TRANSACTIONS OF THE

AMERICAN MATHEMATICAL SOCIETY

Volume 358, Number 1, Pages 285-314

S 0002-9947(05)03646-9

Article electronically published on February 18, 2005

RANDOM FRACTAL STRINGS: THEIR ZETA FUNCTIONS,
COMPLEX DIMENSIONS AND SPECTRAL ASYMPTOTICS

B. M. HAMBLY AND MICHEL L. LAPIDUS

ABSTRACT. In this paper a string is a sequence of positive non-increasing real
numbers which sums to one. For our purposes a fractal string is a string
formed from the lengths of removed sub-intervals created by a recursive de-
composition of the unit interval. By using the so-called complex dimensions
of the string, the poles of an associated zeta function, it is possible to obtain
detailed information about the behaviour of the asymptotic properties of the
string. We consider random versions of fractal strings. We show that by using
a random recursive self-similar construction, it is possible to obtain similar
results to those for deterministic self-similar strings. In the case of strings gen-
erated by the excursions of stable subordinators, we show that the complex
dimensions can only lie on the real line. The results allow us to discuss the
geometric and spectral asymptotics of one-dimensional domains with random
fractal boundary.

1. INTRODUCTION

In [T4] there is an extensive analysis of fractal strings. These are sequences
extracted from the construction of fractal subsets of R and are used as models for
other infinite series such as the primes. The focus of [I4], Chapter 2, was on some
simple strings arising from iterated function systems on the real line and, in that
setting, by considering an associated zeta function, it is possible to give explicit
formulas for various quantities associated with the resulting self-similar string. The
explicit formulas are determined by the complex dimensions of the string, defined
as the poles of the zeta function.

In this work we will see how some aspects of this theory carry over to the setting
of random fractal strings. There are many natural random fractals which generate
strings, and we will discuss three. First, a natural generalization of the iterated
function system is the random recursive fractal and it generates a corresponding
random string. Second, the zero set of Brownian motion provides a fractal set of
dimension 1/2 and it too can be used to generate a string. We extend this to strings
arising from stable subordinators. We also consider some strings that have larger
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random fluctuations, which shows that there is little that can be said in such cases
using the techniques developed here.

One reason for the development of the study of fractal strings was that they pro-
vide a sufficiently simple set for the study of the second order term in the asymp-
totics of the eigenvalue counting function of the Laplace operator on a bounded
domain. This problem, of hearing the shape of a fractal drum, was considered in
a number of papers. See for example [2], [], [11], [5], [I2], [I3]. In the case of
two-dimensional domains with an irregular boundary there is a range of possible
behaviour for the second order term in the asymptotics of the eigenvalue counting
function. The problem is made simpler if we reduce to one dimension and consider
a fractal string as a set with fractal boundary. The explicit formulas that follow
from our results on the complex dimensions allow us to obtain precise results on
the eigenvalue asymptotics for our random fractal strings.

For example, if we consider the fractal string generated as the complement of
the zero set of Brownian motion, then the fractal boundary problem associated to
the string has the following property. If we let N () denote the eigenvalue counting
function (the number of eigenvalues of the Dirichlet Laplace operator on the string
whose value is less than \), then we have the following asymptotic formula; for any
€ > 0, almost surely we have

NQA) =A+ LCr(l/Q))\l/Q + 0()\1/4+6)’

where L is the local time at 0 of Brownian motion run for time 1 and (. is the
Riemann zeta function. The error term could be reduced if we could establish
meromorphic continuation of the associated zeta function to the left of the region
{z € C: Re(z) > 1/4}.

An outline of the paper is as follows. We begin by stating some of the results
concerning the behaviour of self-similar strings. This is followed by a discussion
of the general branching process, a random process which describes the underlying
tree structure in a random recursive fractal. We will establish a rate of convergence
theorem for such processes; this is required to prove meromorphic continuation
of the zeta function of our random recursive strings. In Section 4 we discuss the
random recursive strings. In particular, we show that the poles (of the meromorphic
continuation) of their zeta functions are almost surely the complex solutions of a
natural ‘Moran—type’ expectation equation. In Section 5 we consider the stable
strings and show that their zeta functions can be meromorphically continued and
will not have any complex dimensions with non-zero imaginary part. We conclude
the discussion of meromorphic continuation by exhibiting in Section 6 a particular
type of scale irregular random Cantor set which has large fluctuations, and our
techniques do not allow us to prove meromorphic continuation. Finally in Section 7
we discuss some properties of the string that can be deduced from the complex
dimensions. These include the asymptotic behaviour of tubular neighbourhoods of
the boundary and the asymptotics of the eigenvalue counting function.

2. SELF-SIMILAR FRACTAL STRINGS AND THEIR ZETA FUNCTIONS

Fractal strings were introduced in [I2], and in [I4] a theory of complex dimensions
of fractal strings was developed and its connections with number theory explored.
We introduce the terminology and several results. Our aim will be to consider
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the zeta functions of our strings to determine their complex dimensions and the
behaviour of the zeta function at its poles.

In short, a fractal string is a bounded open subset of the real line, U C R, with
boundary F' = 90U, a totally disconnected (compact) subset of R with measure 0.
Frequently, a fractal string U is identified with the sequence £ = {L;}22; of lengths
of the connected components (largest open sub-intervals) of U, written in non-
increasing order according to multiplicity. To avoid trivial situations it is always
assumed that the sequence is infinite and L; — 0. Without loss of generality it can
be assumed that U C [0, 1] and that £ has total length one: |U| =2 L; = 1.

We now focus on self-similar strings; we first recall their construction before
discussing some of the results of [14] concerning their complex dimensions. We
start with the interval [0,1]. A self-similar set can be constructed from a family of
similitudes {v; : i = 1,..., N}, where 1; : [0,1] — [0, 1], and we write r; (0 < r; <
1) for the Lipschitz constant of ;. We assume that our maps satisfy the open set
condition (OSC) in that there is an open set O C [0, 1] such that ¢;(O)N;(0) =0
and O D Ufil 1;(0). The self-similar set F' is the unique fixed point in the set of
subsets of [0,1] such that

N
F=Juwi().

It is also obtained as the limit of repeated application of the maps. If we let I; =
{1,...,N} and set I,, = I* for the sequences of length n we can use this to index
the subsets of the fractal. That is, if i = (41,...,1,) we write ¢; = ¥;, o, 0---01);

and
F=) U w(0,1).
n=1iel,
Note that the subsets of the fractal are indexed by an N-ary tree.
The set F' is a subset of [0,1], and we note that there are subintervals G; C
[0,1],7 =1,..., M, such that G; NG, =0 for j # j' € {1,..., M} and

M N
[0,1] = U G; U U ¥i([0,1]).
j=1 i=1

The maps which form these intervals are written ¢;, so that ¢;([0,1]) = G;. The
lengths of the removed intervals G; are denoted by ;. It is these removed intervals
that we use to form our string. From our recursive construction we see that at each
iteration of the maps a new collection of subsets Gj; = 15 0¢;([0,1]) is formed with
length Eij =ITi_, 7i,lj. We now place the collection of all lengths in non-increasing
order to form our string,

oo

L= (Li,Lo,...), Li > L1, ZLZ» =1.

i=1
A simple example is the middle third Cantor string in which M = 1, N = 2,1 =
1/3,r1 =ry =1/3.

The geometric zeta function of the string is given by

¢(s) :ZLf, seC.
i=1
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The complex dimensions of the string are defined to be the poles of the mero-
morphic continuation of the geometric zeta function. A result in [14] is to prove
that the geometric zeta functions can be analytically continued to the left of the
rightmost pole, which occurs at the dimension of the string and to calculate the
residues of the complex dimensions of the string. These give rise to so-called ex-
plicit formulas giving more detailed information about this object. In particular,
these explicit formulas are expressed in terms of the (visible) complex dimensions
and provide a precise description of the oscillatory behaviour in the underlying
geometry, dynamics or spectrum.

We will find it convenient to think (as in [I4]) of the string as a measure. The
sequence (L;)32; of ordered lengths defines a measure on [1,00) as

nda) =) 9, (dx),

where J, denotes the Dirac measure concentrated at z. We will write the counting
function as

(2.1) o) = [ ald) =31,

where 14 denotes the indicator function of the set A. Using the expression for the
string as a measure we can write the zeta function as a Mellin transform of the
measure

oo
)= [ ontda).
0
We conclude with a summary of results.

Theorem 2.1. For a self-similar string, the zeta function is given by

N
)= T

The set of complex dimensions is contained in

N
C={seC:) r =1}
i=1

The zeta function can be meromorphically continued to the left of the rightmost pole
(in fact to all of C).

Remark 2.2. (1) The only complex dimension located on the real axis is equal to
dy, the fractal dimension (Minkowski, upper box dimension) of F. It is equal to the
similarity dimension of F', that is, the unique real solution to the ‘Moran equation’
ZzN=1 r; = 1, and also coincides with the abscissa of convergence of the Dirichlet
series defining ((s). Moreover, d; € (0,1) and is a simple pole of {(s).

(2) In general the complex dimensions are contained in C, as there may be
cancellations between the zeros of the numerator and those of the denominator of
¢(s), as shown in [I5]. Of course, in the case of a single gap, M = 1, then the set
of complex dimensions precisely coincides with C. (An analogous statement holds
for the lattice case of Theorem 2.3 below.)
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There is a dichotomy in the structure of the complex dimensions. A self-similar
string is non-lattice if the numbers logr;,7 = 1,..., N, are rationally independent,
and lattice otherwise. In the lattice case, there exists r € (0,1), called the ‘multi-
plicative generator’ of the string, and positive integers without common divisors,
ki,i=1,...,N, such that r; = r*. We will write T’ = —logr. In the lattice case
the string has a line of complex dimensions at each zero of the denominator of the
zeta function. In the non-lattice case the real parts of the complex dimensions are
dense to the left of the rightmost pole of the zeta function. The non-lattice case
can be approximated by a sequence of lattice strings whose periods diverge.

Theorem 2.3 ([I4], Theorem 2.13). In the lattice case ((s) is a rational function of
r® = e TS, There are finitely many poles wy = df,w1,...,w, of the zeta function
(obtained as roots of the polynomial equation vazl M =1, with z = r®) and
there is an oscillatory period p = 2w /T, such that the set of complex dimensions is
contained in

C=Awy+V-1np:n€Z,u=0,...,q}

In the non-lattice case, dy is the unique pole of ((s) on the line Re(s) = dy. The
complex dimensions of the string can be approximated by the complex dimensions of
a sequence of lattice strings with larger and larger oscillatory period. In particular,
there are countably many complex dimensions (a subsequence of which tends to,
but does not touch, the line Re(s) = dy) and they are all located in a horizontally
bounded strip.

One sees that in the lattice case, the complex dimensions are periodically dis-
tributed on finitely many lines, whereas in the non-lattice case, they exhibit a
‘quasi-periodic behaviour’; the latter is studied in more detail in [I4] (see also [15]).

In the final section we will discuss the application of these results to the geometry
and spectral properties of the string. By essentially inverting the zeta function we
can recover asymptotic properties of various counting functions associated with the
string.

3. THE GENERAL BRANCHING PROCESS

We will see that random fractal strings display a wider variety of behaviour
than their deterministic counterpart. In order to obtain theorems on the complex
dimensions analogous to the deterministic case we will need some results from the
theory of general or Crump-Mode-Jagers (CMJ) branching processes.

The self-similar set F' can be described by the sequence space I = UZOZO I,
which we can think of as a tree. In a similar way (to be described below) we think
of random recursive fractals as indexed by random trees; see [9]. The sample paths
of classical Galton—Watson branching processes therefore provide a description of a
random recursive fractal. For a tree which contains more structure we can consider
the sample paths of the general branching process or branching random walk.

Let I, = Up_o N¥ and I = (J,, Iy, where I is the empty set. The concatenation
of sequences i and j € I will be written ij. For an infinite sequence i € I\I,,, denote
by i|, the sequence truncated to length n and by i[n] the n-th element of i. We
write j <1iif i = jk for some k, and denote by |i| the length of the sequence i.

The general branching process will have a sample space defined by a random
subset T' of I. An element i € N™ represents an n-th generation individual in the
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branching process. If i has j children, then these are il1,i2,...,ij. A tree T is a
subset of the space I such that:

i) 0 € T is the root of the tree;
ii) i € T implies i|, € T for all k < |i|;
iii) if iy € T for some j € N, then il1,i2,...,i(j —1) € T.
Level n of the tree will be denoted T,, = T'N N™. We have a one-to-one correspon-
dence between trees and feasible realisations of the set of individuals in a branching
process.

For the individual indexed by i we have a description U; = (&, Ai, ¢3). The U;
are independent and identically distributed and consist of three components. The
reproduction process  : Ry — Z4 (where Ry = [0,00),Z+ = 0UN) is a point
process describing the offspring produced at each time; A € R is the life span, and
¢ is a random characteristic, a product-measurable non-negative random process
that assigns a score to an individual. Note that we make no assumption about the
joint distribution of the components of U.

For t < A, &i(t) is the number of children born to i in time ¢t. We write N; = &(\;)
for the total number of children born to i. Let T' C I be the individuals in a CMJ
process. We take @ as the initial ancestor, and then for each individual i € T
include its children i1,i2,...,iN; € T. Clearly T is a random tree. Let the birth
time of @ be oy = 0, and let the birth time for ij be o3; = o3 + t;(j), where
ti(7) = inf{t : &(t) > j}. Any distribution for Uy induces a probability space
(Q, B,P), where Q is the space of all trees T and their associated {U; : i € T}.

Let Z(t) be the population alive at time ¢, given Z(0) = 1. By considering the
offspring of the initial individual (), we have a decomposition of the process as

o (1)
(3.1) Z(t) = Ipng>e + Z Zi(t — 03),

i=1

where each Z; is an independent copy of the branching process with initial ancestor
the individual with address 7. The process counted with random characteristic ¢ is
then
Z0(t) =Y u(t — o),
ieT

where the ¢; are i.i.d., and may depend upon the whole process started from i.
We note that Z%(t) = Z(t) if we use the random characteristic ¢;(t) = Ijo<i<n}-
Let Z, denote the set of sequences corresponding to individuals to be born after
time s whose mothers were born before s. We can decompose the process with
characteristic, at any time s < ¢, as

(3.2) Z0(t) = gt —oi)+ Y Z(t—0y).
i€z, i€z,
We make the following assumptions (writing E for the expectation under P).
Assumption 3.1. (Al) E&;(0) =0, and there exists a unique Malthusian param-
eter a € (0,00) such that

Ny Ny
EZe_Mi =1 and EZUie_O‘”" < 0.
i=1

i=1
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(A2) For X, = YN0 e,
EX, logt X, < 0.
(A3) There exists on [0,00) a non- increasing, positive integrable function g such

that E(sup, g(t)~" [ e=*"&(du)) <

We will assume that our characteristics are bounded.
We note that if mf = Ee*ath’, then it satisfies a renewal equation

=Ee *¢(t) / Mi—spta(ds),

where pq(t) = E fot e~ **¢(ds). This is the distribution function of a probability
measure by our choice of a. We will refer to a measure as lattice if its support lies
on a lattice with period T. If the measure is not lattice we call it non-lattice. By
the renewal theorem we have that as t — oo, if the measure u, is non-lattice,

—at
mé o md = fO atdt
I te i (dt)
In the lattice case we obtain limits down an appropriate subsequence,
S v 0E<¢<m> T
mnT — f at )
o te”

In either case we will write the limit as mfo.

Let
Wt = Z e 2%,
iz,
It is shown in [I8] that this process is a martingale and, as it is positive, converges
to a limit W. We observe that this can be decomposed as

(3.3) W= e W,

i€,

as n — oQ.

where Wj denotes the limit random variable started from the individual with address
i (and we write W = Wy).
Under Assumption [3.1] we have the following.

Theorem 3.2 ([I8, [7]). Under (Al), (A3), for any characteristic ¢ there is a
random variable W such that:
(1) If po is non-lattice, then e=**Z%(t) — m& W almost surely as t — oc.
(2) If po is lattice, then e~ "1 Z¢(nT) — mS W almost surely as n — oo,
Moreover, EW > 0 if and only if (A2) holds.

Note that in the lattice case we have a finite constant ¢; such that

limsupe 7, < c;W.
t—o0
We will now give two assumptions which each provide a restriction on the branch-
ing process.

Assumption 3.3. The probability space S is finite. There are only a finite number
of possible life histories U.

Assumption 3.4. The reproduction process is bounded in that there exist finite
constants co and A1, Ao such that &(Ni) < cg and Ay <\ < Ay forallieT.
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Clearly Assumption B3] will imply Assumption[3.4]and we will therefore make the
second assumption unless we require a stronger statement. Both these assumptions
imply that the random variable W has moments of all orders (see [3]).

We state here a rate of convergence theorem for the renewal theorem. This
will enable us to prove a rate of convergence theorem for the general branching
process which will be required to prove the meromorphic continuation of our random
recursive strings.

We state the result in a more general form. Let f, g be functions satisfying the
renewal equation for a probability measure v,

(3.4) F(t) = g(t) + / £t — s)u(ds).

We will write the first moment as 7 = fooo sv(ds).

Statements of the rate of convergence in the renewal theorem have been given
in a few places. In order to find this theorem we refer the reader to [20]; other
approaches in the lattice and non-lattice cases can be found in [I6], [10]. We call a
measure v strongly non-lattice if

o0
liminf |1 — / ey (dx)| > 0.

|6]—o00 —00

Lemma 3.5. Let f satisfy the renewal equation [B.4]) with g a directly Riemann
integrable function and v a probability measure which has exponential moments, in
that fooo e®v(ds) < co for some § > 0. Then there exists a constant p > 0 such
that

(1) In the strongly non-lattice case

1 st
lim e[ f(t) — T/ o(s)ds| = 0.
t—oo 1 0
(2) In the lattice case, where v lies on a lattice with period T,
Jim e [f(8) = G(t)] =0,

where G is the T-periodic function given by

o0

(Xﬂ::% > g(t+4T).

j=—o0

Corollary 3.6. Let g be such that g(t) < e and let v be a lattice or strongly
non-lattice sub-probability measure in that v is a measure such that fooo v(ds) <1,
then there exists a constant p > 0 such that fooo e”v(ds) = 1 and there exists a
constant c3 such that

f(t) < cse™?",
for any p’ < min(4, p).

Remark 3.7. (1) We do not have an analogous result for the general non-lattice
case.

(2) There are other conditions under which such results can be obtained. In the
case of a finite measure (where the strong non-lattice case is the non-lattice case)
we refer to [I0], where the precise value of p is given.

Assumption 3.8. The general branching process mean measure is either lattice or
strongly non-lattice.
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Under this assumption, we will let p be the rate of convergence in the renewal
theorem for the mean of the general branching process,

pi=sup{f: lim e”|m{ —m%|=0}.

This constant could depend upon ¢ but as we will only use one particular ¢ in what
follows, we omit the dependence.

Theorem 3.9. Under AssumptionsBI, B4l and B8, for any 0 < k < min(a, p)/2,
then

lim e~ 70 _WEZ?| =0, P-a.s.

The proof will follow from a series of lemmas. We begin with the following
renewal-type theorem.

Lemma 3.10. Under the assumptions of TheoremB9, if a(t) is bounded over finite
intervals and satisfies the equation

Ny
a(t) = EZ e 2% (t — a;) + b(t), Vt> Ay,
i=1

with 0 < |a(0)| < oo, where |b(t)| < c1e™* for all t > 0 for some constant c1, then
there exists a constant co such that for all v' < min(c, ),

la(t)] < cae™ ', Wt > 0.

Proof. Fix a v/ < min(a, ). As a(t) is finite initially and is bounded over finite
intervals we can set ¢z = Sup;¢g ] ¢V't|a(t)| < oo, where to will be chosen later.
Then for t € [tg, to + A1] we have
N
a(®)] < EY e 2iepe (77 4 |b(t)]

i=1

Ny
< cpe (EZ@QQW’)W + 016(”7/”) .
i=1
Hence, for v/ < a, we know that C = E va:m1 e~ (2079 < 1 and hence for v/ < v
we can choose tg such that C' + 6167(7*7/”0 < 1. Thus

la(t)] < cae™", t € (0,10 + Ay).

Proceeding in the same way we can extend the estimate to [t +nAq,to+ (n+1)A]
for all integers n, giving the result. O

Remark 3.11. Even though the equation satisfied by a(t) is a renewal equation, we
have chosen to prove this result directly, as it is all we require for the proof of our
main theorem.

Now we turn to a variance calculation that will establish Theorem [39l Let
B;j)(t) = e~ Z2(t), so that m{ = EB?, and note that X;(t) = B(t) — m¢W; has
mean 0. Let V(t) = E(X2(t)) = E(8%(t) — m{W)2. This quantity is bounded over
finite time intervals as, under Assumption [3.4] all the moments of W and 3¢ exist.
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Lemma 3.12. Under Assumptions B, B4l and B for any v < min(a, p), there
exists a constant c3 such that

V(t) <eze® t>0.
Proof. We will consider s = 0+ in (B3], so that we are just splitting the population
based on the first individual and then i =i for ¢ = 1,..., Ny. Thus, for t > A,

Xy

[
[
|
Q
S
2@
T*SL
s
!
9]
|
Q
s
3
<
S

No No
Z eiaaiXt—a-i + Z e Qi (mf—m‘, _ mf)Wz
i=1 i=1

and, by conditioning on the first event, using independence between branches and
the fact that EX; = 0, we have that

V() = EX?
Ny Ny Ny
= ]E(Ze*"““Xt_m) +2EZ€ O‘“Xt_mZe*O‘”l(mf_gq —m{)W;
i=1 i=1 i=1
Ny
+E(Y e (mi_,, —m])W;)’
i=1
Nog
= EY e V(t—ai) +g(t),
i=1
where
(3.5)
Ny Ny

g(t) = ]EZ e~ 2a0i (mf—m - mf)E(Xt—aiWi) + E(Z e~ Qi (mf_ai _ mf)WZ)Z
i=1 i=1

We need to control g(t) and for this we need to compute f(t) = E(WX(t)) using

Lemma [3.101 By splitting at the first individual, for ¢ > As,
Ny Ny

FO)=EW > e X (t—0;) +EW Y _(mf —m{ , )e 7 W;.

i=1 i=1

This expression can be written, using conditioning, as

No No
@ = EZ e~ W; Z e 2% (X (t — 0y) — (m? mfﬂ,l)Wz)
i=1 i=1
Ny
(3.6) = EY e f(t—oi)+h(1),
i=1
where
h(t)=E> > (m{_, —mi)EW;W;.
i=1 j=1

By Lemma we have constants C7, Cy such that

m§ —mi_, | < |m{ —m&| +|m& —mi_,,| < Cre™" + Coe P77,
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Observing that o; < Ay we have
(3.7) |mf5Zb — mfﬁai| < Cse™ 1.

Now, using [B.1), we have

Ny Ny
B < EY Y |mi,, —m{EW,W,
i=1 j=1
< Cze PHENy(Ny — 1) + ENgEW?)
< 0467’01&.

As f is bounded over finite intervals, we can now apply Lemma B0 to (3.0 to
obtain the bound that |f(t)] < Cse?"t for any p’ < min(a, p). Putting this into
the expression for g(t) we have

Ny Ny
g < EY e mf , —mfl|f(t— o) +E_ e m{_,, —m|W;)?
=1 i=1
< Cae P C5e Pt + Cye 2P'E(W?)
< Cﬁef(PJrP/)t.

Thus, as V is bounded over finite intervals, we can apply Lemma .10 once again
to obtain the existence of the constant c3 such that

V(t) < cze” 't
for any p’ < min(«, p) as required. O

Proof of Theorem B9l The almost sure control on X; is then accomplished via
Chebychev’s inequality and our variance calculation as, for any v < min(e, p),

1 o _
P(X:>0) < Q—QV(t) < cf 2
Hence, for € > 0, we can set § = e~(V=9%/2 to obtain, by Borel-Cantelli, that there
is a constant C' such that
X; < Ce—(v—e)t/2’ P-a.s.

As this holds for arbitrary e, we have the desired result. O

4. RANDOM RECURSIVE STRINGS

We now turn to our examples of random fractal strings. The first class is gener-
ated by random recursive fractals in one dimension.

Let A be a finite set. For each a € A we have a set of N, similitudes ¢* = {¢¢ :
i=1,...,Ng}, where )¢ : [0,1] — [0,1] is a map with contraction factor r{ and
1? satisfies the open set condition (with the same open set) for each a € A. The
fractal F, is the unique compact set satisfying

Na
F, = Jvi(Fa).
1=1
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The string is formed from the sequence of removed subintervals, and for each a we
can write

M, N,
0.1) = J (10,1 v J wi((0,1)),

where the maps ¢® = {7 : j = 1,..., M,} are similitudes and ¢} has contraction
factor 1.

We now wish to combine these into a random recursive fractal string using a
probability measure on the set A. The informal description is that we start with
the unit interval and choose a set of similitudes (%, ¢®) according to this probability
measure and apply it to the unit interval. We retain the removed lengths as part
of the string and then repeat this procedure independently for each copy of the
unit interval given by the 9. The collection of removed lengths, in non-increasing
order, is the random fractal string.

More formally we proceed as follows. In order to construct a random recursive
string we need an address space. We use the same address space we used to label
the individuals in the general branching process, the set of integer sequences I. Let

Ui = (Ni,Mi,’r‘l(i),...77‘N(i),ll(i),...7lM(i)), ie I,

be independent and identically distributed (N, N, (0,1)N)-valued random variables.
We define a probability measure ®,, on (0,1)"™ and take {pn,m }n,men to be a prob-
ability distribution on N x N. Then the probability measure for U is given by

P(U € (n,m,Sy)) = Pnm®ntm(Sntm), Sntm C (0,1)"T n e N.

A random tree T is a subset of I such that

(i) 0 € T is the root of the tree;
(ii) i € T implies il € T for all k < |i;
(iii) i€ T implies il,i2,...,iN(i) € T, and i(N(i) + 1),i(N(i) + 2),... £ T.

We will write (€2, B, P) for the natural probability space associated with these trees.
That is, a sample point w € € will denote a random tree T and the associated
{U; : i € T'}. The o-algebras are defined as

B, =0o(Usi€T,1), B=|] B

n=1

and the probability measure, P, is as defined previously. If we project this mea-
sure onto its first coordinate it is the offspring distribution for a Galton—Watson
branching process.

We now regard our random variables U; with probability measure P as taking
values in the set A of possible families of maps by taking N, as the number of maps
in the family ¢® and M, as the number of removed intervals needed for the string.
The {r{,i =1,...,N} and {I},j = 1,..., M} are the Lipschitz constants of the
respective maps. We note that we must have 1 < M, < N, 4+ 1. From now on we
drop the sub or superscript a and regard the IV, M, r;,l; as random variables.

The address of each branch in the tree is now used to specify our random Cantor

set. Let
U;

Ci = ¢i([07 1]) = %1'1 ( v (1/}

Ui,

iln

([0,1])))-
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A random recursive fractal can then be defined by
K
n=1ieT, (w)

We now define a specific general branching process Z with the property that at
time ¢ the individuals alive in the population each correspond to a set in the fractal
of roughly size e~f. Let the reproduction process and life span be given by

N
) = <Z O—logrss ma)iv—logrz> ,
i=1

where U’ = (N, rq,...,rn) is chosen according to the appropriate marginal distri-
bution of P. The birth time o; of an individual with address (ancestry) i can be
written as

o; = —logri, where r; = H 7k (k1)

Let (Qg, By, P) be the probability space generated by Ug. The branching process
assumptions of Section 3 can be reexpressed for the fractals as

Assumption 4.1. (Al) P(ry(0) = 1) = 0, and there exists a unique a € (0,00)
such that

N () N ()
E Z ri(0)* =1 and E Z [log 73 (@)|7:(0)* < co.
i=1

(A2) Qg is ﬁmte.
(A3) The r; are bounded away from 0.
(A4) The measure p, with distribution function

z V()

/ Z Yy o log'r,((l))dyv

is either lattice or strongly non—lattzce.

Remark 4.2. (1) Under Assumption BI(A2), @, is a finite atomic measure on
(0,1)™.

(2) Under both Assumption [LI(A2) and (A3) there exist r.,7* such that 0 <
re <ri(Dw) <r*<lforalli=1,...,N(0,w),w € Qgand N(f,w) < N < 00 as.,
for some scalar N.

(3) Assumption [LT}(A4) gives the lattice/non-lattice dichotomy for our strings,
that is, it is lattice if logr{ are rationally related for alli = 1,...,Ng,a € A. In
particular we see that if the probability measure has a density on A, we cannot
have a lattice case.

The Hausdorff dimension of the set F'“ can be found by applying the results of
[6], [I7] and, as we have assumed the OSC, it is given by the Malthusian parameter
of the CMJ process,

(4.1) ap(F*) =inf {a > 0:E(SXPr(0)) =1}, for Pac. weQ.

Note that for these fractals the other natural notions of dimension, Minkowski,
upper box, etc. all coincide with the Hausdorff dimension.
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Now we describe the construction of the random fractal string. To begin we
construct the sample path of this process as our random tree. Associate with each
vertex of the tree the set of removed lengths (I; : j = 1,..., M) of the type of
offspring generated from that vertex. The lengths that compose the random fractal
string are then given by L{; = H;l;ll 7i,l; at vertex i = (i1,...,4,). We then write
them in length order to obtain the string £ = (L;)$2;.

As in Section 2 we think of the string as a measure, and for the random string
it will be a random measure. Our general branching process can be used to encode

this random measure 1 by use of a suitable characteristic. We set

M;
¢i(t) = Z It rogi;<ty-
j=1

That is, the lengths of the removed pieces of string are a function of the individual
representing that application of the similitude. We also only count the removed part
if it is sufficiently large. We can check that with this choice our general branching
process has encoded the random measure 7.

By the definition of the general branching process and the counting function 7

in (21)), we have

2 = Z B(t — 1)
i€To
M;
= Z ZI{—logljgt—ai}
i€Z j=1
M;
- jg: EE:I{L51Se%
i€Z j=1

= D Jptcey =),
=1

We note that, as all lengths are less than one, the branching process begins at
t =0 when Z(0) = 1 and 2 = 0.

We can then use our Theorem B.2] concerning random characteristics, to deter-
mine the growth rate of the string.

Corollary 4.3. Under Assumption [l there is a mean one random variable W
such that in the non-lattice case

tlim e n(e') = ml(co)W, P-a.s.
—00

and in the lattice case

lim e *"Tn(e"”) = m1(c0)W, P-a.s.

n—oo

By using the fact that the quantity m/(oo) is the limit of the normalized mean
growth rate we can write, in the non-lattice case,

n(e’)
im
t=oc En(e’)
We have a similar expression in the lattice case down a subsequence. The random
measure 71 will satisfy a distributional equality in that it can be expressed as a sum

=W, P-a.s.
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of scaled copies of itself,

M N
n(dz) = Z 51;1 + Z n(r;dz).
j=1 i=1

The zeta function of the random string is a random function defined as the Mellin
transform of the measure 7,

(o) = [ antaa),

The complex dimensions of the random fractal string are the poles of this function.
In order to compute them we consider the mean zeta function which is given by

E((s) = /000 x~ °En(dx).

Lemma 4.4. The mean geometric zeta function can be expressed as

M s
S
1-E( i, ry)
If Assumption LII(A2) holds, the family size is finite, then the mean zeta function
can be meromorphically continued to C. If Assumption [LI(A3) holds, then the
mean zeta function can be meromorphically continued up to the line Re(s) =0. In
either case, E((s) is given by the above expression for s in the indicated region.

Proof. We can use the branching structure of the random set to find a closed form
expression for this mean zeta function. Observe that by construction we have the
following equality in distribution:

M N
(4.2) Cs) =315+ S r i),
j=1 i=1

where the (; are i.i.d. copies of the original zeta function and the random variables
l;,r; are determined by the particular choice of @ € A corresponding to the first
individual.

If we take expectations in (£2) and condition on the first map,

M N
E((s) =E» 15 +E(>_ riEG(s)).
j=1 i=1

As the (; are just copies of ( we can rearrange to get

ESM, 18
- i=1"i
Mo =1

The poles of this function lie in the set of s € C such that E(3_;", 77
Under Assumption I A2) the probability space is finite and we have the fol-
lowing explicit formula for the mean zeta function as written in (£3]):

M,
ZaeA Zj=1 l;
N, N .
1- ZaGA Zi:l (rf)épa

As the sums are finite E(s) can be meromorphically continued to the whole of the
complex plane.

E((s) =
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Under Assumption LT[(A3) the expectations in (€3] can be computed for Re(s)
> 0 and hence E((s) can be continued to this region. O

The expression for the poles is exactly the expression for the dimension of the
boundary of the fractal string and hence we see that the zeta function is well
defined for Re(s) > dy. We now wish to show that the random zeta function can
be meromorphically continued to the left of this line.

The approach we take is based on the Euler—-Maclaurin series approach to prov-
ing meromorphic continuation for the usual Riemann zeta function. From the
discussion prior to Lemma [£4] we can write

(4.4) C(s) = WEC(s) + /0 T oV (), Peas.,

where W is the limiting random variable for the normed limit of the distribution
function for the measure n and V(dz) = (n — WE(n))(dz) is a random signed
measure. In order to extend our zeta function we need to be able to compute the
second term for suitable s € C and for this purpose we look at the behaviour of

Vi) = [ "V(dy) = n(x) - WE(n(z)).

The fluctuations in this function follow from those of the corresponding general
branching process derived in Section 3.
We can now use this result to establish our main theorem.

Theorem 4.5. Under Assumptions LI A1), (A3), (A4), there is a number T with
0 < 7 < min(a, p)/2 such that the random zeta function ((s) can be meromorphi-
cally extended to the right half-plane D := {s : Re(s) > o — 7}, where « is given in
Assumption (A1) above. The poles of the random zeta function lie in the set of
complex solutions z € D to the equation

N
E(er) =1.

The residues at the poles z (when the latter are simple) are given by
W Res(E(¢(s)); s = z),
where BE((s) is the mean zeta function given in Lemma A4

Proof. With our Theorem 3.9 we immediately deduce the meromorphic extension
from ([@4). This follows if we can prove the existence of the integral [~ z~*V (dx).
By construction it is a question of determining the behaviour of V' at oo and, by
Theorem B3] there is a random constant C' and a 0 < 7 < min(«, p)/2 (where p
is the rate of convergence in the renewal theorem for the branching process mean)
such that V(y) < Cy*~" for large y. Hence [~ 27 *V(dz) is well defined for
Re(s) > a —T.
We immediately see that

ESY s

¢(s) = VV—1 - IE(X::A; ) +/O x~°V(dx),
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so that the poles of {(s) in D occur at the same place as those of E({). To compute
the residues we again use the formula (€.4]).

Res(((s)is=2) = lim(s—2)((s)

= WRes(B(C(s)):s = 2) + lim(s — 2) /O eV (de)
— WRes(B(C(s)); 5 = 2),
as desired. O

Remark 4.6. (1) Note that in general there may be cancellations between the zeros
of the numerator E(Z]Ail [5) and those of the denominator 1 — E(ZZI\LI rf) of the
mean zeta function. In the deterministic case examples of such cancellations can
be found in [I5]. However if M = 1, the poles of the random zeta function ((s) are
precisely located at the complex solutions of E(Zfil r?) = 1 (such that Re(z) >
a—T).

(2) In the deterministic case, the poles may have multiplicity greater than one
[T4], Section 2.2.3; the corresponding Laurent series of the zeta function can, how-
ever, be used instead. In the random case, the above proof shows that the Laurent

series of ((s) at a pole z can be expressed in terms of that of E((s) at z.

5. STABLE STRINGS

In this section we will discuss the case where the string is generated by the excur-
sions of a stable subordinator. The main example to bear in mind is the Brownian
string. One-dimensional Brownian motion run for a unit time can be decomposed
into a countable family of excursions away from the origin. The local time of Brow-
nian motion at 0 can be defined as the density of the occupation measure of the
process at 0. We can then regard the Brownian path as a Poisson process of ex-
cursions indexed by the local time process. Our string will be constructed as the
series of ranked excursion lengths, and as the time at the origin has 0 Lebesgue
measure, it will have the property of total unit length. Our aim will be to consider
stable strings, establish the asymptotic behaviour of the string, show that its zeta
function can be meromorphically continued to the left of its rightmost pole and
obtain an expression for the zeta function at the poles. Our main conclusion is that
for such strings the complex dimensions are purely real.

5.1. Stable subordinators. The ranked lengths of the excursions of stable subor-
dinators are known to have a Poisson-Dirichlet, PD(«, 0) distribution for 0 < o < 1.
This type of distribution initially arose when defining the relative frequencies of var-
ious species in a large population. There are a number of ways of defining such
distributions and we refer to [19] for an extensive survey. For our purposes we
recall the definition through subordination and the construction through a family
of independent identically distributed random variables.

Let 75 be a stable subordinator. This is an increasing process with stationary
independent increments which can be characterised via its Laplace transform

Elexp(—A7s)] = exp(—sCT(1 — a)A“),

where C' is a constant and T" is the Gamma function. Let Vi(T) > Va(T) > ...
denote the ranked lengths of components of the set [0,T]\Z, where Z is the closure
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of the range of {75;s > 0}. A basic proposition is that for every s > 0,

Vl (Ts) ‘/2(7_5)

pa e N

has the PD(«,0) distribution, and also for fixed times ¢ > 0,
(Vl(t) Va(t) >

t ot

has the PD(c,0) distribution.

From now on we consider the case t = 1 and write (V, V5, ...), where Y oo, V; =
1, for a random sequence with the PD(«, 0) distribution. An observation which can
be found in [I9] is that the random variables R,, = V;,11/V,, have beta distribution
B(na, 1) and are mutually independent. For completeness we recall that the 5(u,v)
distribution has density function

Llu+wv) ,_
foo®@) = Tgp )

Thus, given V7 we can recursively construct the relative values of the lengths in the
string and then determine V7 by normalization.
We also note here a first limit result and an important representation.

(1—x)"" zel0,1).

Lemma 5.1 ([19], Proposition 10). If (V,,) has the PD(a,0) distribution, then
(1) The limit L = lim,,_,oo nV,& exists almost surely.
(2) Let X,, = LV,=*. Then the points (X,,) are the points of a Poisson random
measure with Lebesgue measure as its intensity.

We note that the second part of the lemma means that we can write X,, =
ZZL:I &;, where the &; are independent random variables with the exponential dis-
tribution with mean 1.

Once we have defined the ranked excursions we wish to consider the associated
zeta function

Cals) =D V.
n=1

The key tool will again be the random measure 1 on [1,00) determined from the
string by

n(dz) =Y 6,1 (dx).

5.2. The mean zeta function. The first step in our analysis is to consider the
mean behaviour of the zeta function. We write P, ¢ for the general PD(«, 6) distri-
bution and E, ¢ for the expectation with respect to this distribution. When 6 = 0
we will write P, and E,, for the distribution and its expectation, respectively.

We begin with a useful formula from [I9] derived from size biased sampling from
the distribution.

Lemma 5.2 ([19], Corollary 3). For the general PD(«,0) distribution we have

r0+1)

(5.1) Eq o Z:lf(Vn) = T+ a0 —a) /0 (1 — w)o+0=1y=o= L £ () du.
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From this we can easily compute the expected value of the zeta function directly,
o0
EaCa(s) =Eap Y Vy.
n=1
Setting f(x) = z® in (5.I) and integrating we obtain

I(s—«)
5.2 E §)=———"—.
The Gamma function can be analytically continued to the whole complex plane. It
has no zeros and has simple poles that lie on the real axis at 0, —1,—2,.... As the
mean zeta function is a ratio of Gamma functions, we know that the poles lie on
the real line at the values o, — 1,0 — 2,... and we have the following lemma.

Lemma 5.3. The mean zeta function can be meromorphically continued to the
whole complex plane and is given there by (G.2).

We will also be interested in the mean growth of our measure 7. This can be
computed from (G.]) as

Ean(x)

Eaq /1 ' n(dy)

= Eo ) Iv,>1/2)

(-1
Mo+ 1I'1 —a)

(5.3) _ sinma (= 1)°,

yes

where the last result follows from the fundamental identities for the Gamma func-
tion.

5.3. The zeta function for the string. Finally we consider the actual zeta func-
tion associated with the string. The first stage is to prove that it can be meromor-
phically continued to the left of the line Re(s) = « and to do this we will use the
following.

Theorem 5.4. For all 0 < oo < 1 we have

) n(x) T
lim = —
z—oo En(n(z)) sinma

L, P,-a.s.

Proof. The key to the result, and to some of the later ones, is that we can obtain
limit information about n from the asymptotics of V.
We can write

n(x) = Z Tvcny
n=1

I R A
(54) - {m Vil<z <V,

Thus

o0

v () = Z ﬂffanf{vn—lngy;jl}

n=1
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and

o0 o0

> Ve Ly cocvty <TO(@) < > WV Lyt gpcytye

n=1 n=1
Now, as V71 — oo as n — 00, we see that taking limits as 2 — oo is equivalent to
taking limits as n — oo and gives, by Lemma 5.1}

oo

dim > Vi ooy = lim VY =L, Po-as.
n=1

For the left-hand side the change to V11 does not alter the limit and hence,

as upper and lower bounds have the same limit, we have that P,-almost surely

lim, 00 2~ *n(x) = L. We now obtain the stated result by substituting in the

function E,n(z) from (&3). O

In order to establish the meromorphic continuation we require a rate of conver-
gence in the above limit theorem. In order to do this we will use the second part
of Lemma [B.Jl As we can write LV,”® as a sum of independent and identically
distributed random variables, we can use the independence to control the growth
rate of LV, * —n. We need two preliminary results.

Lemma 5.5. Fore >0

lim p~(1+e)/2 ’LV{‘l - n‘ =0, Py-a.s.

n—oo

Proof. We begin by observing that

where the &; are independent exponential random variables with mean 1. We use
a standard large deviation approach
n n
Pa(d (6—1)>a) < Palexp(0y &) >e’"m)
i=1 i=1

679(:1:+n)]Ea (GGX)n
670(w+n) (1 . 0)771

As this holds for all § < 1 we can optimize the bound by setting 6 = x/(z + n) to
get

IN

IN

" X 1 2z
. P, i—1 <e (14 )" <e 2w (1733,
(55) (E(& ) > @) <eT(l4 )t < e

We can follow the same line of argument to show that

(5.6) Po(d (1-&)>x) <e 2.

Hence, if z < }n, then in (55) we have 1 — 3% > 2 and combining this with (5.6),
we arrive at
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Thus for z = 6n1T9/2 we have summability of the probabilities and hence the
first Borel-Cantelli lemma shows that

lim sup LV, * —n| <6, Py-a.s
n—o0 n%(l‘*'f) - o«
As this holds for every § > 0, the limit exists as required. (|

We are now ready to state our convergence rate result. For convenience we write
L = (ma/sinma)L.

Theorem 5.6. For any ¢ > 0,

lim xa(lfe)/2

r—00

M — E’ =0, Py-a.s.
Ean(x)
Proof. The proof is an application of Lemma It is enough to show that, for
any § > 0,

lim sup z*(1=9)/2 ’x*an(az) —-L| <.

As in the proof of the almost sure convergence in Theorem [5.4] we can write
xa(lfe)/Q |£C7a’l7($) _ L| _ x*a(1+€)/2 |n(x) _ L$a|

_ —a(lde)/2 _ a
= |TL Lx |I{V{1§x<Vn111}

a(l+e)/2 —« «
< Vel max(in — LV, |, n = LV D i <oyt -

To use Lemma we note that

. | nia - | T | nﬁa B 7’L| . « (14€)/2
llﬁsolip W = 111131*}80%1) W nler;o (nVn +1) .
n+1
Thus, applying the result we established in Lemma [5.5] and using the almost sure
convergence of nV,* — L as n — oo, we have the result. g

Therefore we have shown that for any ¢ > 0, P,-almost surely, for a constant

C > 0 we have
V(z) = n(z) — LEa(n(x)) < Ca*F72,

Hence we can use the Euler—-Maclaurin approach, as outlined in the proof of Theo-
rem in the random recursive fractal case, to show that the zeta function can be
meromorphically continued beyond the line Re(s) = « to the set {s : Re(s) > a/2}.
From the properties of the Gamma function we see that the complex dimensions
for these strings are purely real and we can state our final theorem for this section.
(Note that the Brownian string corresponds to the case o = 1/2.)

Theorem 5.7. The geometric zeta function for the stable string is defined mero-
morphically for all s : Re(s) > «/2 and has a simple pole at the value s = o and
no other visible poles. The value of the residue at the pole is aL.

Remark 5.8. The stable bridge is a stable process with the property that it is
conditioned to return to 0 at time 1. It is known [19] that such a process has law
PD(e, ) and hence its mean zeta function can be calculated using (B and has
a meromorphic continuation to the whole complex plane. It also has a random
recursive structure as indicated in [7], as we can decompose the Cantor set formed
by the visits to zero at the first and last zeros either side of 1/2. Thus we can
also regard this string as a random recursive string but from an uncountable family
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which does not have scaling ratios bounded away from 0 (as the law of the first
return time before 1/2 has support on the interval [0,1/2]). As yet we have no
theorem that enables us to prove meromorphic continuation. If this can be done,
we can obtain the same results as for the stable string. The poles of the zeta
function occur at a, « — 1, ... and hence there are no non-real complex dimensions.
The only change is that the residue at s = « is different. This demonstrates that
the class of random recursive strings includes strings that are quite different from
deterministic self-similar strings.

6. A HOMOGENEOUS RANDOM STRING

We discuss a spatially homogeneous string arising from a random Cantor set.
This shows that there are random strings for which the techniques we have em-
ployed here to prove meromorphic continuation break down. This example is a
simplification of the construction of the random recursive fractals. In this case
we do not choose a new family of similitudes for each interval, instead we choose
the same family for all sets of a given size. Random fractals of this type have
been discussed in [I]. This has the effect of introducing much larger fluctuations
in the string and for this reason we are not able to control the extra term in the
Euler-Maclaurin approach.

We begin by defining a scale irregular random Cantor set. We let ¥¢ = {4, ¥§}
denote the family of two similitudes given for any 0 < a < 1/2 by

Y1(z) = az, Yo(x) =1—a(l —x).

Thus the effect of applying the map ® to the unit interval is to produce two
intervals of length a with a gap of length 1—2a between them. For a given sequence
a={a;}2,, where 0 < a; < 1/2 for all 4, we can define a scale irregular Cantor set
as

Ca=() U 98009 (0,1)).
n=lie{1,2}n

Note that if we write o(a) = (a2, as...) for the shift map on one-sided sequences,
then

Co =YY" (Co(a)).
At this stage we make no assumption about the sequence. We can define ho-

mogeneous random Cantor sets by generating the sequence a using a probability
measure.

Theorem 6.1. The Hausdorff dimension and lower box counting dimension of the
scale irreqular Cantor set Cy are given by

. .. log [T, a
dip = dimyg = liminf ———*>~—.
n—oo  mlog?2
The packing dimension and upper box counting (Minkowski) dimensions are
1 " oay
dyp = dimp = lim sup w.
n—00 nlog?2

Proof. This is the same as the case of scale irregular Sierpinski gaskets as given in
. O
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Our next step is to describe the scale irregular string that is determined by
this scale irregular Cantor set. From this point we assume for convenience that
ay, < 1/3 for all n. This assumption ensures that the set of lengths L, = 1 —2a,, is
strictly decreasing with n. By construction the string is the set of lengths L,,, with
multiplicity 2", given by

n—1
Ly=1-2ay, L,= H ai(1 - 2ay,).
i=1
By construction of the zeta function,

Gals) = D 2"L;
n=1
o] n—1
= > 2" [[a;(1 - 2a,)°
n=1 i=1
oo n—1
= Zexp <n10g2 +s (Z loga; + log (1 — 2an)>> ,

n=1 i=1
which will be finite provided the real number s is such that

n—1
nlog2+s (Z loga; +log (1 — 2an)> <0.
i=1

Thus we have

1 " oay
Ca(s) < 00, for s > limsup log Il @i

= dyp.
n—oo nlog 2 b

The question we address now is the meromorphic continuation. Let us make some
more assumptions about our model. Assume that there is a probability distribution
P on (0,1/3) and that {A;} is a sequence of independent and identically distributed
random variables with law P. In this case we see that
—]E(log Al)

dy = dimp(Ca) = dip = dyp = dimp(Ca) = log 2

, P-a.s.

We consider n(x), the number of intervals with length greater than 1/x. By the
structure of our sequence we have the identity
Na(x) = I{L121/r} + 2770(a)(z41$)~
As the sequence is i.i.d. we have
Ena(z) =P(L1 > 1/x) + 2Ena(Asx).

This can be written as a renewal equation if we set m(z) = e”""Ena(e”), g(x) =
e "P(L; > e *) and choose v such that P(dz) = 2¢ 7*P(—logA; € dz) is a
probability measure,

(o) = (o) + [ " (e — y)B(dy).

As g(z) is directly Riemann integrable, we can apply the renewal theorem to obtain
m(z) — [ g(x)dz/ [;° 2ze7"P(log Ay € dx) as & — oo, giving the growth rate
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of the counting function. Thus we have v defined to be the solution to 2EA] = 1
and as x — 00,

Ena(x) ~ cx”.
Our next task is to show that n(x) does not grow like its mean and hence we

cannot hope to control the zeta function with the mean zeta function as we have
done before. We note that the mean zeta function is straightforward to compute as

Ca(s) = Li + 2Ai<o(a)(s)7
and hence
E((1—2A4,1)%)
Ela(s) = —————=

@) = 3 "Fra

Thus the poles of the zeta function occur at a subset of the complex solutions to
2EAf = 1, whose maximal real solution is not dy. We now apply our previous
technique and attempt to control the zeta function by using a random variable W
and signed measure V = n — WEn, such that

Ca(s) = WECa(s) + /000 x5V (dz).

By construction of the string we have

n—1

(@) =2" -1 if {JJA:i(1 -24,41) <1/2 < [ Ai(1—24,)}
i=1 i=1

Taking the subsequence z,, = (H?;ll A;(1—2A4,))"1 we have n(z,) = 2" — 1 and
by the ergodic theorem

zl/m = exp(l S —log A; + ] log(1 —2A,,)) — exp(—E(log A1))

! i ‘on ! ’

as n — 00. Now
log2/—E(log A1)

n )

n(xn) _ xﬁlogQ/ log x,
as n — 0o. We note that this almost sure growth rate log2/ —E(log A;) is different
from -, the mean growth rate. We can make the oscillation precise by using the
law of the iterated logarithm (LIL) for i.i.d. random variables to control the size of
the fluctuation in the convergence of L 3"  log A;.

Note that by the LIL, for all € > 0,

-1~z

n

. 1

hﬁsolip m| Zl(log A; —E(log A;))| = 0.
Thus, for any ¢ > 0, there exists N < oo such that x,, < exp(—nE(log 4;)+cn'/?~¢)
for all n > N, P-a.s. Also there will be a subsequence n; such that

x, > exp(—niyE(log 4;) + cn,lc/%e), Vk.
Thus we cannot control the growth of the counting function n(z) by its mean growth
rate, or even by its almost sure growth rate, as the fluctuations are too large. Hence
our Euler—-Maclaurin approach to meromorphic continuation does not work and a
different approach would be required to prove results about the complex dimensions
of this random fractal string.
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7. TUBULAR NEIGHBOURHOODS AND EIGENVALUE ASYMPTOTICS

We conclude with an application of our results on the complex dimensions of
the string to two problems. First we discuss the geometric problem of determining
the volume of a tubular neighbourhood of the string. Second we consider the as-
ymptotic growth of the eigenvalue counting function for the Laplace operator on a
bounded domain. In this case we regard a fractal string as a one-dimensional do-
main with a fractal boundary consisting of the Cantor set which is the complement
of the string. We will restrict our attention to random recursive fractals satisfying
Assumption 3.3l and to stable strings.

We will extend the results of [14] concerning explicit formulas for the expansion
of the zeta function from the deterministic to the random case. We begin with
two hypotheses on the growth of the zeta function. First we need two definitions.
Let r : R — [—00,a] be a bounded Lipschitz continuous function and define the
screen S to be the curve S : ¢t +— r(t) + it for t € R and the window W = {s € C:
Re(s) > r(Im(s))}. We will write D, (W) for the set of complex dimensions of the
string n which lie in the window W; these are referred to as the ‘visible’ complex
dimensions.

Assumption 7.1. There exist real constants k > 0 and C(w) > 0 and a sequence
{T}nez of real numbers tending to oo as n — +oo with T_,, <0< T, forn >1
and limy, o0 Ty /|T—n| = 1, such that for P-almost every w € Q,

(H1) For alln € Z and all o > r(T},),
[Cn(w) (0 + i) < C(w)[To]"
(H2) For allt € R,|t| > 1,

[Cn(w) (r(8) +it)]| < C(w)t]".

We will show in Lemma that there are examples of fractal strings which
satisfy this assumption.

We now give a distributional formula for the counting function of the string, a
version of [14], Theorem 4.12. We regard the measure 7 generated by the string as
a Schwartz distribution. It acts on test functions ¢ by

(o) = / " p(@)n(dz).

We write Py for the k-th primitive of the distribution, defined by its action on
©, through

-1

0 © (. k
(P, ) = /0 / ((k_y)mso(x)dwn(dy)

and Py =9

Theorem 7.2. Let n be a random fractal string satisfying Assumption[[1l Then
for every k € 7 the explicit formula for the distribution P¥ln on (0, 00) is given for
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P-almost all w € Q0 by

$s+k_1<17(w) (S) .

Pl = R ps =
() ZED%(W) es T(s+ k)/T(s) " ?)
1 kot k-1 o
T Z ( j >(_1)Jx_JC”(_j)+R£7k<]w>($>v
—JEW\ D,y (w)

where
strkfl

(4] _ 1 =
o) =5 [ G0t ey o

Remark 7.3. Extending to the random case, [I4], Theorem 4.20, we conclude that
under the same assumptions as for Theorem [7.2] the error term R(x) = RL’?L)(x)
is given for P-a.e. w by R(z) = O(z°«**~1) as © — oo, where 0, = sup,cg r(t).
Further, if r(t) < o, for all t € R (that is, the screen lies entirely to the left of
the line Re(s) = 0y), then R(z) = o(x°+**~1) as x — oco. Note that here, as
n [14], Definition 4.22, we write that R(x) = O(2?) (resp. o(z”)) as z — oo if
(R, ¢a) = O(a®) (resp. o(a?)) as a — oo, where ¢, (7) = a " 1¢(a'z).

We note that the case we will be most concerned with is when £ = 1 and the
screen is a vertical line to the right of 0.

Corollary 7.4. Let n be a random fractal string satisfying Assumption [[1] with
screen given by r(t) =~y. Then P-a.s., for x — oo, the counting function satisfies

_ xSQI(s). — y+0
a) = Y Res(T s = )o@ ),
z€Dy (W)
for every § > 0.

Lemma 7.5. Assumption [l holds for the random recursive fractal string under
Assumption [3.3] and it also holds for the stable string.

Proof. This is proved using the control we obtained on the zeta function from the
Euler-Maclaurin approach to meromorphic continuation. We recall from (€4]) that
the random zeta function can be written as

Cy(o +it) = WE(, (0 +it) + /OO 7Y (dx).
Now to control the vertical and horizontal grow‘fh of this function we use that
Glo+inl < WBiG+i]+ [ oo v(an),
< WE|¢, (o +it)| + C?(a, w)

for all 0 > @ — 7 and t € R. The constant C'(o,w) — 0 as ¢ — 0.

Thus the problem is reduced to that of controlling the growth of the mean zeta
function.

(1) The stable string: For the stable string we have an explicit expression for the
mean zeta function, and the control we require just follows from the properties of
the Gamma function. To prove (H1) we consider I'(s —«)/T'(s). Note that the ratio
of two Gamma functions, with the parameter of the numerator of smaller real value
than that of the denominator, is bounded as Re(s) — oco. Hence we can choose
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k = 0 and a suitable random constant C' from the sum of the deterministic bound
and the random control on the fluctuation term to obtain (H1). For (H2) we note
that there are no poles except at a and hence we have the vertical control.

(2) The random recursive string: As we are assuming that the probability space
is finite, we can follow the ideas of [I4]. For a lattice string, the poles of the
zeta function occur on a finite number of straight lines, leading to (H2), while
the periodicity ensures that we can satisfy (H1). In [I4] it is observed that a
deterministic non-lattice self-similar string can be approximated by a sequence of
lattice strings. As the structure of our mean zeta function is the same as the
deterministic case, we can also approximate the non-lattice case by the lattice case.
Thus a suitable screen can be constructed which gives a bound on the growth of the
mean zeta function (see [I4], Theorem 2.33) and hence the result we require. [

We now conclude by stating some results that follow from our earlier theorems.

Let V(e) denote the volume of the inner e-neighbourhood of the string £. That
is, we recall that the string is defined as a bounded open subset U of the real line
and set V(e) = |Ue|, the one-dimensional Lebesgue measure of the (one-sided) e-
neighbourhood of the boundary of the string, U, = {« € U : dist(x,0U) < €}. This
can be expressed as

V(E): Z 2e + Z lj:<U5a77>a

j:lj>2e J:l;<2e

where v.(z) = 2¢ for x < 1/(2¢) and v.(x) = 1/x for x > 1/(2¢).
The following ‘random tube formula’ is obtained by a simple adjustment of
[14], Theorem 6.1, to the random string setting.

Theorem 7.6. Under the hypotheses of Theorem 7.2, the volume of the tubular
neighbourhood of the boundary of the random string n is given as ¢ — 0T, for
P-almost all w € 2, by

w 2 1—s
V(e) = Z res(—%( )(13)( 2 ;s =2)
(7.1) 2€D, 0y (W) s(1—s)
+ 26y (w) (0) T{oew\ D, oy W)} + By (€),
where
ds

1 1-s
_ %/S(Qe) Cn(m(s)m'

The remainder satisfies Ry(e) = O(e* =) with o,, as given in Remark T3l

Rn(w) (6)

Remark 7.7. If z is a simple pole of (;,(s), then

Cn(w) (8)(26)175
s(1—s)

(2¢)1—=

res( 20—2)

S = Z) = TGS(Cn(w)(S); § = Z)
We next apply Theorem and adapt the techniques of [I4], Section 6.3.1, to
the random strings we considered in Sections 4 and 5. We recall that W is the limit
random variable arising in the general branching process and L is the limit random
variable arising from the random sequence with Poisson-Dirichlet distribution.
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Theorem 7.8. (1) The volume of the tubular neighbourhood of the random recur-
siwe string L is given P-almost surely by (1)), where W = {s : Re(s) > a — 7},
with o = dy and 7 as in Theorem L5, and R(e) = o(e!=2T7=2), for every fized
d >0 as e — 0. Moreover, for a non-lattice random recursive string, we have

V(e) = WRes(E(¢(s)); s = ) (2¢)' " a(l — a) + o(¢' ™), as e — 0T, P-a.s.

(2) For the a-stable string, the volume V (€) of a tubular neighbourhood, for every
fized 6 > 0, is given by

L(2¢)t@

Vo =19

o(e17%/27%) a5 e — 0, Py-a.s.

A consequence of this result is that, in the case of the stable string and the
(strongly) non-lattice random recursive string, the boundary of the string, that is,
the associated random Cantor set, is almost surely Minkowski measurable. Some
results in this direction appear in [7].

We now turn to the eigenvalue counting function. In the case of a random fractal,
the result of [9] shows that the coefficient of the leading term in the asymptotic
expansion of the counting function can be a random constant. As we are considering
a fractal boundary value problem, we observe a similar result for the second order
term. As the string consists of a sequence of one-dimensional intervals, it is easy
to write down the eigenvalues (up to a normalization) for the Dirichlet Laplacian
as k:lj_l for k,7 =1,2,.... Thus there is a simple relationship between the spectral
zeta function, (s,(s), for the string and the geometric zeta function as

Cop(2) = ZA; =Y KL = (2)G(2),

k=1

where (,(z) is the usual Riemann zeta function. Hence we can transfer any results
about the geometry of the string through to its spectrum.

Let N, (z) denote the number of eigenvalues of the Laplacian of the fractal string
with value less than x.

Theorem 7.9. The eigenvalue counting function for the non-lattice random recur-
sive fractal string is given by

le%

Nop(z) = 2 + W (a)Res(E¢,(s); s = a)x— +o(z%), as v — o0, P-a.s.
e
For the a-stable string
Nop(x) = x4 Lé(@)2® + o(z*/?+9), as © — o0, Py-a.s.

In closing we mention an open problem that naturally arises from the results
presented here. In [I4] it was proposed that the definition of fractality should be
the existence of at least one non-real complex dimension (with positive real part).
As we have seen in Section 5 there are natural random strings for which this is not
the case. However we have not been able to establish meromorphic continuation of
the geometric zeta functions of these strings to all of C. This raises the question of
whether there is a natural boundary for such strings beyond which the zeta function
cannot be extended.
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ADDED AFTER POSTING

It may be helpful to the reader to specify that in either the introduction or
in Theorem 7.9 (and the text preceding it), we have used the following implicit
convention. As in reference [I4], N = N(z) really denotes the normalized fre-
quency (rather than eigenvalue) counting function for the Dirichlet Laplacian on
the bounded open set U; that is, we have the relation x = \f)\/w, where A is the
eigenvalue parameter.
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