Math 131, Fall 18 Discussion Section Worksheet 3

Let V be a vector space.

1. Let $v_{1}, \ldots v_{m}$ be a list of vectors in V.
(a) What is $\operatorname{span}\left(v_{1}, \ldots v_{m}\right)$?
(b) What does it mean for $v_{1}, \ldots v_{m}$ to be linearly independent?
2. (a) Show that if we consider \mathbb{C} as a vector space over $\mathbb{R}(!)$, then the list $1+i, 1-i$ is linearly independent.
(b) Show that if we consider \mathbb{C} as a vector space over \mathbb{C}, then the list $1+i, 1-i$ is linearly dependent.
3. Suppose $v_{1}, \ldots v_{m}$ is linearly independent in V and $w \in V$. Prove that if $v_{1}+w, \ldots v_{m}+w$ is linearly dependent, then $w \in \operatorname{span}\left(v_{1}, \ldots v_{m}\right)$.
4. Yesterday in class we showed: If V is spanned by a finite list, then the length of any linearly independent list of V is less than or equal to the length of any list that spans V. Without doing any computations, determine whether or not:
(a) The list $(-2,0,3,4),(1,2,5,4),(-15,2,1,1)$ spans \mathbb{R}^{4}.
(b) The list $(1,2,-3),(3,4,1),(-3,-3,3),(2,4,-1)$ is linearly independent in \mathbb{R}^{3}. Hint: Recall that $e_{1}=(1,0, \ldots, 0), \ldots, e_{n}=(0, \ldots, 0,1)$ is a linearly independent list that spans V.
