J. fixed point theory appl. Online First © 2008 Birkhäuser Verlag Basel/Switzerland DOI 10.1007/s11784-008-0062-9

Journal of Fixed Point Theory and Applications

# Nonarchimedean Cantor set and string

Michel L. Lapidus and Hùng Lũ'

Dedicated to Vladimir Arnold, on the occasion of his jubilee

**Abstract.** We construct a nonarchimedean (or *p*-adic) analogue of the classical ternary Cantor set C. In particular, we show that this nonarchimedean Cantor set  $C_3$  is self-similar. Furthermore, we characterize  $C_3$  as the subset of 3-adic integers whose elements contain only 0's and 2's in their 3-adic expansions and prove that  $C_3$  is naturally homeomorphic to C. Finally, from the point of view of the theory of fractal strings and their complex fractal dimensions [7, 8], the corresponding nonarchimedean Cantor string resembles the standard archimedean (or *real*) Cantor string perfectly.

Mathematics Subject Classification (2000). Primary 11M41, 26E30, 28E30, 28A12, 26A80; Secondary 11M36, 12J25, 28A75, 28A78.

**Keywords.** Fractal geometry, *p*-adic analysis, zeta functions, complex fractal dimensions, nonarchimedean Cantor set and string.

## 1. Introduction

Our goal in this article is to provide a good *nonarchimedean* (or *p*-adic) analogue of the classical Cantor ternary set C and to show that it satisfies a counterpart of some of the key properties of C in this nonarchimedean context. We also show that the corresponding *p*-adic fractal string, called the nonarchimedean Cantor string and denoted by  $CS_3$ , is an exact analogue of the ordinary archimedean Cantor string, a central example in the theory of real (or archimedean) fractal strings and their complex dimensions [7, 8]. Furthermore, we compute the geometric zeta function of  $CS_3$  and the associated complex fractal dimensions.

In a forthcoming paper [9], we will develop a general framework for formulating a theory of self-similar p-adic (or nonarchimedean) strings and their complex fractal dimensions. Besides answering a natural mathematical question, these results may be useful in various aspects of mathematical physics, including p-adic

#### 1.1. *p*-adic numbers

Let  $p \in \mathbb{N}$  be a fixed prime number. For any nonzero  $x \in \mathbb{Q}$ , we can always write  $x = p^v \cdot a/b$  with  $a, b \in \mathbb{Z}$  and some unique  $v \in \mathbb{Z}$  so that p does not divide ab. The *p*-adic norm is a function  $|\cdot|_p : \mathbb{Q} \to [0, \infty)$  given by

$$|x|_p = p^{-v}$$
 and  $|0|_p = 0.$ 

One can verify that  $|\cdot|_p$  is indeed a norm on  $\mathbb{Q}$ . Furthermore, it satisfies a *strong* triangle inequality: for any  $x, y \in \mathbb{Q}$ , we have  $|x + y|_p \leq \max\{|x|_p, |y|_p\}$ ; the induced metric is therefore called an *ultrametric*. This inequality is called the *nonarchimedean property* because for each  $x \in \mathbb{Q}$ ,  $|nx|_p$  will never exceed  $|x|_p$ for any  $n \in \mathbb{N}$ . The metric completion of  $\mathbb{Q}$  with respect to the *p*-adic norm is the field  $\mathbb{Q}_p$  of *p*-adic numbers. More concretely, there is a unique representation of every  $z \in \mathbb{Q}_p$ :  $z = a_v p^v + \cdots + a_0 + a_1 p + a_2 p^2 + \cdots$  for some  $v \in \mathbb{Z}$  and  $a_i \in \{0, 1, \ldots, p-1\}$  for all  $i \geq v$ . An important subspace of  $\mathbb{Q}_p$  is the unit ball,  $\mathbb{Z}_p = \{x \in \mathbb{Q}_p \mid |x|_p \leq 1\}$ , which can also be represented as follows:

$$\mathbb{Z}_p = \{a_0 + a_1 p + a_2 p^2 + \dots \mid a_i \in \{0, 1, \dots, p-1\}, \, \forall i \ge 0\}$$

Using this *p*-adic expansion, we can see that

$$\mathbb{Z}_p = \bigcup_{c=0}^{p-1} (c+p\mathbb{Z}_p),\tag{1}$$

where  $c + p\mathbb{Z}_p := \{y \in \mathbb{Q}_p \mid |y - c|_p \leq 1/p\}$ . Moreover, by the nonarchimedean property of the *p*-adic norm,  $\mathbb{Z}_p$  is closed under addition and hence is a ring. It is called the ring of *p*-adic integers, and  $\mathbb{Z}$  is dense in  $\mathbb{Z}_p$ . Note that  $\mathbb{Z}_p$  is compact and thus complete. (For general references on *p*-adic analysis, see, e.g., [4, 11].) It is also known that there are topological models of  $\mathbb{Z}_p$  in the Euclidean space  $\mathbb{R}^d$  as fractal spaces such as the Cantor set and the Sierpiński gasket [11, §I.2.5]. In fact,  $\mathbb{Z}_p$  is homeomorphic to the ternary Cantor set. It is thus natural to wonder what exactly is the nonarchimedean (or *p*-adic) analogue of the ternary Cantor set. We will answer this question in §2.

#### 1.2. Ternary Cantor set

The classical ternary Cantor set, denoted by  $\mathcal{C}$ , is the set that remains after iteratively removing the open middle third subinterval(s) from the closed unit interval  $C_0 = [0, 1]$ . The construction is illustrated in Figure 1. Hence, the ternary (or archimedean) Cantor set  $\mathcal{C}$  is equal to  $\bigcap_{n=0}^{\infty} C_n$ .

For comparison with our results in the nonarchimedean case, we state without proof the following well-known results (see, e.g., [1, Ch. 9] and [2, p. 50]):

**Theorem 1.1.** The ternary Cantor set C is self-similar. More specifically, it is the unique nonempty, compact invariant set in  $\mathbb{R}$  generated by the family  $\{\Phi_1, \Phi_2\}$ 



FIGURE 1. Construction of the archimedean Cantor set  $\mathcal{C} = \bigcap_{n=0}^{\infty} C_n$ .

of similarity contraction mappings of [0,1] into itself, where  $\Phi_1(x) = x/3$  and  $\Phi_2(x) = x/3 + 2/3$ . That is,

$$\mathcal{C} = \Phi_1(\mathcal{C}) \cup \Phi_2(\mathcal{C}).$$

**Theorem 1.2.** The Cantor set is characterized by the ternary expansion of its elements as

$$\mathcal{C} = \left\{ c \in [0,1] \ \middle| \ c = a_0 + \frac{a_1}{3} + \frac{a_2}{3^2} + \cdots, \ a_i \in \{0,2\}, \ \forall i \ge 0 \right\}.$$

We note that, as usual, we choose the nonrepeating ternary expansion here. Such a precaution will not be needed in §2 for the elements of  $\mathbb{Q}_3$  because the 3-adic expansion is unique.

## 1.3. Cantor fractal string

The archimedean (or real) Cantor string CS is defined as the complement of the ternary Cantor set in the closed unit interval [0, 1]. By construction, the topological boundary of CS is the ternary Cantor set C. The Cantor string is one of the simplest and most important examples in the research monographs [7, 8] by Lapidus and van Frankenhuijsen. Indeed, it is used throughout those books to illustrate and motivate the general theory; see also, e.g., [5] and [6]. From the point of view of the theory of fractal strings and their complex dimensions [7, 8], it suffices to consider the sequence  $\{l_n\}_{n\in\mathbb{N}}$  of lengths associated to CS. More specifically, these are the lengths of the intervals of which the bounded open set  $CS \subset \mathbb{R}$  is composed. Accordingly, the Cantor string consists of  $1 = m_1$  interval of length  $l_1 = 1/3$ ,  $2 = m_2$  intervals of length  $l_2 = 1/9$ ,  $4 = m_3$  intervals of length  $l_3 = 1/27$ , and so on; see Figure 2.

Important information about the geometry of CS, e.g., the Minkowski dimension and the Minkowski measurability ([5–8]), is contained in its geometric zeta function

$$\zeta_{\mathcal{CS}}(s) := \sum_{n=1}^{\infty} m_n \cdot l_n^s = \sum_{n=1}^{\infty} \frac{2^{n-1}}{3^{ns}} = \frac{3^{-s}}{1 - 2 \cdot 3^{-s}} \quad \text{for } \Re(s) > D,$$
(2)

where  $D = \log 2/\log 3$  is the *Minkowski dimension* of the ternary Cantor set. In addition,  $\zeta_{CS}$  can be extended to a meromorphic function on the entire complex

M. L. Lapidus and H. Lũ'

FIGURE 2. Cantor string (above); Cantor string viewed as a fractal harp (below).

plane  $\mathbb{C}$ , as given by the last expression in (2). The corresponding set of poles of  $\zeta_{CS}$  is then given by

$$\mathcal{D}_{\mathcal{CS}} = \{ D + \imath \nu \mathbf{p} \mid \nu \in \mathbb{Z} \},\tag{3}$$

where  $\mathbf{p} = 2\pi/\log 3$  is the oscillatory period of  $\mathcal{CS}$ . Here and henceforth, we let  $i := \sqrt{-1}$ . The set  $\mathcal{D}_{\mathcal{CS}}$  is called the set of complex dimensions of the Cantor string; see Figure 5 in §3.

The general theme of the monographs [7, 8] is that the complex dimensions describe oscillations in the geometry and the spectrum of a fractal string. In particular, there are oscillations of order D in the geometry of CS and therefore its boundary, the Cantor set, is not Minkowski measurable; see [6], [8, §1.1.2].

In  $\S3$ , we will obtain a nonarchimedean (or *p*-adic) analogue of the Cantor string and establish its main properties.

# 2. Nonarchimedean Cantor set

Let  $\mathbb{Z}_p$  be the set of *p*-adic integers. The *p*-adic ball with center  $a \in \mathbb{Q}_p$  and radius  $p^{-n}$ ,  $n \in \mathbb{Z}$ , is the set

$$a + p^n \mathbb{Z}_p = \{ x \in \mathbb{Q}_p \mid |x - a|_p \le p^{-n} \}.$$

Two interesting "nonarchimedean phenomena" are that each point of the *p*-adic ball is a center and a *p*-adic ball is both open and closed. Moreover, every interval<sup>1</sup> in  $\mathbb{Q}_p$  can be canonically decomposed into *p* equally long subintervals, as in (1).

Consider the ring  $\mathbb{Z}_3$  of 3-adic integers. In a procedure reminiscent of the construction of the classical Cantor set, we construct the *nonarchimedean Cantor* set. First, we subdivide  $T_0 = \mathbb{Z}_3$  into three equally long subintervals. We then remove the "middle" third and call  $T_1$  the remaining set:  $T_1 = 0 + 3\mathbb{Z}_3 \cup 2 + 3\mathbb{Z}_3$ . We then repeat this process with each of the remaining subintervals, i.e.,  $0 + 3\mathbb{Z}_3$ 

<sup>&</sup>lt;sup>1</sup> We shall sometimes call the ball  $a + p^n \mathbb{Z}_p$  an "interval".



FIGURE 3. Construction of the nonarchimedean Cantor set  $C_3 = \bigcap_{n=0}^{\infty} T_n$ .

and  $2+3\mathbb{Z}_3$ . Finally, we define the nonarchimedean Cantor set  $\mathcal{C}_3$  to be  $\bigcap_{n=0}^{\infty} T_n$ ; see Figure 3. The nonarchimedean analogue of Theorem 1.1 is given by Theorem 2.1:

**Theorem 2.1.** The nonarchimedean Cantor set  $C_3$  is self-similar. More specifically, it is the unique nonempty, compact invariant set in  $\mathbb{Q}_p$  generated by the family  $\{\Psi_1, \Psi_2\}$  of similarity contraction mappings of  $\mathbb{Z}_3$  into itself, where

$$\Psi_1(x) = 3x \quad and \quad \Psi_2(x) = 3x + 2.$$
 (4)

That is,

$$\mathcal{C}_3 = \Psi_1(\mathcal{C}_3) \cup \Psi_2(\mathcal{C}_3).$$

*Proof.* From Figure 4, we can see that  $\Psi_1(T_n) \cup \Psi_2(T_n) = T_{n+1}$  for all  $n \ge 0$ . Since each  $\Psi_i$  is injective (i = 1, 2), we have  $\Psi_i(\mathcal{C}_3) = \Psi_i(\bigcap_n T_n) = \bigcap_n \Psi_i(T_n)$ . Therefore,

$$\Psi_1(\mathcal{C}_3) \cup \Psi_2(\mathcal{C}_3) = \bigcap_{n=0}^{\infty} \left( \Psi_1(T_n) \cup \Psi_2(T_n) \right) = \bigcap_{n=0}^{\infty} T_{n+1} = \mathcal{C}_3.$$

The contraction mapping principle, applied to the complete metric space of all nonempty compact subsets of  $\mathbb{Z}_3$ ,<sup>2</sup> equipped with the Hausdorff metric induced by the 3-adic norm, shows that there is a unique invariant set of the family of similarity contraction mappings { $\Psi_1, \Psi_2$ }. We refer to Hutchinson's paper [3] for a detailed argument in the case of arbitrary complete metric spaces.

**Theorem 2.2.** Let  $W_k = \{1, 2\}^k$  be the set of all finite words, on two symbols, of a given length  $k \ge 0$ . Then

$$\mathcal{C}_3 = \bigcap_{k=0}^{\infty} \bigcup_{w \in W_k} \Psi_w(\mathbb{Z}_3),$$

where  $\Psi_w := \Psi_{w_k} \circ \cdots \circ \Psi_{w_1}$  for  $w = (w_1, \ldots, w_k) \in W_k$  and the maps  $\Psi_{w_i}$  are as in equation (4).

<sup>&</sup>lt;sup>2</sup>Recall from §1.1 that  $\mathbb{Z}_3$  itself is a complete metric space.



JFPTA



FIGURE 4. Construction of the nonarchimedean Cantor set via an iterated function scheme (IFS).

*Proof.* For each  $k = 0, 1, 2, \ldots$ , we have

$$\bigcup_{w \in W_k} \Psi_w(\mathbb{Z}_3) = T_k$$

Hence, in light of Theorem 2.1, the result follows at once from the definition of  $C_3$ ; see Figure 4.

The following result is the nonarchimedean analogue of Theorem 1.2:

**Theorem 2.3.** The nonarchimedean Cantor set is characterized by the 3-adic expansion of its elements. That is,

 $\mathcal{C}_3 = \left\{ \kappa \in \mathbb{Z}_3 \mid \kappa = a_0 + a_1 3 + a_2 3^2 + \cdots, a_i \in \{0, 2\}, \, \forall i \ge 0 \right\}.$ 

*Proof.* First of all, observe that the inverses of  $\Psi_1$  and  $\Psi_2$  are, respectively,

$$\Psi_1^{-1}(x) = \frac{x}{3}$$
 and  $\Psi_2^{-1}(x) = \frac{x-2}{3}$ .

Secondly, it is clear that for  $a_i' \in \{0, 1, 2\}$  and  $i = 0, 1, \ldots$ ,

$$a'_0 + a'_1 3 + a'_2 3^2 + \dots \in 1 + 3\mathbb{Z}_3 \iff a'_0 = 1.$$
 (5)

Now, let  $\kappa = a_0 + a_1 3 + a_2 3^2 + \cdots \in \mathbb{Z}_3$  and suppose that some coefficients in its 3-adic expansion are 1's. We will show that  $\kappa$  must then be in the image of  $1 + 3\mathbb{Z}_3$  under some composition of the maps  $\Psi_1$  and  $\Psi_2$ . Let  $l \in \mathbb{N}$  be the first index such that  $a_l = 1$ . Hence,  $a_j = 0$  or 2 for all j < l. If  $a_0 = 0$ , then we apply  $\Psi_1^{-1}$  to  $\kappa$ , and if  $a_0 = 2$ , then we apply  $\Psi_2^{-1}$  to  $\kappa$ . In both cases, we have

$$\Psi_i^{-1}(\kappa) = a_1 + a_2 3 + \dots + a_l 3^{l-1} + a_{l+1} 3^l + \dots$$
 (6)

Depending on whether  $a_1 = 0$  or 2, we apply  $\Psi_1^{-1}$  or  $\Psi_2^{-1}$ , respectively, to the above 3-adic expansion (6). Proceeding in this manner, we will get

$$\Psi_w^{-1}(\kappa) = a_l + a_{l+1}3 + \cdots,$$

which is in  $1 + 3\mathbb{Z}_3$  for some  $k \in \mathbb{N}$  and  $w \in W_k$ . Thus  $\kappa \in \Psi_w(1 + 3\mathbb{Z}_3)$ . Since  $(1 + 3\mathbb{Z}_3) \cap \mathcal{C}_3 = \emptyset$  and  $\Psi_w$  is injective, we deduce that  $\kappa \notin \mathcal{C}_3$ . Therefore, all of the digits of  $\kappa \in \mathcal{C}_3$  must lie in  $\{0, 2\}$ .

Conversely, suppose that all of the coefficients in  $\kappa = a_0 + a_1 + a_2 + \cdots \in \mathbb{Z}_3$  are 0's or 2's. Then, by the above observation (5),  $\kappa \notin 1 + 3\mathbb{Z}_3$ . Moreover,  $\kappa \notin \Phi_w(1+3\mathbb{Z}_3)$  for any  $w \in W_k$ ,  $k = 0, 1, 2, \ldots$ , since none of the coefficients  $a_i$  is equal to 1. That is,

$$\kappa \notin \bigcup_{k=0}^{\infty} \bigcup_{w \in W_k} \Phi_w(1+3\mathbb{Z}_3) =: B.$$

But  $C_3 \cap B = \emptyset$  and  $C_3 \cup B = \mathbb{Z}_3$ , as can be seen from equation (8) and Theorem 3.3. Hence,  $\kappa \in C_3$ , as desired.

**Theorem 2.4.** The ternary Cantor set C and the nonarchimedean Cantor set  $C_3$  are homeomorphic.

*Proof.* Let  $\phi : \mathcal{C} \to \mathcal{C}_3$  be the map sending

$$\sum_{i=0}^{\infty} a_i 3^{-i} \mapsto \sum_{i=0}^{\infty} a_i 3^i,\tag{7}$$

where  $a_i \in \{0, 2\}$  for all  $i \geq 0$ . We note that on the left-hand side of (7), we use the ternary expansion in  $\mathbb{R}$ , whereas on the right-hand side we use the 3-adic expansion in  $\mathbb{Q}_3$ . Then, clearly,  $\phi$  is a continuous bijective map from  $\mathcal{C}$  to  $\mathcal{C}_3$ . Since both  $\mathcal{C}$  and  $\mathcal{C}_3$  are compact spaces in their respective natural metric topologies,  $\phi$  is a homeomorphism.

**Remark 2.5.** In view of Theorem 2.4, like its archimedean counterpart C, the nonarchimedean Cantor set  $C_3$  is totally disconnected, uncountably infinite and has no isolated points.

# 3. Nonarchimedean Cantor string

The nonarchimedean (or *p*-adic) Cantor string is defined to be

$$\mathcal{CS}_3 := (1+3\mathbb{Z}_3) \cup (3+9\mathbb{Z}_3) \cup (5+9\mathbb{Z}_3) \cup \dots = \mathbb{Z}_3 \setminus \mathcal{C}_3, \tag{8}$$

the complement of  $C_3$  in  $\mathbb{Z}_3$ ; see the "middle" parts of Figure 3. Therefore, by analogy with the relationship between the archimedean Cantor set and Cantor string, the nonarchimedean Cantor set  $C_3$  can be thought of as some kind of "boundary" of the nonarchimedean Cantor string. Certainly,  $C_3$  is not the topological boundary of  $CS_3$  because the latter boundary is empty.

Since  $\mathbb{Q}_p$  is a locally compact group, there is a unique translation invariant Haar measure  $\mu_H$ , normalized so that  $\mu_H(\mathbb{Z}_p) = 1$ , and hence  $\mu_H(a+3^n\mathbb{Z}_3) = 3^{-n}$ ; see [4], [11]. As in the real case in §1.3, we may identify  $\mathcal{CS}_3$  with the sequence of lengths  $l_n = 3^{-n}$  with multiplicities  $m_n = 2^{n-1}$  for  $n \in \mathbb{N}$ .

The following theorem provides the exact analogue of equations (2) and (3):



FIGURE 5. The set of complex dimensions,  $\mathcal{D}_{CS} = \mathcal{D}_{CS_3}$ , of the archimedean and nonarchimedean Cantor strings, CS and  $CS_3$ .

**Theorem 3.1.** The geometric zeta function of the nonarchimedean Cantor string is meromorphic in all of  $\mathbb{C}$  and is given by

$$\zeta_{\mathcal{CS}_3}(s) = \frac{3^{-s}}{1 - 2 \cdot 3^{-s}}.$$
(9)

Hence, the set of complex dimensions of  $CS_3$  is given by

$$\mathcal{D}_{\mathcal{CS}_3} = \{ D + \imath \nu \mathbf{p} \mid \nu \in \mathbb{Z} \},\tag{10}$$

where  $D = \log 2/\log 3$  is the dimension of  $CS_3$  and  $\mathbf{p} = 2\pi/\log 3$  is its oscillatory period.

*Proof.* By definition (see [9, 10]), the geometric zeta function of  $\mathcal{CS}_3$  is given by

$$\zeta_{\mathcal{CS}_3}(s) := (\mu_H (1+3\mathbb{Z}_3))^s + (\mu_H (3+9\mathbb{Z}))^s + (\mu_H (5+9\mathbb{Z}_3))^s + \cdots$$
$$= \sum_{n=1}^{\infty} \frac{2^{n-1}}{3^{ns}} = \frac{3^{-s}}{1-2\cdot 3^{-s}} \quad \text{for } \Re(s) > \log 2/\log 3.$$

Furthermore, the meromorphic extension of  $\zeta_{CS_3}$  to all of  $\mathbb{C}$  is given by the last expression in the above equation. The *complex dimensions* of  $CS_3$ , defined as the poles of  $\zeta_{CS_3}$ , are all the solutions  $\omega$  of the equation  $1 - 2 \cdot 3^{-\omega} = 0$ . These are precisely of the form

$$\omega = \frac{\log 2}{\log 3} + i\nu \frac{2\pi}{\log 3}, \quad \nu \in \mathbb{Z}$$

**Remark 3.2.** In [9, 10], we prove that D is the Minkowski dimension of  $\mathcal{CS}_3 \subset \mathbb{Z}_3$ . Clearly, D is also the abscissa of convergence of the Dirichlet series defining  $\zeta_{\mathcal{CS}_3}$ .

JFPTA

The following result was used in the second part of the proof of Theorem 2.3:

**Theorem 3.3.** With the same notation as in Theorem 2.2, we have

$$\mathcal{CS}_3 = \bigcup_{k=0}^{\infty} \bigcup_{w \in W_k} \Psi_w(1+3\mathbb{Z}_3).$$

*Proof.* For each k = 0, 1, 2, ..., we let  $\widetilde{T}_{k+1} = \mathbb{Z}_3 \setminus T_{k+1}$ , the complement of  $T_{k+1}$  in  $\mathbb{Z}_3$ . Then

$$\widetilde{T}_{k+1} = \bigcup_{w \in W_k} \Psi_w(1+3\mathbb{Z}_3).$$

Hence, in light of Theorem 2.1,

$$\bigcup_{k=0}^{\infty} \bigcup_{w \in W_k} \Psi_w(1+3\mathbb{Z}_3) = \bigcup_{k=0}^{\infty} \widetilde{T}_{k+1} = \left(\bigcap T_{k+1}\right)^{\sim} = \widetilde{\mathcal{C}}_3 = \mathcal{CS}_3,$$

by the definitions of  $C_3$  and  $CS_3$ . See Figure 6.



FIGURE 6. Construction of the nonarchimedean Cantor string via an IFS.

**Remark 3.4.** The above theorem shows that  $G = 1 + 3\mathbb{Z}_3$  is the generator of the nonarchimedean Cantor string. This is a particular case of a more general construction of self-similar *p*-adic fractal strings [9, 10]. Moreover,  $\mathcal{CS}_3$  is not Minkowski measurable as a subset of  $\mathbb{Q}_3$ . In fact, in contrast to the archimedean case ([8, Theorems 8.23 and 8.36]), self-similar *p*-adic fractal strings are never Minkowski measurable.

### Acknowledgments

We would like to thank Scot Childress, Erin Pearse and Steffen Winter for helpful discussions and comments on a preliminary version of this paper.

The research of the first author was partially supported by the US National Science Foundation under the grants DMS-0070497 and DMS-0707524.

## References

- K. J. Falconer, Fractal Geometry: Mathematical Foundations and Applications. Wiley, Chichester, 1990.
- [2] V. P. Gupta and P. K. Jain, *Lebesgue Measure and Integration*. Wiley, New Delhi, 1986.
- [3] J. E. Hutchinson, Fractals and self-similarity. Indiana Univ. Math. J. 30 (1981), 713-747.
- [4] N. Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions. 2nd ed., Springer, New York, 1984.
- [5] M. L. Lapidus, Spectral and fractal geometry: From the Weyl-Berry conjecture for the vibrations of fractal drums to the Riemann zeta-function. In: Differential Equations and Mathematical Physics (Birmingham, 1990), C. Bennewitz (ed.), Academic Press, New York, 1992, 151–182.
- [6] M. L. Lapidus and C. Pomerance, The Riemann zeta-function and the onedimensional Weyl-Berry conjecture for fractal drums. Proc. London Math. Soc. (3) 60 (1993), 41-69.
- [7] M. L. Lapidus and M. van Frankenhuijsen, Fractal Geometry and Number Theory: Complex dimensions of fractal strings and zeros of zeta functions. Birkhäuser, Boston, 2000.
- [8] M. L. Lapidus and M. van Frankenhuijsen, Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry and spectra of fractal strings. Springer, New York, 2006.
- [9] M. L. Lapidus and H. Lũ', Self-similar p-adic fractal strings and their complex dimensions. In preparation.
- [10] H. Lũ', p-adic fractal strings and their complex dimensions, Ph.D. Dissertation, Univ. California, Riverside, 2007.
- [11] A. M. Robert, A Course in p-adic Analysis. Springer, New York, 2000.
- [12] V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, p-Adic Analysis and Mathematical Physics. World Sci., Singapore, 1994.

Michel L. Lapidus Department of Mathematics University of California Riverside, CA 92521, USA e-mail: lapidus@math.ucr.edu

Hùng Lũ' Department of Mathematics Hawai'i Pacific University Honolulu, HI 96813, USA e-mail: hlu@hpu.edu