Math 131, Fall 18 Discussion Section Worksheet 2

Let V be a vector space.

1. Prove the following useful fact from Tuesday that we skipped over for lack of time: For every $v \in V$, 0v = 0.

2. Let $S = \{(a_1, a_2) | a_1, a_2 \in \mathbb{R}\}$. For $(a_1, a_2), (b_1, b_2) \in S$ and $c \in \mathbb{R}$, let

 $(a_1, a_2) + (b_1, b_2) := (a_1 + a_2, 0)$

and $c(a_1, a_2) = (ca_1, ca_2).$

Determine whether or not these addition and scalar multiplication rules make S a vector space. If not, what axiom(s) fail?

3. Let W₁ and W₂ be subspaces of V. Recall W₁+W₂ = {w₁+w₂|w₁ ∈ W₁ and w₂ ∈ W₂}.
(a) Prove that W₁ + W₂ is a subspace of V and that it contains both W₁ and W₂.

(b) Prove that any subspace of V that contains both W_1 and W_2 must also contain $W_1 + W_2$.¹

4. True/False: The subset $\{(a + bi, ci) \in \mathbb{C}^2 | a, b, c \in \mathbb{R}\} \subset \mathbb{C}^2$ is a subspace of the complex vector space \mathbb{C}^2 . Why or why not?

¹In other words, $W_1 + W_2$ is the smallest subspace of V that contains both W_1 and W_2 .