Math 131 - HW 3

Read Chapter 2.

1. Show that if v_1, \ldots, v_m and w_1, \ldots, w_n are lists of vectors in V, then

 $\operatorname{span}(v_1,\ldots,v_m,w_1,\ldots,w_n)=\operatorname{span}(v_1,\ldots,v_m)+\operatorname{span}(w_1,\ldots,w_m).$

- 2. Show that a list u, v of two vectors is linearly dependent if and only if one of the vectors is a multiple of the other.
- 3. Find three vectors in \mathbb{R}^3 which make a linearly dependent list, but none of the three is a multiple of another.
- 4. Prove or give a counterexample: If v_1, \ldots, v_m and w_1, \ldots, w_m are linearly independent lists of vectors in V, then $v_1 + w_1, \ldots, v_m + w_m$ is linearly independent.
- 5. Suppose v_1, \ldots, v_m is linearly independent in V and $w \in V$. Show that v_1, \ldots, v_m, w is linearly independent if and only if $w \notin \operatorname{span}(v_1, \ldots, v_m)$.
- 6. Suppose v_1, v_2, v_3, v_4 is a basis of V. Prove that $v_1, v_1 + v_2, v_2 + v_3, v_3 + v_4$ is also a basis of V.