Math 131 - HW 8

Read Section 3.E and 3.F (optional).

1. Suppose $T: V \rightarrow W$ is a function. Recall that the graph of T is the subset of $V \times W$ defined as:

$$
\operatorname{graph}(T)=\{(v, w) \in V \times W \mid w=T(v)\}
$$

Prove that $\operatorname{graph}(T)$ is a subspace of $V \times W$ if and only if T is a linear map.
2. (a) Suppose that V is a vector space over \mathbb{F}. Prove that there is an isomorphism between $\mathcal{L}(\mathbb{F}, V)$ and V. (Hint: given a linear map $T: \mathbb{F} \rightarrow V$, consider the vector $T(1) \ldots$)
(b) Suppose that V_{1}, \ldots, V_{m}, W are vector spaces. Prove that there is an isomorphism between $\mathcal{L}\left(V_{1} \times \ldots \times V_{m}, W\right)$ and the vector space $\mathcal{L}\left(V_{1}, W\right) \times \ldots \times \mathcal{L}\left(V_{m}, W\right)$.
3. (a) Suppose V is a finite dimensional vector space and U, W are subspaces. Prove that if $U \times W$ is isomorphic to $U+W$, then $U \cap W=\{0\}$.
(b) Find a vector space V and subspaces U, W such that $U \times W$ is isomorphic to $U+W$, but $U \cap W \neq\{0\}$. (Note that V must be infinite dimensional!)
4. Suppose $\phi: V \rightarrow \mathbb{F}$ is a linear map and $u \in V$ such that $\phi(u) \neq 0$. Prove that

$$
V=\operatorname{null}(\phi) \oplus\{a u \mid a \in \mathbb{F}\}
$$

