Math 131 - HW 6

Read Section 3.C.

- 1. Let $\beta = (e_1, \ldots, e_n)$ and $\gamma = (e_1, \ldots, e_m)$ be the standard bases for \mathbb{R}^n and \mathbb{R}^m , respectively. For the following linear transformations $T : \mathbb{R}^n \to \mathbb{R}^m$, compute $[T]^{\gamma}_{\beta}$ the matrix representation of T with respect to the bases β and γ . (Recall that our book uses the notation $\mathcal{M}(T)$ for $[T]^{\gamma}_{\beta}$.)
 - (a) $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by T(x, y, z) = (2x + 3y z, x + z).
 - (b) $T : \mathbb{R}^n \to \mathbb{R}^n$ defined by $T(a_1, a_2, \dots, a_n) = (a_1, a_1, \dots, a_1).$
- 2. As we did in class, consider the linear map $D : \mathcal{P}_3(\mathbb{R}) \to \mathcal{P}_2(\mathbb{R})$ given by D(p) = p'(where p' is the derivative of p). Find a basis β of $\mathcal{P}_3(\mathbb{R})$ and a basis γ of $\mathcal{P}_2(\mathbb{R})$ such that the matrix $[D]^{\gamma}_{\beta}$ is:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

3. Suppose that V and W are finite-dimensional vector spaces and that T is a linear map from V to W. Given a basis $\beta = (v_1, \ldots, v_n)$ of V, prove that there exists a basis $\gamma = (w_1, \ldots, w_m)$ of W such that the first column of $[T]^{\gamma}_{\beta}$ is of the form:

$$\begin{bmatrix} 1\\0\\\vdots\\0\end{bmatrix} \quad \text{or} \quad \begin{bmatrix} 0\\0\\\vdots\\0\end{bmatrix}$$