Math 131, Fall 18 Discussion Section Worksheet 1

We will use the following notation:

- \mathbb{N} denotes the set of natural numbers: $\{1, 2, 3, \ldots\}$
- \mathbb{Z} denotes the set of integers: {..., -3, -2, -1, 0, 1, 2, 3, ...}.
- 1. Consider the following sets and express them in the form $\{x_1, \ldots, x_n\}$.
 - (a) $\{x \in \mathbb{Z} \mid x^2 < 25\} =$
 - (b) $\{x \in \mathbb{N} \mid x^2 < 25\} =$
- 2. Express the following sets using 'set building notation':
 - (a) $\{1, 4, 9, 16, 25, ...\}$
 - (b) The set of all odd integers.
- 3. Sketch to following sets of points in the plane:
 - (a) $\{(x-1,x^2)\in\mathbb{R}^2\mid x\in\mathbb{Z} \text{ and } -2\leq x\leq 3\}$

(b)
$$\{(x, y) \in \mathbb{R}^2 | x = 2y\}$$

(c) $\{(x,y)\in\mathbb{R}^2|x\geq 0 \text{ and } y\geq 0\}$

4. Recall that \mathbb{F} denotes either \mathbb{R} or \mathbb{C} and that:

$$\mathbb{F}^n = \{ (x_1, \dots, x_n) | x_j \in \mathbb{F} \text{ for } j = 1, \dots, n \}.$$

Prove that if $x, y \in \mathbb{F}^n$, then x + y = y + x. Proof.

5. Prove that $\lambda(x+y) = \lambda x + \lambda y$ for all $x, y \in \mathbb{F}^n$ and $\lambda \in \mathbb{F}$.

Proof.