Math 131, Fall 18 Discussion Section Worksheet 2

Let V be a vector space.

1. Prove the following useful fact from Tuesday that we skipped over for lack of time: For every $v \in V, 0 v=0$.
2. Let $S=\left\{\left(a_{1}, a_{2}\right) \mid a_{1}, a_{2} \in \mathbb{R}\right\}$. For $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right) \in S$ and $c \in \mathbb{R}$, let

$$
\begin{aligned}
\left(a_{1}, a_{2}\right)+\left(b_{1}, b_{2}\right) & :=\left(a_{1}+a_{2}, 0\right) \\
\text { and } \quad c\left(a_{1}, a_{2}\right) & =\left(c a_{1}, c a_{2}\right) .
\end{aligned}
$$

Determine whether or not these addition and scalar multiplication rules make S a vector space. If not, what axiom(s) fail?
3. Let W_{1} and W_{2} be subspaces of V. Recall $W_{1}+W_{2}=\left\{w_{1}+w_{2} \mid w_{1} \in W_{1}\right.$ and $\left.w_{2} \in W_{2}\right\}$. (a) Prove that $W_{1}+W_{2}$ is a subspace of V and that it contains both W_{1} and W_{2}.
(b) Prove that any subspace of V that contains both W_{1} and W_{2} must also contain $W_{1}+W_{2}{ }^{1}$
4. True/False: The subset $\left\{(a+b i, c i) \in \mathbb{C}^{2} \mid a, b, c \in \mathbb{R}\right\} \subset \mathbb{C}^{2}$ is a subspace of the complex vector space \mathbb{C}^{2}. Why or why not?

[^0]
[^0]: ${ }^{1}$ In other words, $W_{1}+W_{2}$ is the smallest subspace of V that contains both W_{1} and W_{2}.

