Math 131 - HW 7

Read Section 3.D and 3.E. Assume throughout that V and W are both finite-dimensional vectors spaces.

1. Fix a vector $v \in V$. Let

$$E = \{T \in \mathcal{L}(V, W) : Tv = 0\}.$$

- (a) Prove that E is a subspace of $\mathcal{L}(V, W)$.
- (b) Suppose $v \neq 0$. What is dim E?
- 2. Suppose dim V > 1. Prove that the set of noninvertible operators on V is not a subspace of $\mathcal{L}(V, V)$.
- 3. Let $T: V \to W$ be a linear map. Suppose that v_1, \ldots, v_n is a basis for V. Prove that T is an isomorphism if and only if $T(v_1), \ldots, T(v_n)$ is a basis for W.
- 4. If $T: V \to W$ is a linear map and $U \subset V$ is a subspace, then we write $T|_U: U \to W$ to denote the restriction of T to U, meaning the function defined by $T|_U(u) = T(u)$ for any $u \in U$.

Suppose $T: V \to W$ is a surjective linear map. Prove that there is a subspace U of V such that $T|_U$ is an isomorphism of U onto W. (Hint: This is very similar to problem 5 on HW 5.)

5. Suppose $S, T \in \mathcal{L}(V, V)$ are operators on V. Prove that ST = I if and only if TS = I.