Math 131 - HW 4

Read Sections 3.A and 3.B.

- 1. Suppose that $T \in \mathcal{L}(V, W)$ and v_1, \ldots, v_n is a list of vectors in V.
 - (a) Prove or give a counterexample: If v_1, \ldots, v_n is linearly independent, then $T(v_1), \ldots, T(v_n)$ is linearly independent.
 - (b) Prove or give a counterexample: If $T(v_1), \ldots, T(v_n)$ is linearly independent, then v_1, \ldots, v_n is linearly independent.
- 2. Find a function $f : \mathbb{R}^2 \to \mathbb{R}$ such that for any $\lambda \in \mathbb{R}$ and $v \in \mathbb{R}^2$,

$$f(\lambda v) = \lambda f(v),$$

but f is NOT a linear map.

3. Find a function $g: \mathbb{C} \to \mathbb{C}$ such that for any $z, w \in \mathbb{C}$ we have

$$g(z+w) = g(z) + g(w),$$

but g is NOT a linear map (over \mathbb{C}).

4. (a) Let V_1 be a subspace of V. If $T: V \to W$ is a linear map, prove that

$$T(V_1) = \{ T(v) \mid v \in V_1 \}$$

is a subspace of W.

(b) Let W_1 be a subspace of W. If $T: V \to W$ is a linear map, prove that

$$\{x \in V \mid T(x) \in W_1\}$$

is a subspace of V.