Noetherian Property of Infinite EI Categories

Wee Liang Gan and Liping Li

University of California, Riverside

September 24, 2014
The category \mathbf{FI}

- Objects: finite sets.
The category FI

- **Objects**: finite sets.
- **Morphisms**: injections.
The category \mathbf{FI}

- Objects: finite sets.
- Morphisms: injections.
- Equivalently, objects are $[n]$, $n \in \mathbb{N} \cup \{0\}$
The category FI

- Objects: finite sets.
- Morphisms: injections.
- Equivalently, objects are $[n], \ n \in \mathbb{N} \cup \{0\}$
- There exist morphisms $[m] \rightarrow [n]$ if and only if $m \leq n$.
The category FI

- Objects: finite sets.
- Morphisms: injections.
- Equivalently, objects are $[n]$, $n \in \mathbb{N} \cup \{0\}$
- There exist morphisms $[m] \to [n]$ if and only if $m \leq n$.
- $\text{End}_{\mathcal{C}}([n])$ is precisely S_n.

Wee Liang Gan and Liping Li

Noetherian Property of Infinite EI Categories
The FI category

- Introduced by Church, Ellenberg, and Farb.
The FI category

- Introduced by Church, Ellenberg, and Farb.
- Used to study representations of all symmetric groups simultaneously, in particular the representation stability, and asymptotic behavior such as polynomial growth.

Theorem (CEF):
FI is locally Noetherian over any field of characteristic 0; that is, sub-representations of finitely generated representations are still finitely generated.

The above result (proved by representations of symmetric groups and branching rule) is shown to be true over arbitrary (left) Noetherian rings by CEFN, using a completely different combinatorial approach.
The FI category

- Introduced by Church, Ellenberg, and Farb.
- Used to study representations of all symmetric groups simultaneously, in particular the representation stability, and asymptotic behavior such as polynomial growth.
- **Theorem** (CEF): FI is *locally Noetherian* over any field of characteristic 0; that is, sub-representations of finitely generated representations are still finitely generated.
The FI category

- Introduced by Church, Ellenberg, and Farb.
- Used to study representations of all symmetric groups simultaneously, in particular the representation stability, and asymptotic behavior such as polynomial growth.
- **Theorem** (CEF): FI is locally Noetherian over any field of characteristic 0; that is, sub-representations of finitely generated representations are still finitely generated.
- The above result (proved by representations of symmetric groups and branching rule) is shown to be true over arbitrary (left) Noetherian rings by CEFN, using a completely different combinatorial approach.
Variations

Variations of FI are extensively studied by CEF, Wilson, Sam, Snowden, Putman, etc, focusing on the Noetherian property and representation stability.
Variations

- Variations of FI are extensively studied by CEF, Wilson, Sam, Snowden, Putman, etc, focusing on the Noetherian property and representation stability.

- FI_q. Objects: finite dimensional space over \mathbb{F}_q; morphisms: linear embeddings.
Variations of FI are extensively studied by CEF, Wilson, Sam, Snowden, Putman, etc, focusing on the Noetherian property and representation stability.

- FI_q. Objects: finite dimensional space over \mathbb{F}_q; morphisms: linear embeddings.
- FI_W, where W is a Weyl group.
EI categories

▶ All above categories are examples of *locally finite EI categories* of type A_∞, which are small categories such that every endomorphism is invertible and satisfy:
EI categories

- All above categories are examples of locally finite EI categories of type A_∞, which are small categories such that every endomorphism is invertible and satisfy:
 - for every pair $x, y \in \text{Ob} \, C$, $|C(x, y)|$ is finite;
All above categories are examples of *locally finite EI categories* of type A_∞, which are small categories such that every endomorphism is invertible and satisfy:

- for every pair $x, y \in \text{Ob} \ C$, $|C(x, y)|$ is finite;
- objects are indexed by $\mathbb{N} \cup \{0\}$, and $C(j, s) \circ C(i, j) = C(i, s)$.

Wee Liang Gan and Liping Li
Noetherian Property of Infinite EI Categories
Let C be a small EI category. A k-linear representation of C is a covariant functor from C to the category of vector spaces over k. The category algebra kC is the vector space spanned by all morphisms and equipped with a multiplication induced by composition of morphisms. A representation of C is precisely a kC-module. The category algebra is never Noetherian when $\text{Ob } C$ is infinite; but kC-mod can still be abelian, and this happens if and only if kC is locally Noetherian.
Representations and category algebras

Let C be a small EI category. A k-linear representation of C is a covariant functor from C to the category of vector spaces over k.

The category algebra kC is the vector space spanned by all morphisms and equipped with a multiplication induced by composition of morphisms.
Let C be a small EI category. A k-linear representation of C is a covariant functor from C to the category of vector spaces over k.

The category algebra kC is the vector space spanned by all morphisms and equipped with a multiplication induced by composition of morphisms.

A representation of C is precisely a kC-module.
Let C be a small EI category. A k-linear *representation* of C is a covariant functor from C to the category of vector spaces over k.

The *category algebra* kC is the vector space spanned by all morphisms and equipped with a multiplication induced by composition of morphisms.

A representation of C is precisely a kC-module.

The category algebra is never Noetherian when $\text{Ob} C$ is infinite; but kC-mod can still be abelian, and this happens if and only if kC is locally Noetherian.
Let \mathcal{C} be a locally finite EI category of type A_∞, $\text{Ob} \mathcal{C} = \mathbb{N} \cup \{0\}$, and assume
Let \mathcal{C} be a locally finite EI category of type A_∞, $\text{Ob} \mathcal{C} = \mathbb{N} \cup \{0\}$, and assume

- **Transitivity:** each $G_j = \mathcal{C}(j,j)$ acts transitively on $\mathcal{C}(j - 1, j)$.
Let C be a locally finite EI category of type A_∞, $\text{Ob } C = \mathbb{N} \cup \{0\}$, and assume

Transitivity: each $G_j = C(j, j)$ acts transitively on $C(j - 1, j)$.

It turns out that G_j acts transitively on $C(i, j)$ for all $i \leq j$.
Let \(C \) be a locally finite EI category of type \(A_\infty \), \(\text{Ob} \ C = \mathbb{N} \cup \{0\} \), and assume

- **Transitivity:** each \(G_j = C(j, j) \) acts transitively on \(C(j - 1, j) \).
- It turns out that \(G_j \) acts transitively on \(C(i, j) \) for all \(i \leq j \).
- Take a representative \(\alpha_j \in C(j, j + 1) \) for each \(j \). Then \(C \) can be depicted as

\[
G_0 \xrightarrow{\alpha_0} G_1 \xrightarrow{\alpha_1} G_2 \xrightarrow{\alpha_2} G_3 \xrightarrow{\alpha_3} \ldots
\]
For $j > i$, define $\alpha_{i,j} = \alpha_{j-1} \circ \ldots \circ \alpha_i$, which belongs to $C(i,j)$.

Motivation

Our Project

Further remarks

Stabilizers
Stabilizers

- For $j > i$, define $\alpha_{i,j} = \alpha_{j-1} \circ \ldots \circ \alpha_{i}$, which belongs to $C(i,j)$.
- Define $H_{i,j} = \text{Stab}_{G_j}(\alpha_{i,j})$.
Stabilizers

- For $j > i$, define $\alpha_{i,j} = \alpha_{j-1} \circ \ldots \circ \alpha_i$, which belongs to $C(i,j)$.
- Define $H_{i,j} = \text{Stab}_{G_j}(\alpha_{i,j})$.
- Since G_j acts transitively on $C(i,j)$, one has $C(i,j) \cong G_j / H_{i,j}$.
For $j > i$, define $\alpha_{i,j} = \alpha_{j-1} \circ \ldots \circ \alpha_i$, which belongs to $C(i,j)$.

Define $H_{i,j} = \text{Stab}_{G_j}(\alpha_{i,j})$.

Since G_j acts transitively on $C(i,j)$, one has $C(i,j) \cong G_j/H_{i,j}$.

The composition with α_{j+1} gives a map $C(i,j) \to C(i,j+1)$, which induces a map

$$\phi_{i,j} : H_{i,j} \backslash G_j / H_{i,j} \to H_{i,j+1} \backslash G_{j+1} / H_{i,j+1}.$$
Theorem (G-L): Let C be a locally finite EI category of type A_∞. If C satisfies the transitivity condition and the following bijectivity condition:

Bijectivity: For $i \geq 0$ and $j \gg i$, $\phi_{i,j}$ is bijective.

then the category algebra kC is locally Noetherian, where k is a field of characteristic 0.
Main result

- **Theorem (G-L):** Let \mathcal{C} be a locally finite EI category of type A_∞. If \mathcal{C} satisfies the transitivity condition and the following bijectivity condition:
 - **Bijectivity:** For $i \geq 0$ and $j \gg i$, $\phi_{i,j}$ is bijective.

 then the category algebra $k\mathcal{C}$ is locally Noetherian, where k is a field of characteristic 0.

- This theorem applies to FI, FI_q, and FI_W.
CEFN have shown that \mathcal{FI} is locally Noetherian over arbitrary Noetherian rings;
CEFN have shown that \mathcal{FI} is locally Noetherian over arbitrary Noetherian rings;

Putman, Sam, Snowden have shown that \mathcal{FI}_q and some other categories are locally Noetherian over arbitrary Noetherian rings.
Noetherian property over Noetherian rings

- CEFN have shown that \mathcal{FI} is locally Noetherian over arbitrary Noetherian rings;
- Putman, Sam, Snowden have shown that \mathcal{FI}_q and some other categories are locally Noetherian over arbitrary Noetherian rings.
- Can our results extend to arbitrary Noetherian rings?
Koszul property

- FI and FI_q have a natural grading. Therefore, they are graded categories.
Koszul property

- FI and FI_q have a natural grading. Therefore, they are graded categories.
- FI and FI have a non-trivial self-embedding $\mathcal{D} \rightarrow \mathcal{C}$ with $\mathcal{D} \cong \mathcal{C}$, which gives rise to a degree shift functor.
Koszul property

- FI and FI_q have a natural grading. Therefore, they are graded categories.
- FI and FI have a non-trivial self-embedding $\mathcal{D} \to \mathcal{C}$ with $\mathcal{D} \cong \mathcal{C}$, which gives rise to a degree shift functor.
- With respect to this self-embedding, $k\mathcal{C} \downarrow_{\mathcal{D}}^\mathcal{C}$ has a special decomposition.
Koszul property

- FI and FI\(_q\) have a natural grading. Therefore, they are graded categories.
- FI and FI have a non-trivial self-embedding \(\mathcal{D} \to \mathcal{C} \) with \(\mathcal{D} \cong \mathcal{C} \), which gives rise to a degree shift functor.
- With respect to this self-embedding, \(k\mathcal{C} \downarrow^\mathcal{C}_\mathcal{D} \) has a special decomposition.
- **Theorem** (G-L): A certain combinatorial condition guarantees the previous properties. In particular, categories satisfying this condition are Koszul over fields with characteristic 0.
Koszul property

- **FI** and **FI**\(_q\) have a natural grading. Therefore, they are graded categories.
- **FI** and **FI** have a non-trivial self-embedding \(D \to C\) with \(D \cong C\), which gives rise to a degree shift functor.
- With respect to this self-embedding, \(kC \downarrow^C_D\) has a special decomposition.

Theorem (G-L): A certain combinatorial condition guarantees the previous properties. In particular, categories satisfying this condition are Koszul over fields with characteristic 0.

Corollary: Every EI category having the same objects and non-invertible morphisms as **FI** or **FI**\(_q\) is Koszul over a field of characteristic 0.