Math 131, Fall 18 Discussion Section Worksheet 4

Let V be a vector space.

1. Let $W=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}=y^{2}\right\}$.
(a) Sketch W as a subset of \mathbb{R}^{2}.
(b) Prove or disprove: W is a subspace of \mathbb{R}^{2}.
2. True/False:
(a) If v_{1}, \ldots, v_{n} is a linearly dependent list, then each element is a linear combination of other elements of S.
(b) Any set containing the zero vector is linearly dependent.
(c) Subsets of linearly dependent sets are linearly dependent.
(d) Subsets of linearly independent sets are linearly independent.
3. Let $U=\left\{\left(z_{1}, z_{2}, z_{3}, z_{4}, z_{5}\right) \in \mathbb{C}^{5}: 6 z_{1}=z_{2}\right.$ and $\left.z_{3}+2 z_{4}+3 z_{5}=0\right\}$.
(a) Find a basis for U.
(b) Extend the basis for U to a basis for \mathbb{C}^{5}.
4. Prove or give a counterexample: If $v_{1}, v_{2}, v_{3}, v_{4}$ is a basis of a vector space V and U is a subspace of V such that $v_{1}, v_{2} \in U$ and $v_{3}, v_{4} \notin U$, then v_{1}, v_{2} is a basis of U.
