Re s > 1.

Let us now return to the case of periodic graphs and introduce the Ihara zeta function via its
Euler product as well as show that this defines a holomorphic function in a suitable disc.

Definition 2.1 (Zeta function). Let Z(u) = ZX,Γ (u) be given by

ZX,Γ (u) :=
∏

[C]Γ ∈[P]Γ

(
1 − u|C|)− 1

|ΓC | ,

for u ∈ C sufficiently small so that the infinite product converges.

In the following proposition we let

detΓ (B) := exp◦TrΓ ◦ log(B), for B ∈N1(X,Γ ).

We refer to Section 3 for more details. Formula (iv) in the following theorem was first established
in [8], although with a different proof.

Theorem 2.2.

(i) Z(u) := ∏
[C]Γ ∈[P]Γ (1−u|C|)−

1
|ΓC | defines a holomorphic function in the open disc {u ∈ C:

|u| < 1
d−1 }.

(ii) u
Z′(u)
Z(u)

= ∑∞
m=1 NΓ

m um, for |u| < 1
d−1 .

(iii) Z(u) = exp(
∑∞

m=1
NΓ

m

m
um), for |u| < 1

d−1 .

(iv) Z(u) = detΓ (I − uT )−1, for |u| < 1
d−1 .

Proof. Observe that it follows from Proposition 1.6 that
∑∞

m=1
NΓ

m
um defines a function which

is holomorphic in {u ∈ C: |u| < 1
d−1 }. Moreover, for any u ∈ C such that |u| < 1

d−1 ,

∞∑
m=1

NΓ
m um =

∑
[C]Γ ∈[R]Γ

�([C]Γ )

S([C]Γ )
u|C|

=
∑

[C]Γ ∈[P]Γ

∞∑
m=1

|C|
|ΓC |u

|Cm|

=
∑

[C]Γ ∈[P]Γ

1

|ΓC |
∞∑

m=1

|C|u|C|m

=
∑ 1

|ΓC |u
d

du

∞∑ u|C|m

m

Please cite this article in press as: D. Guido et al., Ihara’s zeta function for periodic graphs and its approximation in
the amenable case, J. Funct. Anal. (2008), doi:10.1016/j.jfa.2008.07.011
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Fig. 1. A periodic graph.

Fig. 2. A cycle with |ΓC | = 1.

Fig. 3. A cycle with |ΓC | = 2.

= −
∑

[C]Γ ∈[P]Γ

1

|ΓC |u
d

du
log

(
1 − u|C|)

= u
d

du
logZ(u),

where, in the last equality, we have used uniform convergence on compact subsets of {u ∈ C:
|u| < 1 }. From what has already been proved, (i)–(iii) follow. Finally, for |u| < 1 , we have
Please cite this article in press as: D. Guido et al., Ihara’s zeta function for periodic graphs and its approximation in
the amenable case, J. Funct. Anal. (2008), doi:10.1016/j.jfa.2008.07.011
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logZ(u) =
∞∑

m=1

NΓ
m

m
um

=
∞∑

m=1

1

m
TrΓ

(
(T u)m

)

= TrΓ

( ∞∑
m=1

(T u)m

m

)

= TrΓ
(− log(I − uT )

)
. �

Example 2.3. Some examples of cycles with different stabilizers are shown in Figs. 2, 3. They
refer to the graph in Fig. 1 which is the standard lattice graph X = Z

2 endowed with the action
of the group Γ generated by the reflection along the x-axis and the translations by elements
(m,n) ∈ Z

2, acting as (m,n)(v1, v2) := (v1 + 4m,v2 + 4n), for v = (v1, v2) ∈ VX = Z
2.

3. An analytic determinant for von Neumann algebras with a finite trace

In this section, we define a determinant for a suitable class of not necessarily normal operators
in a von Neumann algebra with a finite trace. The results obtained are used in Section 4 to prove
a determinant formula for the zeta function.

In a celebrated paper [11], Fuglede and Kadison defined a positive-valued determinant for
finite factors (i.e. von Neumann algebras with trivial center and finite trace). Such a determinant
is defined on all invertible elements and enjoys the main properties of a determinant function,
but it is positive-valued. Indeed, for an invertible operator A with polar decomposition A = UH ,
where U is a unitary operator and H := √

A∗A is a positive self-adjoint operator, the Fuglede–
Kadison determinant is defined by

det(A) = exp◦ τ ◦ logH,

where logH may be defined via the functional calculus. Note, however, that the original defini-
tion was only given for a normalized trace.

For the purposes of the present paper, we need a determinant which is an analytic function.
As we shall see, this can be achieved, but corresponds to a restriction of the domain of the
determinant function and implies the loss of some important properties. In particular, the product
formula of the Fuglede–Kadison determinant only holds under certain restrictions in our case;
see Propositions 3.4, 3.6, 3.7 and 3.8.

Let (A, τ ) be a von Neumann algebra endowed with a finite trace. Then, a natural way to
obtain an analytic function is to define, for A ∈ A, detτ (A) = exp◦ τ ◦ logA, where

log(A) := 1

2πi

∫
Γ

logλ(λ − A)−1 dλ,

and Γ is the boundary of a connected, simply connected region Ω containing the spectrum of A.
Clearly, once the branch of the logarithm is chosen, the integral above does not depend on Γ ,
provided Γ is given as above.
Please cite this article in press as: D. Guido et al., Ihara’s zeta function for periodic graphs and its approximation in
the amenable case, J. Funct. Anal. (2008), doi:10.1016/j.jfa.2008.07.011
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Then a naïve way of defining det is to allow all elements A for which there exist an Ω as
above, and a branch of the logarithm whose domain contains Ω . Indeed, the following holds.

Lemma 3.1. Let A, Ω , Γ be as above, and ϕ, ψ two branches of the logarithm such that both
domains contain Ω . Then

exp◦ τ ◦ ϕ(A) = exp◦ τ ◦ ψ(A).

Proof. The function ϕ(λ) − ψ(λ) is continuous and everywhere defined on Γ . Since it takes its
values in 2πiZ, it should be constant on Γ . Therefore,

exp◦ τ ◦ ϕ(A) = exp◦ τ

(
1

2πi

∫
Γ

2πin0(λ − A)−1 dλ

)
exp◦ τ ◦ ψ(A)

= exp◦ τ ◦ ψ(A). �
The problem with the previous definition is its dependence on the choice of Ω . Indeed, it is

easy to see that when A = ( 1 0
0 i

)
and we choose Ω containing {eiϑ ,ϑ ∈ [0,π/2]} and any suitable

branch of the logarithm, we get det(A) = eiπ/4, if we use the normalized trace on 2 × 2 matrices.
By contrast, if we choose Ω containing {eiϑ ,ϑ ∈ [π/2,2π]} and a corresponding branch of the
logarithm, we get det(A) = e5iπ/4. Therefore, we make the following choice.

Definition 3.2. Let (A, τ ) be a von Neumann algebra endowed with a finite trace, and con-
sider the subset A0 = {A ∈ A: 0 /∈ convσ(A)}, where σ(A) denotes the spectrum of A. For any
A ∈A0 we set

detτ (A) = exp◦ τ ◦
(

1

2πi

∫
Γ

logλ(λ − A)−1 dλ

)
,

where Γ is the boundary of a connected, simply connected region Ω containing convσ(A), and
log is a branch of the logarithm whose domain contains Ω .

Corollary 3.3. The determinant function defined above is well defined and analytic on A0.

We collect several properties of our determinant in the following result.

Proposition 3.4. Let (A, τ ) be a von Neumann algebra endowed with a finite trace, and let
A ∈A0. Then

(i) detτ (zA) = zτ(I) detτ (A), for any z ∈ C \ {0},
(ii) if A is normal, and A = UH is its polar decomposition,

detτ (A) = detτ (U)detτ (H),

(iii) if A is positive, detτ (A) = Det(A), where the latter is the Fuglede–Kadison determinant.
Please cite this article in press as: D. Guido et al., Ihara’s zeta function for periodic graphs and its approximation in
the amenable case, J. Funct. Anal. (2008), doi:10.1016/j.jfa.2008.07.011
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Proof. (i) If, for a given ϑ0 ∈ [0,2π), the half-line {ρeiϑ0 ∈ C: ρ > 0} does not intersect
convσ(A), then the half-line {ρei(ϑ0+t) ∈ C: ρ > 0} does not intersect convσ(zA), where
z = reit . If log is the branch of the logarithm defined on the complement of the real nega-
tive half-line, then ϕ(x) = i(ϑ0 − π) + log(e−i(ϑ0−π)x) is suitable for defining detτ (A), while
ψ(x) = i(ϑ0 + t − π) + log(e−i(ϑ0+t−π)x) is suitable for defining detτ (zA). Moreover, if Γ is
the boundary of a connected, simply connected region Ω containing convσ(A), then zΓ is the
boundary of a connected, simply connected region zΩ containing convσ(zA). Therefore,

detτ (zA) = exp◦ τ

(
1

2πi

∫
zΓ

ψ(λ)(λ − zA)−1 dλ

)

= exp◦ τ

(
1

2πi

∫
Γ

(
i(ϑ0 + t − π) + log

(
e−i(ϑ0+t−π)reitμ

))
(μ − A)−1 dμ

)

= exp◦ τ

(
(log r + it)I + 1

2πi

∫
Γ

ϕ(μ)(μ − A)−1 dμ

)

= zτ(I) detτ (A).

(ii) When A = UH is normal, U = ∫
[0,2π] e

iϑ du(ϑ), H = ∫
[0,∞)

r dh(r), then A =∫
[0,∞)×[0,2π] re

iϑ d(h(r) ⊗ u(ϑ)). The property 0 /∈ convσ(A) is equivalent to the fact that the
support of the measure d(h(r) ⊗ u(ϑ)) is compactly contained in some open half-plane{

ρeiϑ : ρ > 0, ϑ ∈ (ϑ0 − π/2, ϑ0 + π/2)
}
,

or, equivalently, that the support of the measure dh(r) is compactly contained in (0,∞), and
the support of the measure du(ϑ) is compactly contained in (ϑ0 − π/2, ϑ0 + π/2). Therefore,
A ∈ A0 is equivalent to U,H ∈A0. Then

logA =
∫

[0,∞)×(ϑ0−π/2,ϑ0+π/2)

(log r + iϑ) d
(
h(r) ⊗ u(ϑ)

)
,

which implies that

detτ (A) = exp◦τ

( ∞∫
0

log r dh(r) +
ϑ0+π/2∫

ϑ0−π/2

iϑ du(ϑ)

)

= detτ (U) · detτ (H).

(iii) This follows by the argument given in (ii). �
Remark 3.5. We note that the above defined determinant function strongly violates the product
property detτ (AB) = detτ (A)detτ (B). Indeed, the fact that A,B ∈A0 does not imply AB ∈ A0,
as is seen e.g. by taking A = B = ( 1 0

0 i

)
. Moreover, even if A,B,AB ∈ A0 and A and B commute,

the product property may be violated, as is shown by choosing A = B = ( 1 0
0 e3iπ/4

)
, and using the

normalized trace on 2 × 2 matrices.
Please cite this article in press as: D. Guido et al., Ihara’s zeta function for periodic graphs and its approximation in
the amenable case, J. Funct. Anal. (2008), doi:10.1016/j.jfa.2008.07.011
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Proposition 3.6. Let (A, τ ) be a von Neumann algebra endowed with a finite trace, and let
A,B ∈A. Then, for sufficiently small u ∈ C, we have

detτ
(
(I + uA)(I + uB)

) = detτ (I + uA)detτ (I + uB).

Proof. The proof is inspired by that of Lemma 3 in [11]. Let us write a := log(I + uA), b :=
log(I + uB) ∈ A, and let c(t) := etaeb, t ∈ [0,1]. As ‖a‖ � −log(1 − |u|‖A‖), and ‖b‖ �
−log(1 − |u|‖B‖), we get

∥∥c(t) − 1
∥∥ = ∥∥eta − e−b

∥∥∥∥eb
∥∥

� e‖b‖(e‖a‖ + e‖b‖ − 2
)

� 1

1 − |u|‖B‖
(

1

1 − |u|‖A‖ + 1

1 − |u|‖B‖ − 2

)
< 1,

for all t ∈ [0,1], if we choose |u| sufficiently small; hence, c(t) ∈ A0 for all t ∈ [0,1]. Now apply
Lemma 2 in [11] which gives

τ

(
d

dt
log c(t)

)
= τ

(
c(t)−1c′(t)

) = τ
(
e−be−taaetaeb

) = τ(a).

Therefore, after integration for t ∈ [0,1], we obtain τ(log c(1)) − τ(log c(0)) = τ(a), which
means

τ
(
log

(
(I + uA)(I + uB)

)) = τ
(
log c(1)

) = τ(a) + τ(b)

= τ
(
log(I + uA)

) + τ
(
log(I + uB)

)
,

and hence implies the claim. �
Proposition 3.7. Let (A, τ ) be a von Neumann algebra endowed with a finite trace. Further, let
A ∈A have a bounded inverse, and let T ∈ A0. Then

detτ
(
AT A−1) = detτ T .

Proof. Indeed, for any polynomial p, we have p(AT A−1) = Ap(T )A−1. Applying the Stone–
Weierstrass theorem on the compact set σ(AT A−1) = σ(T ), we obtain log(AT A−1) =
A log(T )A−1, from which the result follows. �
Proposition 3.8. Let (A, τ ) be a von Neumann algebra endowed with a finite trace, and let
T = ( T11 T12

0 T22

) ∈ Mat2(A), with Tii ∈ A such that σ(Tii) ⊂ B1(1) := {z ∈ C: |z − 1| < 1}, for
i = 1,2. Then

detτ (T ) = detτ (T11)detτ (T22).
Please cite this article in press as: D. Guido et al., Ihara’s zeta function for periodic graphs and its approximation in
the amenable case, J. Funct. Anal. (2008), doi:10.1016/j.jfa.2008.07.011
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Proof. Indeed, for any k ∈ N ∪ {0},

T k =
(

T k
11 Bk

0 T k
22

)
,

for some Bk ∈ A, so that, for any polynomial p,

p(T ) =
(

p(T11) B

0 p(T22)

)
,

for some B ∈ A. It is easy to see that σ(T ) ⊂ σ(T11) ∪ σ(T22) ⊂ B1(1). Hence, applying the
Stone–Weierstrass theorem on the compact set σ(T ), we obtain

log(T ) =
(

log(T11) C

0 log(T22)

)
,

for some C ∈A. Therefore,

detτ (T ) = exp◦ τ ◦ log(T ) = exp
(
τ
(
log(T11)

) + τ
(
log(T22)

)) = detτ (T11)detτ (T22),

as desired. �
Corollary 3.9. Let Γ be a discrete group, π1, π2 unitary representations of Γ , and τ1, τ2 finite
traces on π1(Γ )′ and π2(Γ )′, respectively. Let π := π1 ⊕ π2, τ := τ1 + τ2, T = ( T11 T12

0 T22

) ∈
π(Γ )′, with σ(Tii) ⊂ B1(1) = {z ∈ C: |z − 1| < 1}, for i = 1,2. Then

detτ (T ) = detτ1(T11)detτ2(T22).

Proof. It is similar to the proof of Proposition 3.8. �
4. The determinant formula

In this section, we prove the main result in the theory of the Ihara zeta functions, which says
that Z is the reciprocal of a holomorphic function, which, up to a factor, is the determinant of a
deformed Laplacian on the graph. We first need some technical results.

Let us denote by A the adjacency matrix of X, i.e. (Af )(v) = ∑
w∼v f (w), f ∈ �2(VX). Then

(by [23,24]) ‖A‖ � d := supv∈VX deg(v) < ∞, and it is easy to see that A ∈N0(X,Γ ). Introduce
(Qf )(v) := (deg(v) − 1)f (v), v ∈ VX, f ∈ �2(VX), and Δ(u) := I − uA + u2Q ∈ N0(X,Γ ),

for u ∈ C. Let us recall that d := supv∈VX deg(v), and set α := d+
√

d2+4d
2 . Then

Theorem 4.1 (Determinant formula). We have

ZX,Γ (u)−1 = (
1 − u2)−χ(2)(X) detΓ

(
Δ(u)

)
, for |u| < 1

α
,

where χ(2)(X) := ∑
v∈F0

1
|Γv | − 1

2

∑
e∈F1

1
|Γe| is the L2-Euler characteristic of (X,Γ ), as intro-

duced in [6].
Please cite this article in press as: D. Guido et al., Ihara’s zeta function for periodic graphs and its approximation in
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This theorem was first proved in [8] and is based on formula (iv) in Theorem 2.2 and the
equality detΓ (I − uT ) = (1 − u2)−χ(2)(X) detΓ (Δ(u)), for |u| < 1

α
. The main difference with

their proof is that we use an analytic determinant and operator-valued analytic functions instead
of Bass’ noncommutative determinant [4] and formal power series of operators.

We first prove two lemmas. Define, for f ∈ �2(VX), ω ∈ �2(EX),

(∂0f )(e) := f
(
o(e)

)
, e ∈ EX,

(∂1f )(e) := f
(
t (e)

)
, e ∈ EX,

(σω)(v) :=
∑

o(e)=v

ω(e), v ∈ VX,

(Jω)(e) := ω(e), e ∈ EX,

and use the short-hand notation IV := Id�2(VX) and IE := Id�2(EX).

Lemma 4.2.

(i) J∂1 = ∂0,
(ii) σλ1(γ ) = λ0(γ )σ , ∂iλ0(γ ) = λ1(γ )∂i , i = 0,1, γ ∈ Γ ,

(iii) σ∂0 = I + Q,
(iv) σ∂1 = A,
(v) ∂0σ = JT + IE ,

(vi) ∂1σ = T + J ,
(vii) (IE − uJ )(IE − uT ) = (1 − u2)IE − u∂1σ + u2∂0σ .

Proof. Let f ∈ �2(VX), v ∈ VX. Then

(σ∂0f )(v) =
∑

o(e)=v

(∂0f )(e) =
∑

o(e)=v

f
(
o(e)

) = (
1 + Q(v,v)

)
f (v),

(σ∂1f )(v) =
∑

o(e)=v

(∂1f )(e) =
∑

o(e)=v

f
(
t (e)

) = (Af )(v).

Moreover, for ω ∈ �2(EX), e ∈ EX, we have

(∂1σω)(e) = (σω)
(
t (e)

) =
∑

o(e′)=t (e)

ω(e′) = (T ω)(e) + (Jω)(e),

∂0σ = J∂1σ = J (T + J ) = JT + IE.

The rest of the proof is clear. �
Let us now consider the direct sum of the unitary representations λ0 and λ1, namely

λ(γ ) := λ0(γ ) ⊕ λ1(γ ) ∈ B(�2(VX) ⊕ �2(EX)). Then, the von Neumann algebra λ(Γ )′ :=
{S ∈ B(�2(VX) ⊕ �2(EX)): Sλ(γ ) = λ(γ )S, γ ∈ Γ } consists of operators S = ( S00 S01

)
, where
Please cite this article in press as: D. Guido et al., Ihara’s zeta function for periodic graphs and its approximation in
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Sijλj (γ ) = λi(γ )Sij , γ ∈ Γ , i, j = 0,1, so that Sii ∈ λi(Γ )′ ≡ Ni (X,Γ ), i = 0,1. Hence λ(Γ )′
inherits a trace given by

TrΓ

(
S00 S01
S10 S11

)
:= TrΓ (S00) + TrΓ (S11). (4.1)

Introduce

L(u) :=
(

(1 − u2)IV 0
u∂0 − ∂1 IE

)
and M(u) :=

(
IV uσ

u∂0 − ∂1 (1 − u2)IE

)
,

which both belong to λ(Γ )′. Then, we have

Lemma 4.3.

(i) M(u)L(u) =
(

Δ(u) uσ

0 (1 − u2)IE

)
,

(ii) L(u)M(u) =
(

(1 − u2)IV (1 − u2)uσ

0 (IE − uJ )(IE − uT )

)
.

Moreover, for |u| sufficiently small,

(iii) L(u), M(u) are invertible, with a bounded inverse,

(iv) detΓ (M(u)L(u)) = (1 − u2)TrΓ (IE) detΓ (Δ(u)),

(v) detΓ (L(u)M(u)) = (1 − u2)TrΓ (IV )− 1
2 TrΓ (IE) detΓ (IE − uT ).

Proof. The formulas for M(u)L(u) and L(u)M(u) follow from the previous lemma. Moreover,
for |u| sufficiently small, σ(Δ(u)), σ((1−u2)IE), σ((1−u2)IV ) and σ((IE −uJ )(IE −uT )) ⊂
B1(1) = {z ∈ C: |z − 1| < 1}, hence σ(M(u)L(u)) and σ(L(u)M(u)) ⊂ B1(1), as in the proof
of Proposition 3.8. Therefore, L(u) and M(u) are invertible, with a bounded inverse, for |u|
sufficiently small. By Propositions 3.4(i), 3.6 and Corollary 3.9, we obtain

detΓ
(
M(u)L(u)

) = detΓ
(
Δ(u)

)
detΓ

((
1 − u2)IE

)
= (

1 − u2)TrΓ (IE)
detΓ

(
Δ(u)

)
and

detΓ
(
L(u)M(u)

) = detΓ
((

1 − u2)IV

)
detΓ (IE − uJ )detΓ (IE − uT )

= (
1 − u2)TrΓ (IV ) detΓ (IE − uJ )detΓ (IE − uT ).

Moreover, we have detΓ (IE −uJ ) = (1−u2)
1
2 TrΓ (IE). Indeed, using J to identify �2(E−X) with

�2(E+X), we obtain a representation ρ of B(�2(EX)) onto Mat2(B(�2(E+X))), under which
ρ(J ) = ( 0 I

I 0

)
, ρ(IE) = (

I 0
0 I

)
. Hence, by Propositions 3.6 and 3.8,

detΓ (IE − uJ ) = detΓ
(
ρ(IE − uJ )

)

Please cite this article in press as: D. Guido et al., Ihara’s zeta function for periodic graphs and its approximation in
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= detΓ

(
I −uI

−uI I

)

= detΓ

((
I uI

0 I

)(
I −uI

−uI I

))

= detΓ

(
(1 − u2)I 0

−uI I

)

= (
1 − u2)TrΓ (I )

= (
1 − u2) 1

2 TrΓ (IE)
. �

Proof of Theorem 4.1. Let us observe that, for sufficiently small |u|, we have

M(u)L(u) = M(u)L(u)M(u)M(u)−1,

so that, by Proposition 3.7, we get detΓ (L(u)M(u)) = detΓ (M(u)L(u)). Therefore, the claim
follows from Lemma 4.3(iv) and (v), Eqs. (1.1) and (1.2) and Theorem 2.2. �
5. Functional equations

In this section, we obtain several functional equations for the Ihara zeta functions of (q + 1)-
regular graphs, i.e. graphs with deg(v) = q + 1, for any v ∈ VX, on which Γ acts freely (i.e.
Γv is trivial, for v ∈ VX) and with finite quotient (i.e. B := X/Γ is a finite graph). The various
functional equations correspond to different ways of completing the zeta functions, as is done
in [28] for finite graphs. We extend here to non-necessarily simple graphs the results contained
in [13].

Lemma 5.1. Let X be a (q + 1)-regular graph, on which Γ acts freely and with finite quotient
B := X/Γ . Let Δ(u) := (1 + qu2)I − uA. Then

(i) χ(2)(X) = χ(B) = |V (B)|(1 − q)/2 ∈ Z,
(ii) ZX,Γ (u) = (1 − u2)χ(B) detΓ ((1 + qu2)I − uA)−1, for |u| < 1

q
,

(iii) by using the determinant formula in (ii), ZX,Γ can be extended to a function holomorphic
at least in the open set

Ω := R
2 \

({
(x, y) ∈ R

2: x2 + y2 = 1

q

}
∪

{
(x,0) ∈ R

2:
1

q
� |x| � 1

})
.

See Fig. 4.
(iv) detΓ (Δ( 1

qu
)) = (qu2)−|VB| detΓ (Δ(u)), for u ∈ Ω \ {0}.

Proof. (i) This follows by a simple computation.
(ii) This follows from (i).
(iii) Let us observe that

σ
(
Δ(u)

) = {
1 + qu2 − uλ: λ ∈ σ(A)

} ⊂ {
1 + qu2 − uλ: λ ∈ [−d, d]}.
Please cite this article in press as: D. Guido et al., Ihara’s zeta function for periodic graphs and its approximation in
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Fig. 4. The open set Ω .

It follows that 0 /∈ convσ(Δ(u)) at least for u ∈ C such that 1 + qu2 − uλ 
= 0 for λ ∈ [−d, d],
that is for u = 0 or 1+qu2

u
/∈ [−d, d], or equivalently, at least for u ∈ Ω . The rest of the proof

follows from Corollary 3.3.
(iv) This follows from Proposition 3.4(i) and the fact that TrΓ (IV ) = |VB|. �
The question whether the extension of the domain of ZX,Γ by means of the determinant

formula is compatible with an analytic extension from the defining domain is a non-trivial issue,
see the recent paper by Clair [7].

Theorem 5.2 (Functional equations). Let X be a (q + 1)-regular graph, on which Γ acts freely
and with finite quotient B := X/Γ . Then, for all u ∈ Ω , we have

(i) ΛX,Γ (u) := (1 − u2)−χ(B)(1 − u2)|VB|/2(1 − q2u2)|VB|/2ZX,Γ (u) = −ΛX,Γ ( 1
qu

),

(ii) ξX,Γ (u) := (1 − u2)−χ(B)(1 − u)|VB|(1 − qu)|VB|ZX,Γ (u) = ξX,Γ ( 1
qu

),

(iii) ΞX,Γ (u) := (1 − u2)−χ(B)(1 + qu2)|VB|ZX,Γ (u) = ΞX,Γ ( 1
qu

).

Proof. They all follow from Lemma 5.1(iv) by a straightforward computation. We prove (i) as
an example.

ΛX(u) = (
1 − u2)|VB|/2(1 − q2u2)|VB|/2 detΓ

(
Δ(u)

)−1

= u|VB|
(

q2

q2u2
− 1

)|VB|/2

(qu)|VB|
(

1

q2u2
− 1

)|VB|/2 1

(qu2)|VB| detΓ

(
Δ

(
1

qu

))−1

= −ΛX

(
1

qu

)
. �

Remark 5.3. Recall that a key property of the Riemann zeta function ζ is that its mero-
morphic continuation satisfies a functional equation ξ(s) = ξ(1 − s), for all s ∈ C, where
ξ(s) := π−s/2�(s/2)ζ(s) denotes the completion of ζ and � is the usual Gamma function. Like-
wise, in Theorem 5.2, any of the functional equations relates the values of the corresponding
completed Ihara zeta function at s and 1 − s, provided we set u = q−s , as was explained at the
beginning of Section 2. Note that 1

qu
= 1

q1−s .
Please cite this article in press as: D. Guido et al., Ihara’s zeta function for periodic graphs and its approximation in
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6. Approximation by finite graphs in the amenable case

In this section, we show that the zeta function of a graph, endowed with a free and cofinite
action of a discrete amenable group of automorphisms, is the limit of the zeta functions of a
(suitable) sequence of finite subgraphs, thus answering in the affirmative a question raised by
Grigorchuk and Żuk in [12].

Before doing that, we establish a result which is considered folklore by specialists. Roughly
speaking, it states that a Γ -space is amenable if Γ is an amenable group, where a space is said
to be amenable if it possesses a regular exhaustion. Such a result was stated by Cheeger and
Gromov in [6] for CW-complexes and was proved by Adachi and Sunada in [2] for covering
manifolds. We give here a proof in the case of covering graphs.

Throughout this section, X is a connected, countably infinite graph, and Γ is a countable
discrete amenable group of automorphisms of X, which acts on X freely (i.e., any γ 
= id has no
fixed-points), and cofinitely (i.e., B := X/Γ is a finite graph).

A fundamental domain for the action of Γ on X can be constructed as follows. Let B =
(VB,EB) be the quotient graph, and p :X → B the covering map. Let EB = {e1, . . . , ek}, where
the edges have been ordered in such a way that, for each i ∈ {1, . . . , k}, ei has at least a vertex in
common with some ej , with j < i. Choose ẽ1 ∈ EX such that p(ẽ1) = e1. Assume ẽ1, . . . , ẽi have
already been chosen in such a way that p(ẽj ) = ej , for j = 1, . . . , i, and, for any such j , ẽj has
at least a vertex in common with some eh, with h < j . Let ei+1 ∈ EB have a vertex in common
with ej , for some j ∈ {1, . . . , i} and choose ẽi+1 ∈ VX such that p(ẽi+1) = ei+1 and ẽi+1 has
a vertex in common with ẽj . This completes the induction. Let EF := {ẽ1, . . . , ẽk} and VF :=
{o(ẽ1), . . . , o(ẽk)} ∪ {t (ẽ1), . . . , t (ẽk)}, so that F = (VF,EF) is a connected finite subgraph of X

which does not contain any Γ -equivalent edges. Then, F is said to be a fundamental domain for
the action of Γ on X.

Definition 6.1. Let X be a countably infinite graph and Γ a countable discrete amenable group
of automorphisms of X, which acts on X freely and cofinitely; further, let F be a corresponding
fundamental domain. A sequence {Kn: n ∈ N} of finite subgraphs of X is called an amenable
exhaustion of X if the following conditions hold:

(i) Kn = ⋃
γ∈En

γF , where En ⊂ Γ , for all n ∈ N,

(ii)
⋃

n∈N
Kn = X,

(iii) Kn ⊂ Kn+1, for all n ∈ N,

(iv) if FKn := {v ∈ VKn: d(v,VX \ VKn) = 1}, then limn→∞ |FKn|
|VKn| = 0.

Then X is called an amenable graph if it possesses an amenable exhaustion.

Theorem 6.2. Let X be a connected, countably infinite graph, Γ be a countable discrete
amenable subgroup of automorphisms of X which acts on X freely and cofinitely and let F

be a corresponding fundamental domain. Then X is an amenable graph.

Proof. The proof is an adaptation of a proof by Adachi and Sunada in the manifold case, see [2].
The finite set A := {γ ∈ Γ : dist(γ F,F ) � 1} is symmetric (i.e. γ ∈ A ⇔ γ −1 ∈ A), generates

Γ as a group, and contains the unit element. Introduce the Cayley graph C(Γ,A), whose vertices
are the elements of Γ , and, by definition, there is one edge from γ1 to γ2 iff γ −1γ2 ∈ A. A subset
Please cite this article in press as: D. Guido et al., Ihara’s zeta function for periodic graphs and its approximation in
the amenable case, J. Funct. Anal. (2008), doi:10.1016/j.jfa.2008.07.011
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E ⊂ V C(Γ,A) is said to be connected if, for any pair of distinct vertices of E, there is a path in
C(Γ,A), joining those two vertices, and consisting only of vertices of E.

From [1, Theorem 4], it follows that there is a sequence {Ej }j∈N of connected finite subsets
of Γ such that

⋃
j∈N

Ej = Γ, Ej ⊂ Ej+1, ∀j ∈ N,

|Ej · A \ Ej |
|Ej | � 1

j |A| , ∀j ∈ N,

where, for any U1, U2 ⊂ Γ , we set U1 · U2 = {γ1γ2: γi ∈ Ui, i = 1,2}.
For each n ∈ N, let Kn := ⋃

γ∈En
γF . Then {Kn: n ∈ N} satisfies the claim. Indeed, let b :=

|VF| and a := |F0|, so that a|En| � |VKn| � b|En|, n ∈ N. Moreover, for any n ∈ N, we have

FKn ⊂
⋃

γ∈Un

γF,

where Un := {γ ∈ En: there is δ ∈ A such that γ δ /∈ En}. Indeed, let v ∈ FKn and w ∈ VX \
VKn be such that d(v,w) = 1. Then, there are γ0, γ1 ∈ Γ , v0, v1 ∈ VF, such that v = γ0v0 and
w = γ1v1. Moreover, we have γ0 ∈ En and γ1 /∈ En. Let δ := γ −1

0 γ1, so that dist(F, δF ) =
dist(γ0F,γ1F) � d(v,w) = 1, which implies that δ ∈ A. Hence, γ0 ∈ Un, and the claim follows.

Finally,

|FKn| � |Un| · |F |
� b

∑
δ∈A

∣∣En \ En · δ−1
∣∣

= b
∑
δ∈A

|En · δ \ En|

� b|A| · |En · A \ En|
� b

n
|En| � b

an
|VKn|,

so condition (iii) of Definition 6.1 is satisfied, showing that {Kn: n ∈ N} is an amenable exhaus-
tion. Hence, X is amenable, as desired. �

If Ω ⊂ VX, r ∈ N, we write Br(Ω) := {v′ ∈ VX: ρ(v′, v) � r}, where ρ is the geodesic metric
on VX.

Lemma 6.3. Let (X,Γ,F ) be as above. Let d := supv∈VX deg(v) < ∞. Let {Kn} be an amenable

exhaustion of X, and εn := |FKn|
|VKn| → 0. Then, for any r ∈ N, |Br(FKn)| � (d + 1)rεn|VKn|.

Proof. Since

Br+1(v) =
⋃

′
B1(v

′),
Please cite this article in press as: D. Guido et al., Ihara’s zeta function for periodic graphs and its approximation in
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we have |Br+1(v)| � (d + 1)|Br(v)|, giving |Br(v)| � (d + 1)r , ∀v ∈ VX, r � 0. As a conse-
quence, for any finite set Ω ⊂ VX, we have Br(Ω) = ⋃

v′∈Ω Br(v
′), giving∣∣Br(Ω)

∣∣ � |Ω|(d + 1)r , ∀r � 0. (6.1)

Therefore, |Br(FKn)| � (d + 1)r |FKn| = (d + 1)rεn|VKn|. �
Lemma 6.4. Let (X,Γ,F ) be as above. Let {Kn} be an amenable exhaustion of X. Then, for any
B ∈N0(X,Γ ), we have

lim
n→∞

Tr(P (Kn)BP (Kn))

|VKn| = 1

|F0| TrΓ (B),

where P(Kn) is the orthogonal projection of �2(VX) onto �2(VKn).

Proof. Denote by F0 a subset of VF consisting of one representative vertex for each Γ -class,
and let F ′ := VF \ F0 and δ := diamF . Then, for any n ∈ N, VKn = ⊔

γ∈En
γF0 � Ωn, where

� denotes “disjoint union” and Ωn ⊂ Bδ(FKn). Indeed, if v ∈ Ωn := VKn \ ⊔
γ∈En

γF0, then
there is a unique γ ∈ Γ such that v ∈ γF0, so that γ /∈ En, which implies γF ∩ (VX \ VKn) 
= ∅,
and d(v,VX \ VKn) � δ, which is the claim. Therefore,

Tr
(
P(Kn)B

) =
∑

v∈VKn

B(v, v)

=
∑
γ∈En

∑
v∈F0

B(γ v, γ v) +
∑
v∈Ωn

B(v, v)

=
∑
γ∈En

∑
v∈F0

B(v, v) +
∑
v∈Ωn

B(v, v)

= |En|TrΓ (B) +
∑
v∈Ωn

B(v, v).

Moreover, ∣∣∣∣ ∑
v∈Ωn

B(v, v)

∣∣∣∣ � ‖B‖|Ωn| � ‖B‖∣∣Bδ(FKn)
∣∣ � (d + 1)δ‖B‖εn|VKn|,

so that

lim
n→∞

∑
v∈Ωn

B(v, v)

|VKn| = 0.

Besides,

lim
n→∞

|En|
|VKn| = 1

|F0| ,

because |VKn| = |En| · |F0| + |Ωn|. The claim follows. �
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Lemma 6.5. Let (X,Γ ) be as above. Let A and Q be as in Section 4. Let f (u) := Au − Qu2,
for u ∈ C. Then ‖f (u)‖ < 1

2 , for |u| < 1

d+
√

d2+2(d−1)
.

Proof. This follows from the estimate∥∥f (u)
∥∥ � |u|‖A‖ + |u|2‖Q‖ � d|u| + (d − 1)|u|2,

which is valid for any u ∈ C. �
Theorem 6.6 (Approximation by finite graphs). Let X be a connected, countably infinite graph,
and let Γ be a countable discrete amenable subgroup of automorphisms of X, which acts on X

freely and cofinitely, and let F be a corresponding fundamental domain. Let {Kn: n ∈ N} be an
amenable exhaustion of X. Then

ZX,Γ (u) = lim
n→∞ZKn(u)

|F0 |
|Kn| ,

uniformly on compact subsets of {u ∈ C: |u| < 1

d+
√

d2+2(d−1)
}.

Proof. For a finite subset N ⊂ VX, denote by P(N) ∈ B(�2(VX)) the orthogonal projection
of �2(VX) onto span(N). Observe that, since N is an orthonormal basis for �2(N), we have
Tr(P (N)) = |N |.

Let f (u) := Au − Qu2 and Pn := P(VKn). Then

logZKn(u) = −1

2
Tr

(
Pn(Q − I )Pn

)
log

(
1 − u2) − Tr log

(
Pn

(
I − f (u)

)
Pn

)
.

Moreover,

Tr log
(
Pn

(
I − f (u)

)
Pn

) = −
∞∑

k=1

1

k
Tr

((
Pnf (u)Pn

)k)
.

Observe that, for k � 2,

Tr
(
Pnf (u)kPn

) = Tr
(
Pn

(
f (u)

(
Pn + P ⊥

n

))k
Pn

)
= Tr

((
Pnf (u)Pn

)k) +
∑

σ∈{−1,1}k−1

σ 
={1,1,...,1}

Tr

(
Pn

k−1∏
j=1

[
f (u)P

σj
n

]
f (u)Pn

)
,

where P −1
n stands for P ⊥

n , the projection onto the orthogonal complement of �2(VKn) in �2(VX),
and ∣∣∣∣∣Tr

(
Pn

k−1∏
j=1

[
f (u)P

σj
n

]
f (u)Pn

)∣∣∣∣∣ = ∣∣Tr
(
. . . Pnf (u)P ⊥

n . . .
)∣∣

�
∥∥f (u)

∥∥k−1 Tr
(∣∣Pnf (u)P ⊥

n

∣∣).
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Moreover, with Ωn := B1(VKn) \ VKn ⊂ B1(FKn), we have

Tr
(∣∣Pnf (u)P ⊥

n

∣∣) = Tr
(∣∣P(Kn)f (u)P (Ωn)

∣∣)
�

∥∥f (u)
∥∥Tr

(
P(Ωn)

)
= ∥∥f (u)

∥∥|Ωn|
�

∥∥f (u)
∥∥(d + 1)εn|VKn|.

Therefore, we obtain

∣∣Tr
(
Pnf (u)kPn

) − Tr
((

Pnf (u)Pn

)k)∣∣ �
(
2k−1 − 1

)∥∥f (u)
∥∥k

(d + 1)εn|VKn|,

so that

∣∣Tr log
(
Pn

(
I − f (u)

)
Pn

) − Tr
(
Pn log

(
I − f (u)

)
Pn

)∣∣
=

∣∣∣∣∣
∞∑

k=1

1

k
Tr

((
Pnf (u)Pn

)k) −
∞∑

k=1

1

k
Tr

(
Pnf (u)kPn

)∣∣∣∣∣
�

( ∞∑
k=1

2k−1‖f (u)‖k

k

)
(d + 1)εn|VKn|

� C(d + 1)εn|VKn|,

where the series converges for |u| < 1

d+
√

d2+2(d−1)
, by Lemma 6.5. Hence,

∣∣∣∣Tr log(Pn(I − f (u))Pn)

|VKn| − Tr(Pn log(I − f (u))Pn)

|VKn|
∣∣∣∣ → 0, n → ∞,

and, by using Lemma 6.4,

lim
n→∞

logZKn(u)

|VKn| = −1

2
lim

n→∞
Tr(Pn(Q − I )Pn)

|VKn| log
(
1 − u2)

− lim
n→∞

Tr(Pn log(I − f (u))Pn)

|VKn|
= − 1

|F0|
(

1

2
TrΓ (Q − I ) log

(
1 − u2) + TrΓ

(
log

(
I − f (u)

)))

= 1

|F0| logZX,Γ (u),

from which the claim follows. �
Remark 6.7. Observe that 1

2α
< 1

d+
√

d2+2(d−1)
< 1

α
.
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