## Math 131 - HW 3

## Read Chapter 2.

1. Show that if $v_{1}, \ldots, v_{m}$ and $w_{1}, \ldots, w_{n}$ are lists of vectors in $V$, then

$$
\operatorname{span}\left(v_{1}, \ldots, v_{m}, w_{1}, \ldots, w_{n}\right)=\operatorname{span}\left(v_{1}, \ldots, v_{m}\right)+\operatorname{span}\left(w_{1}, \ldots, w_{m}\right)
$$

2. Show that a list $u, v$ of two vectors is linearly dependent if and only if one of the vectors is a multiple of the other.
3. Find three vectors in $\mathbb{R}^{3}$ which make a linearly dependent list, but none of the three is a multiple of another.
4. Prove or give a counterexample: If $v_{1}, \ldots, v_{m}$ and $w_{1}, \ldots, w_{m}$ are linearly independent lists of vectors in $V$, then $v_{1}+w_{1}, \ldots, v_{m}+w_{m}$ is linearly independent.
5. Suppose $v_{1}, \ldots, v_{m}$ is linearly independent in $V$ and $w \in V$. Show that $v_{1}, \ldots v_{m}$, $w$ is linearly independent if and only if $w \notin \operatorname{span}\left(v_{1}, \ldots v_{m}\right)$.
6. Suppose $v_{1}, v_{2}, v_{3}, v_{4}$ is a basis of $V$. Prove that $v_{1}, v_{1}+v_{2}, v_{2}+v_{3}, v_{3}+v_{4}$ is also a basis of $V$.
