Math 131, Fall 18 Discussion Section Worksheet 1

We will use the following notation:

- \mathbb{N} denotes the set of natural numbers: $\{1,2,3, \ldots\}$
- \mathbb{Z} denotes the set of integers: $\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$.

1. Consider the following sets and express them in the form $\left\{x_{1}, \ldots, x_{n}\right\}$.
(a) $\left\{x \in \mathbb{Z} \mid x^{2}<25\right\}=$
(b) $\left\{x \in \mathbb{N} \mid x^{2}<25\right\}=$
2. Express the following sets using 'set building notation':
(a) $\{1,4,9,16,25, \ldots\}$
(b) The set of all odd integers.
3. Sketch to following sets of points in the plane:
(a) $\left\{\left(x-1, x^{2}\right) \in \mathbb{R}^{2} \mid x \in \mathbb{Z}\right.$ and $\left.-2 \leq x \leq 3\right\}$
(b) $\left\{(x, y) \in \mathbb{R}^{2} \mid x=2 y\right\}$
(c) $\left\{(x, y) \in \mathbb{R}^{2} \mid x \geq 0\right.$ and $\left.y \geq 0\right\}$
4. Recall that \mathbb{F} denotes either \mathbb{R} or \mathbb{C} and that:

$$
\mathbb{F}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{j} \in \mathbb{F} \text { for } j=1, \ldots, n\right\} .
$$

Prove that if $x, y \in \mathbb{F}^{n}$, then $x+y=y+x$.
Proof.
5. Prove that $\lambda(x+y)=\lambda x+\lambda y$ for all $x, y \in \mathbb{F}^{n}$ and $\lambda \in \mathbb{F}$.

Proof.

