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TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 295, Number 1, May 1986 

EIGENVALUES OF ELLIPTIC BOUNDARY VALUE PROBLEMS 
WITH AN INDEFINITE WEIGHT FUNCTION 

JACQUELINE FLECKINGER1 AND MICHEL L. LAPIDUS2 

ABSTRACT. We consider general selfadjoint elliptic eigenvalue problems 

(P) ;Atu = Ar(x)u, 

in an open set Q C Rk. Here, the operator ;A1 is positive and of order 2m 
and the "weight" r is a function which changes sign in Q and is allowed to be 
discontinuous. A scalar A is said to be an eigenvalue of (P) if vqu = Aru-in 
the variational sensc for some nonzero u satisfying the appropriate growth 
and boundary conditions. We determine the asymptotic behavior of the eigen- 
values of (P), under suitable assumptions. In the case when Q is bounded, we 
assumed Dirichlet or Neumann boundary conditions. When Q is unbounded, 
we work with operators of "Schrodinger type"; if we set ri = mgc(ir,0), 
two cases appear naturally: First, if Q is of "weighted finite measure" (i.e., 
J^n(r+)k/2m < +oo or AQ(r_)k/2m < +OO), we obtain an extension of the 
well-known Weyl asymptotic formula; secondly, if Q is of "weighted infinite 
measure" (i.e., rQ(r+)k/2m = +oo or CQ(r_)k/2m = +oo), our results ex- 
tend the de Wet-Mandl formula (which is classical for Schrodinger operators 
with weight r--1). When Q is bounded, we also give lower bounds for the 
eigenvalues of the Dirichlet problem for the Laplacian. 

t. Introduction. The purpose of this paper is to provide estimates on the 
eigenvalues of ;;right nondefinite" elliptic boundary value problems Su = Aru in 
Q C Rk (with Dirichlet or Neumann boundary conditions) when the weight function 
r is "indeSnite" (i.e., changes sign in Q). 

The main results concern the asymptotics of the eigenvalues for selfadjoint elliptic 
operators of order 2m. For an open set Q which is not necessarily bounded, we 
extend the classical Weyl formula as well as its analogue, also called the de Wet- 
Mandl formula for operators of Schrodinger type. We also obtain lower bounds for 
the eigenvalues of the Dirichlet problem for the Laplacian. These results extend 
the earlier ones obtained independently by Lapidus [La 1, La 2] and Fleckinger-El 
Fetnassi [F1F 1, F1F 2]. 

Many nonlinear problems lead, after linearization, to elliptic eigenvalue problems 
with an indefinite weight function. (See, e.g., the survey paper by de Figueiredo 
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[dF] and the work of Hess and Kato [HK, H].) A vast literature in engineering, 
physics and applied mathematics deals with such problems arising, for instance, 
in the study of transport theory, reaction-diffusion equations, fluid dynamics, etc. 
(See, e.g., [DGHa, GN, LuR, LuW and KKLeZ].) 

Most of the literature on this subject studied since the end of the last century 
(Richardson [Ri], Bocher [Bo], Hilbert [Hi], etc.) is concerned with the one di- 
mensional case, which is still the object of active research. (See, for instance, [KZ, 
Be].) To our knowledge, the first result in the multidimensional case is due to 
Holmgren (1904) [Ho]; he considers the Dirichlet problem /\u + Ar(x, y)u = 0, on a 
bounded open set set Q c R2, when r is continuous and changes sign; he proves in 
this case the existence of an infinite number of positive (and negative) eigenvalues 
which can be characterized by the "min-max principle". The asymptotic distribu- 
tion of these eigenvalues has been established by Pleijel (1942) [Pl] for the Dirichlet 
and Neumann problems. 

The spectral theory of similar abstract problems has been studied more recently 
by Weinberger [Wn], and its application to the Dirichlet problem for an elliptic 
operator of order 2 by Manes and Micheletti [MM]. 

Pleijel's results on the asymptotic distribution of eigenvalues have been extended 
by many Soviet mathematicians during the 1970s. (See, for instance, the survey pa- 
per by Birman and Solomjak [BS 3], their book [BS 4] and the relevant references 
therein.) In most of these papers, the weight function need not be continuous. 
Birman and Solomjak [BS 1, BS 2], for example, obtain asymptotic estimates 
for bounded open sets and (possibly degenerate) selfadjoint elliptic operators of 
order 2m. Rozenbljum [Ro 1] extends these resuls to some problems defined on 
unbounded open sets such that AQ [rlk/2m < +x. 

Recently, unaware of Pleijel's work, Lapidus [La 1] determined the asymptotic 
behavior of the eigenvalues of the Laplacian with Dirichlet or Neumann boundary 
conditions on a bounded open set of Rk in the case when the weight function is 
not necessarily continuous; he also gives lower bounds having the correct "coupling 
constant behavior" for the eigenvalues of the Dirichlet problem. In some cases, he 
obtains estimates on the remainder term [La 2]. 

At about the same time, Fleckinger and El Fetnassi [FlF 1, FlF 2] proved 
an analogous asymptotic estimate for the Dirichlet problem corresponding to a 
general selfadjoint elliptic operator of order 2m with a continuous weight function; 
asymptotics were also obtained for operators of "Schrodinger-type" on unbounded 
domains for a sufficiently smooth weight function. 

The present paper extends these results: for general elliptic problems, we do not 
assume that the open set Q is bounded or that the weight function r is continuous; 
the latter is of interest in view of possible applications to nonlinear problems. 

We now indicate how this work is organized. After having stated our main 
results in the next section, we present in §3 the prototypal example of the Laplacian 
on an open set of finite volume and give lower bounds for the eigenvalues of the 
corresponding Dirichlet problem. We then extend this study in §4 to general elliptic 
boundary value problems of order 2m on an open set Q (which is bounded for the 
Neumann problem). Finally, in §5, we determine the asymptotic distribution of the 
eigenvalues of certain Schrodinger operators on Q c Rk with Dirichlet boundary 
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conditions; in this case, Q is unbounded and we deal with the four different cases: 
g (r+)k/2m = +x or gQ(r+)k/2m < +x. 

Since the first version of this paper was submitted, the work of Birman-Solomjak 
and Rozenbljum on boundary value problems with indefinite weights was brought 
to our attention. In particular, there is some overlap between Theorem 4.1 herein 
and Theorem 2 in [BS 1 or BS 2], as well as Theorem 5.2 herein and Theorem 2 
in [Ro 1]. However, our results go much further; Theorem 5.1 and Proposition 5.4, 
stated for unbounded open sets, appear to be entirely new as well as the possible 
combinations resulting from Theorems 5.1 and 5.2. 

2. Notation and main results. We introduce some notation which will be 
used throughout the aricle: 

Let m and k be integers > 1. 
Let Q be an open set in Rk with boundary AQ. 
The interior (resp., the closure) of Q C Rk is denoted by Q° (resp., Q); if, 

in addition, Q is Lebesgue measurable, [QI stands for its Lebesgue k-dimensional 
measure or "volume" in Rk. 

If R c Q, the notation Q\R indicates the complement of R in Q. 
For j E N, Cj(Q) is the space of j times continuously differentiable functions in 

Q. 
For Ol = (ol1, . . ., °lk) E Nk, Da is the derivative of order loll = ol1+ +ak: Da = 

Alal/0xl1 aSkak; if, in addition, ( = (41,..., (k) E Rk, then ( = 411 (kak. 

Hm(Q) odenotes the Sobolev space of functions u E L2(Q) such that the distri- 
butional derivatives Dau are in L2(Q) for loll < m (see, e.g., [Ad]). Recall that 
Hm(Q) is a Hilbert space for the norm 

/ A 1/2 

||U||Hm(X) = tt E [Dau(x)l2 dx) 

Hom(Q) is the subspace of Hm(Q) obtained by completing CO (Q) with respect to 
the norm of Hm(Q); here, CO (Q) denotes the space of continuously differentiable 
functions with compact support contained in Q. 

Finally, if f is a real-valued function defined on Q, we set f+ = max(f, O) and 
f_ = maxt-f, O) 

We can now state our hypotheses and present our main results: 
(2.1) Let A be a formally selfadjoint uniformly elliptic operator of order 2m 

defined on Q: 
A = E Da (as (x)D ) ) 

1oel<m 

1p1 <m 

where aOs = a;3,, for IOll < m and 1d1 < m; we assume that ao > O and when 
Q is bounded (resp., unbounded) ao E Lk/2m(Q) if k > 2m and ao E L1(Q) if 
k < 2m [resp., aO E L°°(Q)]; moreover, aOs E L°°(Q) if O < loll + 1d1 < 2m and 
aOs E C°(Q) if lol| + 1d1 = 2m 

(2.2) Let r be a measurable real-valued function on Q; we suppose that Q+ = 
{x E Q: r(x) > O} and Q_ = {x C Q: r(x) < O} are of positive Lebesgue measure. In 
§§3-4 (resp., §5), we also assume that r E LP(Q) [resp., r E LlPoc(Q)] with p > k/2m 
if k > 2m and p = 1 if k < 2m. Further, in §§3-4, Q is such that the imbedding of 
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Hm(Q) into L2(Q) is compact; this is always the case if Q is bounded, k < 2m or 
an is smooth enough (see [Ad, Theorem 6.13, p. 151]). 

We study the spectrum (i.e., the set of eigenvalues A) of the homogeneous Dirich- 
let or Neumann boundary value problem (in the variational sense) 

(P) Su = Aru, in 0. 
When Q has finite Lebesgue measure, this spectrum is discrete and consists of a 

double sequence of real eigenvalues of finite multiplicity (one nonnegative and one 
negative) 

*- < An+l < )n < * < >2 < >1 < (°) < )21 < )\2 < < An < An+l < X 

with 1Ai1 tending to +oo as n tends to oo (each eigenvalue is repeated according 
to multiplicity). The same result holds, under appropriate assumptions, for an 
operator of "Schrodinger type" on X with Dirichlet boundary conditions. 

Let N+(A) [resp., N-(A)] be the number of nonnegative [resp., negative] eigen- 
values An+ less than A > O [resp., ;An greater than A < O]. 

Assume that Q has weighted finite volume. (Of course, this assumption is sat- 
isfied if Q is bounded.) If IQ+\Q+I = o (this is the case, for example, if r is 
continuous), we show for the Dirichlet problem that (see Theorem 4.1) 

(2.3) N+(>) j (>r(x))k/2mpA(x)dx, as A +x, 

n+ 
where iiA(x) is the usual Browder-Garding density on X 

,tbv(z) = (21r)-k | dt, x E 0, 
{(ERk:A'(x,()<l} 

and Jq'(x, () is the symbol of the principal part of A: 

J4/(x, () = E aa!s(x)(a+pX for (x, () E Q x Rk. 
1oel=1(31=m 

Similarly, if IQ-\Q°-I = o, then 

(2.4) N-(>) X (>r(x))k/2mpA(x)dx, as A -w. 

n_ 
In particular, when A = -1\, we have 

*bA (x) = (2fr) k Bk, 

where Bk = 7rk/2/r(l + k/2) denotes the volume of the unit ball in Rk; since 
N+(>n+) = n, we then obtain an extension of Hermann Weyl's asymptotic formula 
(see Theorems 3.1 and 3.2): 

(2.5) 1Ai 1 Ckn2/k llri ll L l/2(Q), as n > oo, 

where Ck = (27r)2(Bk)-2/k denotes Weyl's constant. 
REMARKS. 1. Actually, (2.5) contains two equations: one involving the minus 

signs alone and a second one for the plus signs; we shall use this convenient sign 
convention throughout the paper. 
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2. Note that the results for negative eigenvalues can be deduced directly from- 
those for positive eigenvalues by changing r into -r. 

3. For simplicity, we write QA instead of (Q)°. 
If, in addition, Q is a bounded open set satisfying the segment property (for 

example, if AQ is locally Lipschitz) and if l0QI = O, the formulae (2.3) and (2.4) 
still hold for the Neumann problem (see Theorem 4.2). 

When r(x) _ 1, N-(A) = O and (2.3) is the usual formula (see, e.g., [CH, 
Chapter VI, §4, pp. 429-445; Br; Ga; Kc; FlMe; Me; RS, Theorem XIII.78, p. 
271; etc.]). 

When Q is unbounded, we assume that g is an operator of "Schrodinger type", 
i.e., Jq = £ + q, where £ satisfies (2.1). 

(2.6) Here, the "potential" q is a nonnegative function on Q such that q-1(x)r(x) 

> O as [xl +x. 

Under other suitable hypotheses, we show that the spectrum of (P) is discrete. 
Moreover, we prove that (see Theorem 5.1 and Proposition 5.4) 

(2.7) N+(A) | (>r(x) - q(x))k/2m,uS (x) dx, as A ix, 

winnX 

if JgQ(rJr)k/2m = +X, respectively; here, Qx = {x E Q: Ar(x) > q(x)} and ,uL = 11A, 
by definition. 

This estimate is well-known when r(x) _ 1. (See, e.g., [T, Chapter 17, §§8-14, 
pp. 174-185; Ro 2; Me; Fl; RS, Theorem XIII.81, p. 275; etc.].) 

If gQ(r+)k/2m < +X, then estimate (2.3) or (2.4) holds respectively as A ix. 

(See Theorem 5.2 and Remark 1 following it as well as Proposition 5.4.) 
We also establish lower bounds for the eigenvalues of the Dirichlet problem on 

a bounded domain Q; for instance, for the Laplacian and for k > 3, we have (see 
Theorem 3.3) 

(2.8) |>n | > okn2/ ||rA||Lk/2(Q)) 

where 69k is a constant depending only on k which is explicitly known. In view of 
the extended Weyl formula (2.5), these lower bounds exhibit the correct "coupling 
constant behavior". 

We refer the reader to Courant-Hilbert [CH, Chapter VI], Reed-Simon [RS, 
Chapter XIII, §§1, 15] or Weinberger [Wn, Chapter 3] for the Courant-Weyl method 
of proof of Weyl's formula. For the variational theory of elliptic boundary value 
problems, we point out Lions-Magenes [LM] and Agmon [Ag]. Finally, the basic 
properties of Sobolev spaces used in this paper can all be found in Adams [Ad]. 

3. An example: the Laplacian on an open set with finite volume. We 
now illustrate our methods for finding the asymptotic behavior of the eigenvalues, 
in the case of the Laplacian with Dirichlet or Neumann boundary conditions on 
an open set with finite volume or on a bounded open set, respectively (parts A 
and B). In part C, we obtain lower bounds for the eigenvalues of the corresponding 
Dirichlet problem on a bounded domain. 

A. The Dirichlet problem. We consider the eigenvalue problem 

(E) -Au = Aru, in Q; u = O on AQ. 



310 
JACQUELINE FLECKINGER AND M. L. LAPIDUS 

(3.1) Q is an open subset of Rk with finite Lebesgue measure, satisfying (2.-2) and such that IQ+\Q+I = o and IQ-\Q° I = ° The eigenvalues of the variational problem associated with (E) are the complex numbers A such that there exists a nonzero u E Ho (Q) satisfying -Au = Aru (in the distributional sense). 
It is well known (see, e.g., [Ho; Pl; Wn, Chapter 3; MM; dF, Chapter I, §§1-2; etc.]) that the eigenvalues AA (when they exist) are characterized by the "max-min principle" 

(3.2) \+ FnGi;wuEF7X {1Q ( ) } 
where in denotes the set of n-dimensional subspaces of Ho(Q); an analogous for- mula holds for An. 

The hypothesis IQ+I > o implies that AA exists for all n > 1 and AA ) ix as 

n x. The precise asymptotic behavior is given by 

THEOREM 3.1. Under assumptions (2.2) and (3.1), estimates (2.3)-(2.5) hold. If r is positive in Q, we have N-(A) = 0 (actually, this happens if and only if IQ-I = o). Formulae (2.3) and (2.5) which are clearly equivalent are classical when r is positive and continuous (see, e.g., [CH, Theorem 14, p. 435; RS, Theorem XIII.78, p. 271; Me, Theorem 5.12, p. 188; etc.]). We shall need two lemmas in order to derive Theorem 3.1. The following result is essentially known and for k > 3, for instance, can be obtained by combining [RS, Theorem XIII.80, p. 274] and [LiY, Step (iv), pp. 317-318]. (For the case k = 1, see [GoK, Theorem 8.1, p. 309] . ) 
LEMMA 3. 1. When r is positive in LP(Q) with p > k/2 if k > 3 and p = 1 if k < 3, (2.3) and (2.5) hold. 
In the following, we shall denote by An+(r, Q) the nth nonnegative eigenvalue of (E) to indicate the dependence on r and Q. 
LEMMA 3.2 (MONOTONICITY PRINCIPLES). An+(r,0) does not increase when r or Q increases. 
REMARKS. 1. Here and thereafter, we adopt the following convention: whenever we make use of an eigenvalue An+, we implicitly assume that it exists (equivalently, that the right-hand side of (3.2) or of its counterpart is finite). 2. The monotonicity with respect to Q is only valid for Dirichlet problems. Lemma 3.2 is a simple consequence of (3.2) and is well-known when r is positive (see, e.g., [CH, Theorem 3, p. 409 and Theorem 7, p. 411; PbS, Proposition 4, p. 270 and Wn, Theorem 7.1, p. 58, Example 7.2, p. 60 and Theorem 8.1, p. 62]. PROOF OF THEOREM 3.1. We follow the method used in [La 1, La 2]: the idea consists in finding lower and upper bounds for An+ having the same asymptotics. With this aim and the help of the monotonicity principles, we reduce the problem to the study of positive weights. 

It clearly suffices to establish (2.5) for An+ since An(r,Q) = -A+(-r,Q) and r_ = (-r)+ 
Fix 6 > 0. By Lemma 3.2, we have 
(3.3) An (r+ + 6, Q) < An (r, Q) < An+ (r, Q+ ); 
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this holds since r < r+ + 6 and Q+ is an open subset of Q of positive measure, by 
(2.2) and (3.1). 

By Lemma 3.1 applied to the positive weights r+ + 6 in Q and r in Q+, we see 
that 

(3.4) lim n-2/kA+(r+ + 6, Q) = Ck||r+ + b|| 

and 

(3.5) lim n-2/kA+(r,Q+) =ckilRllL 1/2 (Qo 

We infer from equations (3.3) to (3.5) that 

Ck ||r+ + 6^ l Lk/2 (Q) < lim n 2/k>+ (r, Q) 
(3.6) noo 

< lim n-2/kA+(r,Q) < CkllrllLl/2(Qo ). 

Now, it follows from the Lebesgue dominated convergence theorem that 
r+ + b||Lk/2(Q) tends to llrllLk/2(QO ) as 6 tends to 0; moreover, by (3.1), 

| rk/2 = | rk/2 = |(r+)k/2 
Q+ Q+ Q 

[Note that by omitting the zero set of r, one does not alter the value of the latter 
integral.] 

Consequently, we obtain (2.5) by letting 6 tend to zero in (3.6). 0 
REMARKS. 1. When r is continuous, Q+ is open and Theorem 3.1 holds for an 

arbitrary open subset Q of Rk with finite Lebesgue measure (in particular, for any 
bounded open set). 

2. When Q+ is a "Jordan contended set" (roughly speaking, if Q+ is bounded 
and well approximated from within and without by a finite union of cubes see, 
e.g., [LoS, Chapter 8, §§6-7; RS, p. 271; Pe, Chapter 2, §§11-12]), we have 
IQ+\Q+I = O since then, by [LoS, Proposition 6.1, p. 332], g0(0+)g = O; this was 
the assumption of [La 1, Theorem 1, p. 266]. 

B. The Neumann problem. We suppose that 
(3.7) Q is a bounded open set satisfying the segment property (see [Ag, Definition 

2.1, p. 11]) such that t00I = O, IQ+\Q+I = 0 and IQ-\Q° I = 0. 
We consider the eigenvalue problem 

(Et) -Au = Aru in 0; au/0n = O on aQ; 
where 0/0n denotes the normal derivative. 

The scalar A is said to be an eigenvalue of the variational problem associated 
with (E') if -/\u = Aru for some nonzero u E H1(Q). 

The corresponding nonnegative eigenvalues +(r,Q) are, in this case, given by 
(3.2), where Ho(Q) is replaced by H1(Q). 

SinceHo(Q) c H1(Q), itfollowsfromthe "max-minprinciple" asin [CH, 
Theorem 5, p. 410; RS, Proposition 4, p. 270 or Wn, Theorem 7.1, p. 58 and 
Example 7.4, pp. 61-62] that 

+(r, Q) < A+(r, Q); (3.8) 
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and, as above, the eigenvalues are monotone with respect to the weight; therefore, 
for 6 > O, we have 

(3.9) + (r+ + 6, Q) < + (r, Q) < >+ (r, Q). 

As for the Dirichlet problem, using an extension of (2.3) or (2.5) when Q satisfies 
(3.7) and the weight is positive [FlMe; Me, Theorem 5.12, p. 188], we obtain 

THEOREM 3.2. Under assumptions (2.1), (2.2) and (3.7), estimates (2.3)-(2.5) 
hold. 

Next, we comment on possible extensions or interpretations of the above results: 
REMARKS. 1. The hypothesis concerning the segment property in Theorem 3.2 

can be weakened as in [Me, Condition (C'), p. 156]. 
2. It is noteworthy that no assumption has been made about Qo = {x E Q: r(x) = 

O} in order to obtain Theorems 3.1 and 3.2. 
3. It is easy to derive from Theorems 3.1 and 3.2 a corresponding result for mixed 

Dirichlet-Neumann boundary conditions; naturally, the asymptotic distribution of 
the eigenvalues remains unchanged in this case. 

4. The conclusions of Theorems 3.1 or 3.2 can be interpreted as follows: the pos- 
itive (resp., negative) eigenvalues of (E) or (E') have the same asymptotic behavior 
as the eigenvalues in the usual sense of the elliptic operator -A/r(x) [resp., 
+A/r(x)], defined in Q+ (resp., Q° ) for the corresponding boundary conditions. 
Here, we use implicitly the fact that ||r+||Lk/2(X) = ||r||Lk/2(X+). 

[The preceding remarks apply, with obvious changes, to the general elliptic 
boundary value problems studied in §4.B.] 

5. Physically, when r is positive, the eigenvalues of (E) represent the natural 
frequencies of a vibrating membrane fixed along its boundary aQ and of mass 
density equal to r as well as of tension unity. (See, e.g., [CH, Chapters V and VI 
or Kc].) Therefore, in the case when r changes sign, we may interpret Theorem 3.1 
by saying that the large values Of An+ (resp., An ) are determined by the "positive 
mass" (resp., "negative mass" ) distribution of the "membrane" . 

EXAMPLE 3.1. We now consider a simple example of discontinuous weight func- 
tion. Naturally, our assumptions would allow us to treat much more singular 
weights. 

Let R be an open subset of Rk with finite measure I0I Let 0+ and R be two 
disjoint measurable subsets of R of positive measure such that In+\R+I = o and 
|Q_\Q°|=O.Wedefine 

(-1 if xe0, 
r(x) = < ° if x E 0\(R_ u 0+), 

t +1 if xe0+. 
We then deduce from Theorem 3.1 that, for the Dirichlet problem, we have 

COROLLARY 3 . 1 . AX Ck (n/lQA 1)2/k, as n > oo. 
The same estimate holds for the Neumann problem under the additional assump- 

tions that janI = o and R is bounded and satisfies the segment property. 
REMARK. The geometric features of the above example suggest the following 

natural extension of the well-known isospectral problem (see, e.g., [Kc and Y, pp. 
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23-24]): let Q1, Q+, r1 and Q2, Q+, r2, be defined as in Example 3.1. Assume that 
the problem (E) [or (E')] has the same set of eigenvalues, counting multiplicities, in 
Q1 and Q2. Under which (generic) conditions does there exist an isometry which 
sends Q1, Q+ and Q1 onto, respectively, Q2, Q+ and Q2 ? In other words, to what 
extent does the spectrum determine the sign of the weight? 

C. Lower bounds of the eigenvalues. We obtain here lower bounds (resp., upper) 
bounds for the eigenvalues A+ (resp., An ) of the Dirichlet problem (E) studied 
in part A. These bounds are valid for all n and compatible with the asymptotic 
behavior obtained in Theorem 3.1. 

THEOREM 3.3. Assume that Q is a bounded domain of Rk with C2 boundary 
AQ and suppose that k > 3. Then, if IQ+I > o, respectively, we have for the 
Dirichlet problem (E) in Q 

(3.10) 1Ai1 > Skn / ||ri||Lk/2(Q), Vn > 1, 

where Sk = (k(k - 2)/4e)(Sk_l)2/kn e = exp(1) and Uk-l = kBk denotes the area 
of the unit sphere in Rk. 

PROOF. It clearly suffices to find a lower bound for A+ when IQ+I, o. Fix 
n > 1 and 6 > 0. Since r < r+ + 6, we derive from Lemma 3.2 that 

(3.11) >+ (r, Q) > A+(r+ + 6, Q. 
By [LiY, Theorem 2, p. 314] applied to the positive weight r+ + 6, we have 

(3.12) A+(r + 6 0) > skn2/kilr + 611-1 
Combining (3.11) and (3.12), we now obtain (3.10) by letting 6 ) 0 and applying 
the dominated convergence theorem. O 

Since N+(A+) = n, we deduce 

COROLLARY 3.2. 

(k(k-2)) (A2k 1N+(X) < 0\k/2 (| (r+) ) ) 

We have just used a remarkable result of Li and Yau [LiY, Theorem 2, p. 314] 
which improved significantly the existing upper bounds for the number of "bound 
states" of the Schrodinger operator in R3. (See [LiY, p. 311 and Lb, p. 243] for 
references to previous works on this subject.) Note, however, that the method of 
Li and Yau does not seem a priori to apply to indefinite weights. 

REMARKS. 1. The assumption that IQ+\Q+I = o is not needed for Theorem 3.3 
to hold. 

2. We note that upper bounds for 1A+1 can be deduced similarly from the 
known upper bounds for the eigenvalues of Dirichlet problems with positive weights. 
Indeed, by (3.5), 1AA (r, Q) | < 1AA (r, Qa ) 1 

3. As is the case with the result of Li and Yau, Theorem 3.3 extends to a compact 
Riemannian manifold with c2 boundary; Sk must then be replaced by a constant 
depending on the Sobolev constant of the manifold. 

4. Theorem 3.3 also extends to general selfadjoint elliptic operators of order 2; 
in this case, the new constant occurring in (3.10) depends on Sk and the constant 
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of uniform ellipticity of the operator. This is easily seen by using a monotonicity 
argument (based on Lemma 4.2) and Theorem 3.3. 

5. It may be worth pointing out that, for k > 3, Theorem 3.3 provides us with 
a new proof of the fact that Ai exists for all n > 1 and Ai > ioo when I0+ I, o. 
(Compare with [MM, Proof of Proposition 3, p. 290 or dF, Proof of Proposition 
1.11, p. 43].) 

4. Elliptic boundary value problems with bounded coefficients. Vt7e 
extend the results of §§3.A and 3.B to selfadjoint elliptic operators of order 2m. 

A. Abstract theory. In order to obtain results on more general boundary value 
problems, we briefly explain the abstract theory (see, e.g., [Wn, Chapter 3 and 
dF, Chapter I]). It will later be applied to operators with bounded (§4.B) as well 
as unbounded (§5) coefficients (that is, in the latter case, Schrodinger operators). 

(4.1) Let H be a real or complex Hilbert space. 
(4.2) Let (V,H,a) be a variational triple: V is a dense subspace of H with 

continuous imbedding and a is a hermitian, bounded and coercive form defined on 
V (see [LM]) 

(4.3) b is a hermitian form on V such that, for some positive constant 6, 
Ib(u,u)l < ba(u,u), Fu E V. 

We consider the following variational eigenvalue problem 
(Q) a(u, v) = Ab(u, v), Vv E V; 

here, A is an eigenvalue of (Q) [or is in the spectrum of (Q)] if there exists a nonzero 
u E V such that the last equation holds. 

REMARK. In the example of §3, we consider H = L2(Q), a(u,u) = ||U||H1(Q), 

b(u,u) = AQrlul2 and V = Ho(Q) [resp., V = H1(Q)] for the Dirichlet [resp., 
Neumann] boundary value problem on an open set Q with finite volume (resp., 
on a bounded open set Q). In this manner, Theorems 3.1 and 3.2 will become 
corollaries of Theorems 4.1 and 4.2, respectively. 

By (4.2), a induces in V an inner product equivalent to the original one; by 
the Riesz representation theorem, we define a bounded selfadjoint operator T from 
(V, a(, )) to itself by 
(4.4) b(u, v) = a(Tu, v), F(u, v) E V x V. 

It follows that A is an eigenvalue of (Q) if and only if 1/S is an eigenvalue of 
T: Tu = (1/A)u, for some nonzero u E V. 

(4.5) We now assume that T is compact. This is the case in all the problems 
studied here; it holds in particular if V is compactly embedded in H and b is 
continuous on H. 

It follows from the classical spectral theory of compact selfadjoint operators in 
Hilbert spaces that the spectrum of (Q) consists of a double sequence 

< An+l < An < < >1 < (°) < >1 < < An < An+l < 
(each eigenvalue has finite multisplicity and is repeated accordingly). 

When it exists, A2nr which we write An+(a, V) or Ani (b7 V) if necessary is given 
by the "max-min principle" 

(4.6) .X+ = FmE ;x, UEiFn {b(u, u): a(u, u) = 1 } ) 



ELLIPTIC PROBLEMS WITH INDEFINITE WEIGHTS 315 

where in iS the set of n-dimensional subspaces of V. A similar formula holds for 
An since An (v)-b) =-An+(V) b). 

Just as before, we deduce from (4.6) the following abstract monotonicity princi- 
ples: 

LEMMA 4.1. If b1,b2 are two hermitian forms satisfying (4.3) and such that 
b1 (u, u) < b2 (u, u) for all u E V, then An+ (b1, V) > An+ (b2, V) . 

LEMMA 4.2. Let al,a2 be coercive forms satisfying (4.2) and such thata1(u,u) 
> a2(uvu) for all u E V; then An+ (a1, V) > An+ (a2) V)- 

LEMMA 4.3. If (V1, H, a) and (V2) H, a) are two "variational triples" such that 
Vl C V2 n then A+ (b, V1 ) > An+ (b, V2 ) - 

B. Operators of order 2m. In the following, we suppose that Q is a nonempty 
open subset of Rk and that r and Q satisfy (2.2); further the operator vq = 
EIaI<m,lal<mD(aaD:) fulfills (2.1). 

We first consider the Dirichlet boundary value problem: vqu = Aru, u E Hom(Q). 
(4.7) We assume that Q has finite volume and that IQ+\Q+I = o and IQ-\Q° I = 

o. 
We can now apply the above abstract theory with H = L2(Q), V = Hom(Q) and 

a(u, v) = ,/ E aO:DauD:v. 
Q lxxl<m 

1d1 <m 

It follows from standard results on Sobolev spaces and from the uniform ellip- 
ticity of A (i.e., '(x, () > clfl2m, for all ( E Rk and some c > O) that a satisfies 
(4.2). 

By (2.2) and the Sobolev imbedding theorem [Ad, Theorem 5.4, p. 97], we see 
that b(u, v) = AQ ruv satisfies (4.3). 

When k > 2m, we also have, by using the Sobolev and the Holder inequalities 
that, for u, v E V 

| ruv < ||r||LP(X) ||U||L9(Q) IIVIIL2* (Q)) 
Q 

where 2* = 2k/(k - 2m) and 1/p + 1/s + 1/2* = 1. 
Therefore, (4.5) follows from the Rellich-Kondrachov theorem [Ad, Theorem 

6.2, p. 144]. Similar results are obtained when k < 2m by use of [Ad, Theorem 
5.4, Cases B and C, p. 97 and Theorem 6.2, equations (4) and (6), p. 144]. Much 
like in [dF, Proof of Proposition 1.11, p. 43], one then shows that the assumption 
In+I, o implies that 1Ai1 > +w as n > w. 

We now state 

THEOREM 4.1. Under hvypothveses (2.1), (2.2) and (4.7), estimates (2.3) and 
(2.4) hold and 

/ \ -2m/k 

(4.8) 1 \+ l-n2m/k t /& rk/2m(x),tsA (x) dx) , as n x. 

PROOF. Estimate (2.3) holds when r is continuous and bounded away from zero 
(see [Me, Theorem 5.12, p. 188]); hence, for r nonnegative, we obtain the same 
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result by replacing r by r + 6 and letting 6 > O. In light of Lemmas 4.1 and 4.3, we then obtain (4.8) and (2.3) exactly as in the proof of Theorem 3.1. Note that 
| rk/2mpA = | rk/2mpA = | (r+)k/2mp g QI QI Q 

Likewise, we have 
THEOREM 4.2. For the Neumann problem, if r,Q and Jq satisfy (2.1), (2.2) and (3.7), then (2.3), (2.4) and (4.8) hold. 
PROOF. We now consider V = Hm(Q); we use, in particular, Lemma 4.3 with V1 = Hom(Q) and V2 = Hm(Q); and the proof goes through as in Theorems 3.2 and 4.1. [1 

5. The Schrodinger operator. In this section, we give sufficient conditions under which a positive operator of "Schrodinger type" and with an indefinite weight has discrete "spectrum" in an unbounded open set Q c Rk and we then determine the asymptotic distribution of its eigenvalues. We combine, in particular, the results and methods of j4 and previous works [Ro 2; Ro 3; Fl; etc.] on Schrodinger operators with positive weights. 
DEFINITION 5.1. Let f be a continuous function defined on an open subset £ of Rk. We say that f satisfies (E) if there exists a positive number so such that f can be continuously extended to S = {x E Rk:dist(x,) < so} and, for all E E (Oso) there exists r1 > O such that, for all (x,y) E S x S with Ix - Yl < r1, we have If(x) - f(Y)l < sIf(z)I 
REMARKS. 1. For instance, f(x) = (1 + IXI2)a, with ff > 1, satisfies (E). 2. If a positive function f satisfies (E), so does its inverse 1/f. In the following, we set QP = {X E Q |X| > P} for p > O. 
(5.1) Let q be a nonnegative function in Llko/c2m(Q), tending to +oo at infinity and satisfying (E) on QR1 n Q+, for some R1 > ° (5.2) Let r be a function defined on Q such that q-lr tends to O at infinity. Moreover, we suppose that 
(a) Assumption (2.2) holds and IQ+\Q°+I = ° (b) The restriction of r to QR1 n Q+ satisfies (E). (C) JQ (r+ ) k/2m = +0O 

(Note that r is allowed to change sign anywhere in Q.) 
REMARK. (5.2) holds, for example, if Q = Rk with r(x) =-1 if |x| < 1 and r(x) = +1 if Ixl > 1. 
(5.3) Let £ be a formally selfadjoint, uniformly elliptic operator of order 2m defined on Q and verifying (2.1): 

£= E Dt(a:D:); 
a1 <m 
,'S1 <m 

we suppose that for all 1a1 = 1A1 = m, aO: satisfies (E) on Q/R1; in addition, we assume that there exists d > O such that for all open subsets £ of Q, 

| , aO:DauD:u > dilullHm(w)) btu E Hm(S) w Ial=ldl=m 
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DEFINITION 5.2. If £ is an open subset of Rk, V°(S) denotes the completion of 
CO (£) with respect to the Hilbert norm 

/ \ 1/2 
llullvq(w) = t||U||Hm(w) + | q|u|2) 

The space V1(S) is the set of restrictions to S of elements of V°(Q). 
We study the variational eigenvalue problem 

(S) J4U = (£ + q)u = Aru, in Q, with Dirichlet boundary conditions. 

In other words, A is an eigenvalue of (S) if there exists a nonzero u in V°(Q) such 
that the above equation holds in the distributional sense. 

We now apply the abstract theory developed in j4.A; here, H = L2(Q) is 
equipped with its usual inner product (, ), V = V°(Q), b(u,u) = (ru,u) and 
a(u, u) = (u, u) + (qu, u), for u E V. 

It follows from (5.1) and (5.3) that a is coercive on V°(Q); further, the fact that 
q tends to infinity at infinity implies that the imbedding of V°(Q) into L2(Q) is 
compact. Moreover, (4.5) holds because, for p > O, 

JQP I I - (zEP q ) (XQ qlUl ) < 6(P)II?£IIVq(QP)7 
where b(p) tends to zero as p > +oo; this follows since, by (5.2), r/q tends to zero 
at infinity. 

Consequently, the spectrum of (S) is discrete; moreover, the eigenvalues of (S) 
are characterized by the "max-min" principle" (4.6). 

Let A+(r,) [resp., A+(r,)] denote the nonnegative eigenvalues of the varia- 
tional Dirichlet [resp., Neumann] boundary value problem 

:4U = Aru, in S c Q; u E V°(S) [resp., u E V1(S)]. 

Set yO+()i;r,,JJ, Jq) = EA,+(rW)<.A 1 and Ni+(A;r,s,:4) = EA+(row)<S 1; one indi- 
cates in this way the dependence on the weight function r, the open set S and the 
operator :4. 

Note that 
No+ (A; r, Q, :4) = N+ (>) ) 

where N+(A) stands for the number of nonnegative eigenvalues of (S) less than 
A > O. 

We shall use the subsequent lemma, which is derived from Lemma 4.3. 

LEMMA 5.1. If W1 and W2 are two disjoint open sets in £ c Q such that 
wl U W2 = X, then 

No+(A; r, wl, A) + No+(A; r, W2, ) < No+(>; r) ) ) < N+(>; r) ) ) 
< N+ (A; r, wl, A) + N+ (A; r, W2, ) 

This is due in particular to the inclusions 

Vq° (w1 ) d3 Vq° (w2 ) c Vq° (w) and V 1 (w ) c V 1 (w1 ) d3 V 1 (£2 ) £ 
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Let us consider a covering of Rk by a countable family of disjoint open cubes {Q¢}¢eZk with center xf and sides of length : 
Rk= U Q¢. 

¢Zk 

Let R > R1. Set B = {x E Q: Ixl < R} and G = QR = {X E Q: Ixl > R}; write 
G+ = {x E G: r(x) > O} and G_ = {X E G: r(x) < O}. 

Fix A > O; let Ga = {x E G: Ar(x) - q(x) > O}. We note that G+ and Ga are open; moreover, we have 
Ga c G+ and dist(G>,G\G+) > O; 

this follows since r > ey/S on Ga and r, q are continuous on G+; here and thereafter, we choose R1 (and R > R1) SO large that q > ey on QR1 for some positive constant ey; this is possible in view of (5.1). Since, by (5.2), GA, is bounded, the sets I and J that we now introduce are finite. 
Put I = {¢ E zk Qf c G>} and J = {¢ E zk Qf n Ga 7& 0}. We choose 71 so small that (U/;E J Qf ) c G+ . 
We further make some technical assumptions on r, q and GA, (recall that r is positive on G>): 

z ' z ' -1 
(5.5) lim E (r¢)k/2m) E (r )k/2m) = O 

%¢E J\I k ¢EI 
where rf = r(x¢) for ¢ E zk. 
(5.6) Finally, we suppose that there exist >' > O and c > O such that Ga is Jordancontended (see [LoS, Chapter8]) and [GA] < c[G>/2], VA > >') where [GA] = tGA rk/2m. Intuitively, (5.5) means that dGa is of zero measure with respect to r(x) dx; moreover, hypothesis (5.6) is of Tauberian type. We can now state 
THEOREM 5.1. Under hypotheses (5.1)-(5.3) and (5.5)-(5.6), the spectrum of (S) is discrete and estimate (2.7) holds: 

N+(>) / [(Ar -q)+]k/2mU) asA+oo, n+ 
where Q+ = {x E Q: r(x) > O}. 
The idea of the proof consists in breaking Rk into disjoint pieces and linking the estimates so obtained with the help of Lemma 5.1. Inside the bounded open set B, we apply the results of j4.B, where r is allowed to be "singular"; outside B) we reduce the problem to Ga on which r is "smooth" and positive and a method similar to that of [Fl] can be used. 
To prove Theorem 5.1, we shall need the-following results: 
PROPOSITION 5.1. There exist two positive constants c' and c" such that, for all A sufWciently large, 

C/ Ak/2m [G>] < W(#A) < CAk/2m [G>] X 

where (A) = AQ+ [(Ar - q) +] k/2m,US . 
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PROOF OF PROPOSITION 5.1. It follows from (5.1)-(5.3) that 

(p()i) = | (>r _ q)k/2m8,£ < c" | (,\r)k/2m 
G> G>, 

and from (5.6) that 

| (>r _ q)k/2mp,/ > | (Ar _ q)k/2mp: > c' | (Ar)k/2m; 
G, GA/2 G, 

note that r-r+ and )r - q = ()ir-q)+ on G) 2 Ga/2. 0 

PROPOSITION 5 .2 . If Theorem 5.1 holds for No+ (A; r, Q, A1), then it holds for 
No+(A; r, Q, J4), where ' = £' + q and £' is the principal part of £. 

PROOF OF PROPOSITION 5.2. This is a simple consequence of interpolation 
theorems and of Lemma 4.2 if we notice-as in [Ro 2, Lemma 1.1, p. 353] that 

(p((l + s)A) < (1 + Cl06) (p(A)) 

for some positive constant c1. 

The result now follows by letting £ 0; here and thereafter, £ denotes the 

variable used in Definition 5.1. 0 

PROPOSITION 5. 3. 

> lim limO 9-1 (A) E W+ (>, f) = 1 
J 

- lim limO p 1 (A) E (R (>, f) 
I 

where 
f ( , f) [(1 i: s)Arm-q¢]k/2m,u IQ | 

Qf = q(x) and 

U -(21r)-k J d(. 
{&,ER Lial-ldl=m aCtR(l:f )((>+d<l } 

This follows easily from hypothesis (5.5); observe that E O implies that 71 ) °* 

PROOF OF THEOREM 5.1. In light of Proposition 5.2, it suffices to establish 
Theorem 5.1 for JA'. 

Now, we make use of the covering (Q¢)¢zk of Rk and of Lemma 5.1: 

(5.7) E No+ (A; r, Q¢, /) < No+ (>; r, Q, A ) 
I 

< N1+ (A; r, B, At) + E N1 (A; rX Qf ) A ) 
J 

+N1+(A;r,D,A') +N1+(A;r,G\G+,/), 

where D = G+ \(U¢EJ Q ) 
Next, we remark that N1+ (A; r, G\G+, ') = O because on G\G+, r is nonpositive 

and, by (4.6), there are no positive eigenvalues. Moreover, N+(A; r, D, ') = O; the 
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latter equality holds since D c Ua, where U) = {x E G+: Ar(x) - q(x) < 0}; hence (AUz qlul2/ JUA rlul2) > > and, by (4.6), N+(A; r, U>, ') = O. By Theorems 4.1 and 4.2, we have 

(5.8) N+ (>; r, B, A') | [(Ar _ q)+]k/2m,uz, as A +oo, 

B+ 

where B+ = {x E B: r(x) > O} and i = 0 or 1 according to the boundary conditions; in fact, by (2.2), we may choose R big enough so that IB+] > 0; moreover, we observe that, because B is bounded, 

X (>r)k/2mp,g,, X [(Ar _ q)+]k/2m,tb asS > +oo B+ B+ 

It follows, in particular, that p-l(A)Ni(A; r, B, ') > O as A > +oo. Thanks to (5.7), we only have to work on U¢EJ QF, where r is positively bounded from below by A-ley and satisfies (g). On each cube QF, where f E J, we can compare Jk' with a homogeneous operator with constant coefficients; precisely, for i = 0 or 1, it follows from condition (E) and from Lemmas 4.1 and 4.2 that, for n small enough, 

(5.9) Ni ([(1-6)>-q¢/r¢];r¢,Q¢, ¢) < Ni+(>;rQs Q 24 ) < Ni+([(l + 6)>-q¢/r¢];r¢,Q¢, :¢) 
where £.¢ = EI<xl=ldl=m a^,:(x¢)D+: and, as above, r<; = r(x,¢); furthermore, we know by a special case of [Me, Theorem 5.1, p. 175 and Theorem 5.12, p. 188] that there exists C independent of ¢ such that 
(5.10) INi+([(1 i s)S - q¢/r¢]; r¢, Q¢, £¢)-H¢IQ¢l[(l + 6)>rf-q¢] I 

< C (Arf ) (k-1 ) /2m 

In light of Lemma 5.1, Propositions 5.1-5.3 and equations (5.7)-(5.10), we conclude the proof of Theorem 5.1 by choosing £ = >-1/2(2m-1) and by letting A > +oo. O 
The next statement is really a corollary of the proof of Theorem 5.1 although it is an extension of Weyl's formula (Theorem 4.1). 
THEOREM 5 . 2 . If in assumption (5.2)(c) we suprpose instead that JQ |r|k/2m is finite, we must replace the conclusion of Theorem 5.1 by that of Theorem 4.1: 

N+(>) | (>r)k/2m,u/:) as A +oo. 

n+ 
REMARKS. 1. Of course, analogous estimates hold for negative eigenvalues provided that hypotheses (5.1), (5.2) and (5.5), (5.6) are changed accordingly. It is noteworthy that the value of JQ(r_)k/2m does not interfere with the asymp- totics of N+(A;S,r,Q) and vice versa. We give an example below where N+(A) and N-(A) do not have the same estimate (one is given by Theorem 5.1 and the other by Theorem 5.2). We note that, in the case when JQ(r+)k/2m are both finite, Theorem 5.2 (and its analogue for N-) has been proved under slightly different hypotheses by Rozenbljum [Ro 1, Theorem 2, p. 246]. 
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2. A result similar to Theorems 5.1 and 5.2 could also be obtained by the 
same methods for mixed Dirichlet-Neumann problems (under suitable compactness 
hypotheses). 

3. Recently, Gurarie [Gu] has studied the asymptotic distribution of the eigen- 
values of operators of Schrodinger type in Rk having a smooth positive weight 
function; in his work, based in part on the theory of pseudodifferential operators, 
the analogue of condition (E) is the so-called "finite propagation speed" condition. 

The following result is of interest for certain applications: 

PROPOSITION 5.4. The conclusions of Theorems 5.1 and 5.2 remain valid if we 
drop the hypothesis that q tends to +oo at infinity and replace it by the assumption 
that r is positive outside B. 

In this case, as in the abstract part of 04, the imbedding of V into H is continuous 
(but not compact); however T is compact by (5.4) since we still assume that q-lr 
tends to 0 at infinity. 

EXAMPLE 5.1. We now illustrate our results by considering the following eigen- 
value problem: 

(ES) aRu = (-/\ + q)u = Aru, in Rk, 

where 
(-1 if Ixl<1, 

r(x) = < 0 if Ixl = 1, 
t + 1 if Ixl > 1, 

and where q satisfies (5.1) [e.g., q(x) = (1 + 1Sl2)a with ff > 1]. 
According to Theorem 5.1, Theorem 5.2 and the preceding Remark 1, we then 

have 

COROLLARY 5 . 1 . 

N (>) (21r) (Bk) |>| / X as A -oo, 

and 

N+(A) (2X) kBk | [(>-q(x))+]k/2 dx, as A > +oo, 
Ixl>l 

where Bk denotes the volume of the unit ball in Rk. 

NOTE ADDED IN PROOF. Because of an erroneous numerical choice of the sharp 
Sobolev constant [LY, equation (19), p. 316], the claim in [LiY, Theorem 2 and 
Corollary 2] that the constant found there is better than in [Lb] is not justified. The 
best constant for the Cwikel-Lieb-Rozenbljum bound seems still due to Lieb in [Lb], 
as is clearly discussed on page 475 of E. H. Lieb, On characteristic exponents in 
turbulence, Comm. Math. Phys. 92 (1984), 473-480. In j3.C of the present paper, 
one should therefore use [Lb, Theorem 2, p. 243] rather than [LiY, Theorem 2, 
p. 314]; more specifically, if Lk and Ck are defined as in [Lb, p. 243] and [LiY, 
p. 310], respectively, one must replace ok by Ck = (Lk)-2/k in equation (3.10) of 
Theorem 3.3 and substitute Lk-1Ni(A) for the left-hand side of the inequality in 
Corollary 3.2. 

We wish to thank Professor Elliott H. Lieb for bringing these facts to our atten- 
tion. 
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