Math 131 - HW 2

Finish reading Chapter 1 (if you haven't already) and read Sections 2.A and 2.B, which we will cover in class next week.

1. Let $V = \{(a_1, a_2) | a_1, a_2 \in \mathbb{F}\}$. If $(a_1, a_2), (b_1, b_2) \in V$ and $s \in \mathbb{F}$, define addition and scalar multiplication as follows:

$$(a_1, a_2) + (b_1, b_2) := (a_1 + b_1, a_2 b_2)$$
 and $s(a_1, a_2) := (sa_1, a_2).$

Is V a vector space under these operations? Justify your answer.

- 2. Which of the following are subspaces of \mathbb{R}^3 ? Why or why not?
 - (a) $\{(x, y, z) \in \mathbb{R}^3 | x 4y z = 0\}$
 - (b) $\{(x, y, z) \in \mathbb{R}^3 | 2x^2 y + z = 0\}$
- 3. Prove or give a counterexample: The intersection of any two subspaces of V is a subspace.
- 4. Prove or give a counterexample: The union of any two subspaces of V is a subspace.
- 5. Prove or give a counterexample: If W_1, W_2 and U are each subspaces of V and $U + W_1 = U + W_2$, then $W_1 = W_2$.
- 6. Find a subset of \mathbb{R}^2 that is closed under scalar multiplication, but is not a subspace.