Math 131, Fall 18 Discussion Section Worksheet 3

Let V be a vector space.

- 1. Let $v_1, \ldots v_m$ be a list of vectors in V.
 - (a) What is $\operatorname{span}(v_1, \ldots v_m)$?
 - (b) What does it mean for $v_1, \ldots v_m$ to be linearly independent?

- 2. (a) Show that if we consider \mathbb{C} as a vector space over \mathbb{R} (!), then the list 1 + i, 1 i is linearly independent.
 - (b) Show that if we consider \mathbb{C} as a vector space over \mathbb{C} , then the list 1 + i, 1 i is linearly dependent.

3. Suppose $v_1, \ldots v_m$ is linearly independent in V and $w \in V$. Prove that if $v_1 + w, \ldots v_m + w$ is linearly dependent, then $w \in \text{span}(v_1, \ldots v_m)$.

- 4. Yesterday in class we showed: If V is spanned by a finite list, then the length of any linearly independent list of V is less than or equal to the length of any list that spans V. Without doing any computations, determine whether or not:
 - (a) The list (-2, 0, 3, 4), (1, 2, 5, 4), (-15, 2, 1, 1) spans \mathbb{R}^4 .
 - (b) The list (1, 2, -3), (3, 4, 1), (-3, -3, 3), (2, 4, -1) is linearly independent in \mathbb{R}^3 .

Hint: Recall that $e_1 = (1, 0, ..., 0), ..., e_n = (0, ..., 0, 1)$ is a linearly independent list that spans V.