Math 131 - HW 4

Read Sections 3.A and 3.B.

1. Suppose that $T \in \mathcal{L}(V, W)$ and v_{1}, \ldots, v_{n} is a list of vectors in V.
(a) Prove or give a counterexample: If v_{1}, \ldots, v_{n} is linearly independent, then $T\left(v_{1}\right), \ldots, T\left(v_{n}\right)$ is linearly independent.
(b) Prove or give a counterexample: If $T\left(v_{1}\right), \ldots, T\left(v_{n}\right)$ is linearly independent, then v_{1}, \ldots, v_{n} is linearly independent.
2. Find a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that for any $\lambda \in \mathbb{R}$ and $v \in \mathbb{R}^{2}$,

$$
f(\lambda v)=\lambda f(v)
$$

but f is NOT a linear map.
3. Find a function $g: \mathbb{C} \rightarrow \mathbb{C}$ such that for any $z, w \in \mathbb{C}$ we have

$$
g(z+w)=g(z)+g(w)
$$

but g is NOT a linear map (over \mathbb{C}).
4. (a) Let V_{1} be a subspace of V. If $T: V \rightarrow W$ is a linear map, prove that

$$
T\left(V_{1}\right)=\left\{T(v) \mid v \in V_{1}\right\}
$$

is a subspace of W.
(b) Let W_{1} be a subspace of W. If $T: V \rightarrow W$ is a linear map, prove that

$$
\left\{x \in V \mid T(x) \in W_{1}\right\}
$$

is a subspace of V.

