Math 131 - HW 7

Read Section 3.D and 3.E.
Assume throughout that V and W are both finite-dimensional vectors spaces.

1. Fix a vector $v \in V$. Let

$$
E=\{T \in \mathcal{L}(V, W): T v=0\}
$$

(a) Prove that E is a subspace of $\mathcal{L}(V, W)$.
(b) Suppose $v \neq 0$. What is $\operatorname{dim} E$?
2. Suppose $\operatorname{dim} V>1$. Prove that the set of noninvertible operators on V is not a subspace of $\mathcal{L}(V, V)$.
3. Let $T: V \rightarrow W$ be a linear map. Suppose that v_{1}, \ldots, v_{n} is a basis for V. Prove that T is an isomorphism if and only if $T\left(v_{1}\right), \ldots, T\left(v_{n}\right)$ is a basis for W.
4. If $T: V \rightarrow W$ is a linear map and $U \subset V$ is a subspace, then we write $\left.T\right|_{U}: U \rightarrow W$ to denote the restriction of T to U, meaning the function defined by $\left.T\right|_{U}(u)=T(u)$ for any $u \in U$.
Suppose $T: V \rightarrow W$ is a surjective linear map. Prove that there is a subspace U of V such that $\left.T\right|_{U}$ is an isomorphism of U onto W. (Hint: This is very similar to problem 5 on HW 5.)
5. Suppose $S, T \in \mathcal{L}(V, V)$ are operators on V. Prove that $S T=I$ if and only if $T S=I$.

